
Ef!cient Cosine Ranking

Vector Space Scoring

• Find the k docs in the corpus “nearest” to the query

• the k largest query-doc cosines

• Efficient ranking means:

• Computing a single cosine efficiently

• Computing the k largest cosine values efficiently

• Can we do this without computing all n cosines?

• n = number of documents in corpus



Ef!cient Cosine Ranking

Vector Space Scoring

• Computing a single cosine

• Use inverted index

• At query time use an array of accumulators Aj to 

accumulate component-wise sum

• Accumulate scores as postings lists are being 

processed (numerator of similarity score)

Aj =
∑

t

(wq,twd,t)



Ef!cient Cosine Ranking

Vector Space Scoring

• For the web

• an array of accumulators in memory is infeasible

• so only create accumulators for docs that occur in 

postings list

• dynamically create accumulators

• put the tf_d scores in the postings lists themselves

• limit docs to non-zero cosines on rare words

• or non-zero cosines on all words

• reduces number of accumulators



Ef!cient Cosine Ranking

Vector Space Scoring

CosineScore(q)
1 Initialize(Scores[d ∈ D])
2 Initialize(Magnitude[d ∈ D])
3 for each term(t ∈ q)
4 do p← FetchPostingsList(t)
5 dft ← GetCorpusWideStats(p)
6 αt,q ←WeightInQuery(t, q, dft)
7 for each {d, tft,d} ∈ p
8 do Scores[d] + = αt,q · WeightInDocument(t, q, dft)
9 for d ∈ Scores

10 do Normalize(Scores[d],Magnitude[d])
11 return top K ∈ Scores



Use heap for selecting the top K Scores

Vector Space Scoring

• Binary tree in which each node’s value > the values of 

children

• Takes 2N operations to construct

• then each of k “winners” read off in 2logn steps

• For n =1M, k=100 this is about 10% of the cost of sorting


