Vector Space Scoring

Efficient Cosine Ranking
® Find the k docs in the corpus “nearest” to the query

e the k largest query-doc cosines
e Efficient ranking means:
e Computing a single cosine efficiently
e Computing the k largest cosine values efficiently

e Can we do this without computing all n cosines?

® n =number of documents in corpus

Vector Space Scoring

Efficient Cosine Ranking
e Computing a single cosine

e Use inverted index

e At query time use an array of accumulators Aj to

accumulate component-wise sum

e Accumulate scores as postings lists are being

processed (numerator of similarity score)

Aj = Z(wq,twd,t)

t

Vector Space Scoring

Efficient Cosine Ranking
e Forthe web

® an array of accumulators in memory is infeasible
® so only create accumulators for docs that occur in
postings list
e dynamically create accumulators
e put the tf_d scores in the postings lists themselves
¢ |limit docs to non-zero cosines on rare words

® Or non-zero cosines on all words

® reduces number of accumulators

Vector Space Scoring

Efficient Cosine Ranking

COSINESCORE(q)
1 INITIALIZE(Scores|d € D))
INITIALIZE(M agnitude|d € D))
for each term(t € q)
do p «— FETCHPOSTINGSLIST(?)
df; <+ GETCORPUSWIDESTATS(p)
a4 <+ WEIGHTINQUERY (¢, q, dft)
for each {d,tf:q} € p
do Scores|d] + = a4 - WEIGHTINDOCUMENT(t, q, df})
for d € Scores
do NORMALIZE(Scores|d], Magnitude|d))
return top K € Scores

= O © 00 ~J O O = W N

et

Vector Space Scoring

Use heap for selecting the top K Scores
e Binary tree in which each node’s value > the values of

children
e Takes 2N operations to construct

e then each of k “winners” read off in 2
e For n =1M, k=100 this is about 10% of t

logn steps

ne cost of sorting

