
Web Crawling
Introduction to Information Retrieval
INF 141
Donald J. Patterson

Content adapted from Hinrich Schütze
http://www.informationretrieval.org

http://www.informationretrieval.org
http://www.informationretrieval.org


Web Crawlers



A Robust Crawl Architecture

Robust Crawling

WWW

DNS

Fetch

Parse

Seen?

Doc.
Finger-
prints

URL
Filter

Robots.txt

Duplicate 
Elimination

URL
Index

URL Frontier Queue



Parsing: URL normalization

Parsing

• When a fetched document is parsed

• some outlink URLs are relative

• For example:

• http://en.wikipedia.org/wiki/Main_Page

• has a link to “/wiki/Special:Statistics”

• which is the same as

• http://en.wikipedia.org/wiki/Special:Statistics

• Parsing involves normalizing (expanding) relative URLs

http://en.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Special:Statistics
http://en.wikipedia.org/wiki/Special:Statistics


A Robust Crawl Architecture

Robust Crawling

WWW

DNS

Fetch

Parse

Seen?

Doc.
Finger-
prints

URL
Filter

Robots.txt

Duplicate 
Elimination

URL
Index

URL Frontier Queue



Content Seen?

Duplication

• Duplication is widespread on the web

• If a page just fetched is already in the index, don’t process it 

any further

• This can be done by using document fingerprints/shingles

• A type of hashing scheme



A Robust Crawl Architecture

Robust Crawling

WWW

DNS

Fetch

Parse

Seen?

Doc.
Finger-
prints

URL
Filter

Robots.txt

Duplicate 
Elimination

URL
Index

URL Frontier Queue



Compliance with webmasters wishes...

Filters 

• Robots.txt

• Filters is a regular expression for a URL to be excluded

• How often do you check robots.txt?

• Cache to avoid using bandwidth and loading web server

• Sitemaps

• A mechanism to better manage the URL frontier



A Robust Crawl Architecture

Robust Crawling

WWW

DNS

Fetch

Parse

Seen?

Doc.
Finger-
prints

URL
Filter

Robots.txt

Duplicate 
Elimination

URL
Index

URL Frontier Queue



Duplicate Elimination 

• For a one-time crawl

• Test to see if an extracted,parsed, filtered URL

• has already been sent to the frontier.

• has already been indexed.

• For a continuous crawl

• See full frontier implementation:

• Update the URL’s priority

• Based on staleness

• Based on quality

• Based on politeness



Distributing the crawl

• The key goal for the architecture of a distributed crawl is 

cache locality

• We want multiple crawl threads in multiple processes at 

multiple nodes for robustness

• Geographically distributed for speed

• Partition the hosts being crawled across nodes

• Hash typically used for partition

• How do the nodes communicate?



Robust Crawling

WWW

DNS

Fetch

Parse

Seen?

Doc.
Finger-
prints

URL
Filter

Robots.txt

Duplicate 
Elimination

URL
Index

URL Frontier Queue

Host 
Splitter

To Other Nodes

From Other 
Nodes

The output of the URL Filter at each node is sent to the Duplicate 
Eliminator at all other nodes



URL Frontier

• Freshness

• Crawl some pages more often than others

• Keep track of change rate of sites

• Incorporate sitemap info

• Quality

• High quality pages should be prioritized

• Based on link-analysis, popularity, heuristics on content

• Politeness

• When was the last time you hit a server?



URL Frontier

• Freshness, Quality and Politeness

• These goals will conflict with each other

• A simple priority queue will fail because links are bursty

• Many sites have lots of links pointing to themselves 

creating bursty references

• Time influences the priority

• Politeness Challenges

• Even if only one thread is assigned to hit a particular host it 

can hit it repeatedly

• Heuristic : insert a time gap between successive requests



Magnitude of the crawl

• To fetch 1,000,000,000 pages in one month...

• a small fraction of the web

• we need to fetch 400 pages per second !

• Since many fetches will be duplicates, unfetchable, filtered, 

etc. 400 pages per second isn’t fast enough



• Introduction

• URL Frontier

• Robust Crawling

• DNS

• Various parts of architecture

• URL Frontier

• Index

• Distributed Indices

• Connectivity Servers

Overview

Web Crawling Outline



Robust Crawling

WWW

DNS

Fetch

Parse

Seen?

Doc.
Finger-
prints

URL
Filter

Robots.txt

Duplicate 
Elimination

URL
Index

URL Frontier Queue

Host 
Splitter

To Other Nodes

From Other 
Nodes

The output of the URL Filter at each node is sent to the Duplicate 
Eliminator at all other nodes



URL Frontier Implementation - Mercator 

• URLs flow from top to bottom

• Front queues manage priority

• Back queue manage politeness

• Each queue is FIFO

Prioritizer

F "Front" 
Queues

1 2 F

B "Back" 
Queues

Front Queue Selector

Back Queue Router Host to Back Queue 
Mapping Table

1 2 B

Back Queue Selector Timing Heap

http://research.microsoft.com/~najork/mercator.pdf

http://research.microsoft.com/~najork/mercator.pdf
http://research.microsoft.com/~najork/mercator.pdf


URL Frontier Implementation - Mercator

• Prioritizer takes URLS and assigns a 

priority

• Integer between 1 and F

• Appends URL to appropriate queue

• Priority

• Based on rate of change

• Based on quality (spam)

• Based on application

Prioritizer

F "Front" 

Queues

1 2 F

Front Queue Selector

Front queues



URL Frontier Implementation - Mercator

• Selection from front queues is 

initiated from back queues

• Pick a front queue, how?

• Round robin

• Randomly

• Monte Carlo

• Biased toward high priority

Back queues

B "Back" 
Queues

Back Queue Router Host to Back Queue 
Mapping Table

1 2 B

Back Queue Selector Timing Heap



URL Frontier Implementation - Mercator

• Each back queue is non-empty 

while crawling

• Each back queue has URLs from 

one host only

• Maintain a table of URL to back 

queues (mapping) to help

Back queues

B "Back" 
Queues

Back Queue Router Host to Back Queue 
Mapping Table

1 2 B

Back Queue Selector Timing Heap



URL Frontier Implementation - Mercator

• Timing Heap

• One entry per queue

• Has earliest time that a host can 

be hit again

• Earliest time based on

• Last access to that host

• Plus any appropriate heuristic

Back queues

B "Back" 
Queues

Back Queue Router Host to Back Queue 
Mapping Table

1 2 B

Back Queue Selector Timing Heap



URL Frontier Implementation - Mercator

• A crawler thread needs a URL

• It gets the timing heap root

• It gets the next eligible queue 

based on time, b.

• It gets a URL from b

• If b is empty

• Pull a URL v from front queue

• If back queue for v exists place 

it in that queue, repeat.

• Else add v to b - update heap.

Back queues

B "Back" 
Queues

Back Queue Router Host to Back Queue 
Mapping Table

1 2 B

Back Queue Selector Timing Heap



URL Frontier Implementation - Mercator

• How many queues?

• Keep all threads busy

• ~3 times as many back queues 

as crawler threads

• Web-scale issues

• This won’t fit in memory

• Solution

• Keep queues on disk and 

keep a portion in memory.

Back queues

B "Back" 
Queues

Back Queue Router Host to Back Queue 
Mapping Table

1 2 B

Back Queue Selector Timing Heap




