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Parsing: URL normalization

Parsing

• When a fetched document is parsed

• some outlink URLs are relative

• For example:

• http://en.wikipedia.org/wiki/Main_Page

• has a link to “/wiki/Special:Statistics”

• which is the same as

• http://en.wikipedia.org/wiki/Special:Statistics

• Parsing involves normalizing (expanding) relative URLs

http://en.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Special:Statistics
http://en.wikipedia.org/wiki/Special:Statistics
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Content Seen?

Duplication

• Duplication is widespread on the web

• If a page just fetched is already in the index, don’t process it 

any further

• This can be done by using document fingerprints/shingles

• A type of hashing scheme
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Compliance with webmasters wishes...

Filters 

• Robots.txt

• Filters is a regular expression for a URL to be excluded

• How often do you check robots.txt?

• Cache to avoid using bandwidth and loading web server

• Sitemaps

• A mechanism to better manage the URL frontier
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Duplicate Elimination 

• For a one-time crawl

• Test to see if an extracted,parsed, filtered URL

• has already been sent to the frontier.

• has already been indexed.

• For a continuous crawl

• See full frontier implementation:

• Update the URL’s priority

• Based on staleness

• Based on quality

• Based on politeness



Distributing the crawl

• The key goal for the architecture of a distributed crawl is 

cache locality

• We want multiple crawl threads in multiple processes at 

multiple nodes for robustness

• Geographically distributed for speed

• Partition the hosts being crawled across nodes

• Hash typically used for partition

• How do the nodes communicate?
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URL Frontier

• Freshness

• Crawl some pages more often than others

• Keep track of change rate of sites

• Incorporate sitemap info

• Quality

• High quality pages should be prioritized

• Based on link-analysis, popularity, heuristics on content

• Politeness

• When was the last time you hit a server?



URL Frontier

• Freshness, Quality and Politeness

• These goals will conflict with each other

• A simple priority queue will fail because links are bursty

• Many sites have lots of links pointing to themselves 

creating bursty references

• Time influences the priority

• Politeness Challenges

• Even if only one thread is assigned to hit a particular host it 

can hit it repeatedly

• Heuristic : insert a time gap between successive requests



Magnitude of the crawl

• To fetch 1,000,000,000 pages in one month...

• a small fraction of the web

• we need to fetch 400 pages per second !

• Since many fetches will be duplicates, unfetchable, filtered, 

etc. 400 pages per second isn’t fast enough



• Introduction

• URL Frontier

• Robust Crawling

• DNS

• Various parts of architecture

• URL Frontier

• Index

• Distributed Indices

• Connectivity Servers

Overview

Web Crawling Outline
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URL Frontier Implementation - Mercator 

• URLs flow from top to bottom

• Front queues manage priority

• Back queue manage politeness

• Each queue is FIFO

Prioritizer

F "Front" 
Queues

1 2 F

B "Back" 
Queues

Front Queue Selector

Back Queue Router Host to Back Queue 
Mapping Table

1 2 B

Back Queue Selector Timing Heap

http://research.microsoft.com/~najork/mercator.pdf

http://research.microsoft.com/~najork/mercator.pdf
http://research.microsoft.com/~najork/mercator.pdf


URL Frontier Implementation - Mercator

• Prioritizer takes URLS and assigns a 

priority

• Integer between 1 and F

• Appends URL to appropriate queue

• Priority

• Based on rate of change

• Based on quality (spam)

• Based on application

Prioritizer

F "Front" 

Queues

1 2 F

Front Queue Selector

Front queues



URL Frontier Implementation - Mercator

• Selection from front queues is 

initiated from back queues

• Pick a front queue, how?

• Round robin

• Randomly

• Monte Carlo

• Biased toward high priority

Back queues

B "Back" 
Queues

Back Queue Router Host to Back Queue 
Mapping Table

1 2 B

Back Queue Selector Timing Heap



URL Frontier Implementation - Mercator

• Each back queue is non-empty 

while crawling

• Each back queue has URLs from 

one host only

• Maintain a table of URL to back 

queues (mapping) to help

Back queues

B "Back" 
Queues

Back Queue Router Host to Back Queue 
Mapping Table

1 2 B

Back Queue Selector Timing Heap



URL Frontier Implementation - Mercator

• Timing Heap

• One entry per queue

• Has earliest time that a host can 

be hit again

• Earliest time based on

• Last access to that host

• Plus any appropriate heuristic

Back queues

B "Back" 
Queues

Back Queue Router Host to Back Queue 
Mapping Table

1 2 B

Back Queue Selector Timing Heap



URL Frontier Implementation - Mercator

• A crawler thread needs a URL

• It gets the timing heap root

• It gets the next eligible queue 

based on time, b.

• It gets a URL from b

• If b is empty

• Pull a URL v from front queue

• If back queue for v exists place 

it in that queue, repeat.

• Else add v to b - update heap.

Back queues

B "Back" 
Queues

Back Queue Router Host to Back Queue 
Mapping Table

1 2 B

Back Queue Selector Timing Heap



URL Frontier Implementation - Mercator

• How many queues?

• Keep all threads busy

• ~3 times as many back queues 

as crawler threads

• Web-scale issues

• This won’t fit in memory

• Solution

• Keep queues on disk and 

keep a portion in memory.

Back queues

B "Back" 
Queues

Back Queue Router Host to Back Queue 
Mapping Table

1 2 B

Back Queue Selector Timing Heap




