Reuters collection example (approximate #'s)

e 800,000 documents from the Reuters news feed

e 200 terms per document
e 400,000 unique terms
e number of postings 100,000,000

REUTERS B

You are here: Home = News = Science = Article
Gotoa Section: LS. International Business Markets Politics Enterfainment Technology Sports Oddly Enou
Extreme conditions create rare Antarctic clouds

Tue Aug 1, 2006 53:20am ET
Email This Article | Print This Article | Reprints

[-] Text [+]

SYDMNEY (Reuters) - Rare, mother-of-pearl colored clouds

caused by extreme weather conditions above Antarctica are a
possible indication of global warming, Australian scientists said on
Tuesday.

- - I_"

—

Known as nacreous clouds, the spectacular formations showing delicate
wisps of colors were photographed in the sky over an Australian

meteorological base at Mawson Station on July 25.

Reuters collection example (approximate #'s)

e Sorting 100,000,000 records on disk is too slow because of

disk seek time.
e Parse and build posting entries one at a time
® Sort posting entries by term
® Then by document in each term
e Doing this with random disk seeks is too slow

e e.g.lf every comparison takes 2 disk seeks and N items

need to be sorted with N log2(N) comparisons?
e 306ish days?

Reuters collection example (approximate #'s)

e 100,000,000 records

® Nlog2(N) is = 2,657,542,475.91 comparisons

e ? disk seeks per comparison =13,287,712.38 seconds x 2
o =26,575,424.76 seconds

® —=442,923.75 minutes

o =7,382.06 hours

e —307.59 days

o —84% of ayear

e =1% of your life

BSBI - Block sort-based indexing

Different way to sort index

® 12-byte records (term, doc, meta-data)
e Need to sort T=100,000,000 such 12-byte records by term

e Define a block to have 1,600,000 such records

e can easily fit a couple blocks in memory
e we will be working with 64 such blocks

e Accumulate postings for each block (real blocks are bigger)

e Sort each block
o Write to disk

® Then merge

BSBI - Block sort-based indexing

Different way to sort index

Block Block Merged Postings

1998,www.cnn.com)
1998,news.google.com (1998,
((Her,news.%bcgco.uk)) (1998,news.google.com)

(Lwww.cnn.com) :> (Every,www.cnn.com)

(Jensen's,www.cnn.com) (Her,news.bbc.co.uk)
(Her,news.google.com)

(I,www.cnn.com)
(I'm,news.bbc.co.uk)
(Jensen's,www.cnn.com)

(1998,www.cnn.com)
(Every,www.cnn.com)
(Her,news.google.com)
(I'm,news.bbc.co.uk)

N /

Disk

BSBI - Block sort-based indexing

BlockSortBasedIndexConstruction

BLOCKSORTBASEDINDEXCONSTRUCTION()
n <« 0
while (all documents not processed)
do block < PARSENEXTBLOCK()
BSBI-INVERT(block)
WRITEBLOCKTODISK(block, fr,)

MERGEBLOCKS(f1, fo-- s frny fmerged)

S O I~ QU DN =

BSBI - Block sort-based indexing

Block merge indexing

¢ Parse documents into (TermID, DoclD) pairs until “block” is

full
¢ |nvert the block

e Sort the (TermID,DoclID) pairs

e Compile into TermID posting lists
e Write the block to disk

e Then merge all blocks into one large postings file

e Need 2 copies of the data on disk (input then output)

BSBI - Block sort-based indexing
Analysis of BSBI

¢ The dominant term is O(TlogT)

e Tisthe number of TermID,DoclD pairs

e Butin practice ParseNextBlock takes the most time

e Then MergingBlocks

e Again, disk seeks times versus memory access times

BSBI - Block sort-based indexing

Analysis of BSBI

® 12-byte records (term, doc, meta-data)
e Need to sort T=100,000,000 such 12-byte records by term

e Define a block to have 1,600,000 such records

e can easily fit a couple blocks in memory

e we will be working with 64 such blocks
e 64 blocks * 1,600,000 records * 12 bytes = 1,228,800,000 bytes
® Nlog2N comparisons is 5,584,577,250.93
® 2 touches per comparison at memory speeds (10e-6 sec) =
e 55,845.77 seconds = 930.76 min = 15.5 hours

Index Construction

Overview

¢ |ntroduction

e Hardware

e BSBI - Block sort-based indexing

e SPIMI - Single Pass in-memory indexing
e Distributed indexing

¢ Dynamic indexing

e Miscellaneous topics

Single-Pass In-Memory Indexing

SPIMI
e BSBIlis good but,

® it needs a data structure for mapping terms to termiDs
e this won't fit in memory for big corpora
e Straightforward solution

e dynamically create dictionaries

e store the dictionaries with the blocks

Single-Pass In-Memory Indexing

SPIMI
e BSBIlis good but,

® it needs a data structure for mapping terms to termiDs
e this won't fit in memory for big corpora
e Straightforward solution

e dynamically create dictionaries

e store the dictionaries with the blocks

Single-Pass In-Memory Indexing

SPIMI-INVERT(tokenStream)

1

output File < NEWFILE()
dictionary <« NEWHASH()
while (free memory available)
do token <« next(tokenStream)
if term(token) ¢ dictionary
then postingsList «+— ADDTODICTIONARY (dictionary, term(token))
else postingsList «— GETPOSTINGSLIST(dictionary, term(token))
if full(postingsList)
then postingsList «+ DOUBLEPOSTINGSLIST(dictionary, term(token))
ADDTOPOSTINGSLIST(postingsList, docI D(token))
sortedTerms < SORTTERMS(dictionary)
WRITEBLOCKTODISK(sortedT erms, dictionary, output File)
return outputF'ile

Single-Pass In-Memory Indexing

e So what is different here?
e SPIMI adds postings directly to a posting list.
e BSBI first collected (TermID,DocID pairs)

® then sorted them

e then aggregated the postings

e Each posting list is dynamic so there is no posting list

sorting
e Saves memory because aterm is only stored once

e Complexity is more like O(T)

e Compression enables bigger effective blocks

Single-Pass In-Memory Indexing

Large Scale Indexing

e Key decision in block merge indexing is block size

® |n practice, spidering often interlaced with indexing

e Spidering bottlenecked by WAN speed and other factors

