Introduction to Information Retrieval

INF 141
Donald J. Patterson

Content adapted from Hinrich Schitze
http://www.informationretrieval.org

http://www.informationretrieval.org
http://www.informationretrieval.org

Web Crawlers

Robust Crawling

A Robust Crawl Architecture

3 S
Finger- Robots.txt URL
prints Index

URL Duplicate
Filter Elimination

__

URL Frontier Queue

Parsing: URL normalization

e When a fetched document is parsed
e some outlink URLs are relative
® For example:

e htitp://en.wikipedia.org/wiki/Main_Page

® has a link to “/wiki/Special:Statistics”
® which is the same as

e http://en.wikipedia.org/wiki/Special:Statistics

® Parsing involves normalizing (expanding) relative URLs

http://en.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Special:Statistics
http://en.wikipedia.org/wiki/Special:Statistics

Robust Crawling

A Robust Crawl Architecture

3 S
Finger- Robots.txt URL
prints Index

URL Duplicate
Filter Elimination

__

URL Frontier Queue

Duplication

Content Seen?

Duplication is widespread on the web

If @ page just fetched is already in the index, don’t process it

any further

This can be done by using document fingerprints/shingles

e A type of hashing scheme

Robust Crawling

A Robust Crawl Architecture

3 S
Finger- Robots.txt URL
prints Index

URL Duplicate
Filter Elimination

__

URL Frontier Queue

Compliance with webmasters wishes...

® Robots.ixt
e Filters is a regular expression for a URL to be excluded
e How often do you check robots.txt?
e (Cache to avoid using bandwidth and loading web server
® Sitemaps

e A mechanism to better manage the URL frontier

Robust Crawling

A Robust Crawl Architecture

3 S
Finger- Robots.txt URL
prints Index

URL Duplicate
Filter Elimination

__

URL Frontier Queue

Duplicate Elimination

® For a one-time crawl

e Testto see if an extracted,parsed, filtered URL

® has already been sent to the frontier.

® has already been indexed.
® [For a continuous crawl
e See full frontier implementation:
e Update the URL's priority
e Based on staleness
e Based on quality

¢, Based gn politeness

Distributing the crawl

® The key goal for the architecture of a distributed crawl is

cache locality
e We want multiple crawl threads in multiple processes at
multiple nodes for robustness
e Geographically distributed for speed
e Partition the hosts being crawled across nodes
e Hash typically used for partition

e How do the nodes communicate?

Robust Crawling

The output of the URL Filter at each node is sent to the Duplicate
Eliminator at all other nodes

e P 3
Robots.txt
DNS

To Other Nodes

I

URL Host Duplicate
Filter Splitter Elimination

From Other
Nodes

URL Frontier Queue

® Freshness
e Crawl some pages more often than others
e Keep track of change rate of sites

® |ncorporate sitemap info

e Quality

e High quality pages should be prioritized
e Based on link-analysis, popularity, heuristics on content
® Politeness

e \When was the last time you hit a server?

® Freshness, Quality and Politeness
® These goals will conflict with each other
e A simple priority queue will fail because links are bursty
e Many sites have lots of links pointing to themselves
creating bursty references

¢ Time influences the priority

e Politeness Challenges

e Even if only one thread is assigned to hit a particular host it
can hit it repeatedly

o/ Heuristic : insert a timeggap lIatwaen successiye request

l'l"\\\
1

Magnitude of the crawl

To fetch 1,000,000,000 pages in one month...
® asmall fraction of the web

we need to fetch 400 pages per second !

Since many fetches will be duplicates, unfetchable, filtered,

etc. 400 pages per second isn’t fast enough

Web Crawling Ouitline

Overview

¢ |ntroduction

e URL Frontier

e Robust Crawling
e DNS
® Various parts of architecture
e URL Frontier

® |ndex

e Distributed Indices

oNNe Gl Sc S
!

Robust Crawling

The output of the URL Filter at each node is sent to the Duplicate
Eliminator at all other nodes

e P 3
Robots.txt
DNS

To Other Nodes

I

URL Host Duplicate
Filter Splitter Elimination

From Other
Nodes

URL Frontier Queue

URL Frontier Implementation - Mercator

e URLs flow from top to bottom

Prioritizer
1;74 ® Front queues manage priority
V4
P ® Back queue manage politeness
Queues
e Each queue is FIFO

l Front Queue Selector

Back Queue Router Host to Back Queue
Mapping Table

B
B "Back"
Queues

Back Queue Selector ' Timing Heap

N\ 4
%4%\% LR

http://research.microsoft.com/~najork/mercator.pdf
http://research.microsoft.com/~najork/mercator.pdf

URL Frontier Implementation - Mercator

® Prioritizer takes URLS and assigns a

Front queues

priority

l ® |nteger between1landF

Prioritizer

- e Appends URL to appropriate queue

® Priority

F "Front"
Queues

e Based on rate of change

¢ Based on quality (spam)

Front Queue Selector . .
e Based on application

URL Frontier Implementation - Mercator

Back queues e Selection from front queues is
v

Back Queue Router Host to Back Queue initiated from back gqueues
Mapping Table

i ° e Pick a front queue, how?

B "Back" e Round robin

Queues

e Randomly

\

' Back Queue Selector |<—>l Timing Heap I ® Monte Ca I’lO

® Biased toward high priority

URL Frontier Implementation - Mercator

Back queues e Each back queue is non-empty
v

Back Queue Router Host to Back Queue while crawli ng
Mapping Table

F/Flz i e Each back queue has URLs from

& 3 Back one host only
& ¢ Maintain a table of URL to back
\

' Back Queue Selector |<—>l Timing Heap I queues (mapp|ng) tO help

URL Frontier Implementation - Mercator

Back queues * Timing Heap
v

Back Queue Router Host fo Back Queue | One e niry per queue
Mapping Table

) 5 ® Has earliest time that a host can

be hit again

B "Back"
Queues

® FEarliest time based on

\

%—M e Last access to that host
e Plus any appropriate heuristic

URL Frontier Implementation - Mercator

Back queues e A crawler thread needs a URL
!

Back Queue Router Host to Back Queue ¢ It getS the tlmlng heap root
Mapping Table

2 5 e |t gets the next eligible queue

ne

& Bk based on time, b.
Queues
& &\ It gets a URL from b
\

Pulla URL v from front queue

If back queue for v exists place
it in that queue, repeat.
ls@wadd v to b/- update heap.

/1"\(\
1

URL Frontier Implementation - Mercator

Back queues e How many queues?
!

ook Queue Foutor ool ® Keep all threads busy
Mapping Table

’ 5 e -~3times as many back queues

as crawler threads

B "Back"
Queues

® \Web-scale issues

\

(dzegdon e * This worftfitin memory
e Solution

e Keep queues on disk and

keep a portion in memory.

