
Querying
Introduction to Information Retrieval
Informatics 141 / CS 121
Donald J. Patterson

Content adapted from Hinrich Schütze
http://www.informationretrieval.org



• Boolean Retrieval

• Weighted Boolean Retrieval

• Zone Indices

• Term Frequency Metrics

• The full vector space model

Overview

Querying



From the bottom

• “Grep”

• Querying without an index or a crawl

• Whenever you want to find something you look through 

the entire document for it.

• Example:

• You have the collected works of Shakespeare on disk

• You want to know which play contains the words

• “Brutus AND Caesar”

Querying



• “Grep”

• “Brutus AND Caesar” is the query.

• This is a boolean query. Why?

• What other operators could be used?

• The grep solution:

• Read all the files and all the text and output the 

intersection of the files

Querying



• “Grep”

• Slow for large corpora

• Calculating “NOT” is non-trivial

• Some operations not feasible

• Query: “Romans NEAR Countrymen”

• Doesn’t support ranked retrieval

• Moving beyond grep is the motivation for the inverted 

index.

Querying



• “Grep”

• Slow for large corpora

• Calculating “NOT” is non-trivial

• Some operations not feasible

• Query: “Romans NEAR Countrymen”

• Doesn’t support ranked retrieval

• Moving beyond grep is the motivation for the inverted 

index.

Querying



Querying

Our inverted index is a 2-D array or Matrix

A
 R

o
w

 f
o

r 
E
a

c
h

 W
o

rd
 (

o
r 

“
Te

rm
”
)

A Column For Each Document



• Boolean Query

• Queries are boolean expressions

• Search returns all documents which satisfy the expression

• Does Google use the Boolean model?

Querying



• Boolean Query

• Straightforward application of inverted index

• where cells of inverted index are (0,1)

• indicating presence or absence of a term

Querying

Te
rm

Document



• Boolean Query

• 0/1 vector for each term

• “Brutus AND Caesar AND NOT Calpurnia = 

• Perform bitwise Boolean operation on each row:

• 110100 AND 110111 AND !(010000) = 100100

Querying

Te
rm

Document



• Boolean Query

• A big corpus means a sparse matrix

• A sparse matrix motivates the introduction of the posting

• Much less space to store

• Only recording the “1” positions

Querying



• Boolean Query

• Query processing on postings

• Brutus AND Caesar

• Locate the postings for Brutus

• Locate the postings for Caesar

• Merge the postings

Querying

Brutus 2 4 8 16 32 64

Caesar 1 2 3 5 8 13



• Boolean Query

• Merging -> walk through the two posting simultaneously

• postings sorted by doc ID

Querying

Brutus 2 4 8 16 32 64

Caesar 1 2 3 5 8 13

2 8



• Boolean Query

• An algorithm based on postings

• Linear in the size of the postings

Querying

Intersect(p1, p2)
1 answer ←<>
2 while p1 "= nil and p2 "= nil
3 do if docID(p1) = docID(p2)
4 then Add(answer, docID(p1))
5 p1 ← next(p1)
6 p2 ← next(p2)
7 else if docID(p1) < docID(p2)
8 then p1 ← next(p1)
9 else p2 ← next(p2)

10 return answer



• Boolean Query

• Is the algorithmic complexity better than scanning?

• Where would you put more complex formulae?

Querying

Intersect(p1, p2)
1 answer ←<>
2 while p1 "= nil and p2 "= nil
3 do if docID(p1) = docID(p2)
4 then Add(answer, docID(p1))
5 p1 ← next(p1)
6 p2 ← next(p2)
7 else if docID(p1) < docID(p2)
8 then p1 ← next(p1)
9 else p2 ← next(p2)

10 return answer



• Boolean Queries

• Exact match

• Views each document as a “bag of words”

• Precise: a document matches or it doesn’t

• Primary commercial retrieval tool for 3 decades

• Professional searchers (e.g., lawyers) still like Boolean 

queries

• No question about what you are getting

Querying



Not quite End of Chapter 1


