User Interaction: Intro to Location

Assoc. Professor Donald J. Patterson
INF 133 Fall 2013
Computing with Location

- Navigation
- Global Location
 - All things GPS
- Model-based localization vs. fingerprinting
 - Localization beyond GPS
- Beyond localization
 - Nomatic*IM context
Intro to Location

- The value of location vs the value of the killer app
Intro to Location

Tools for Navigation

• Navigation Tools
 • Clocks
 • Odometer
 • Electronic Aids
• Radio navigation aids
 • ground-based
 • space-based
Tools for Navigation

- Who calculates position?
 - User
 - 3rd party
- What’s the impact?
Intro to Location

Global Location GPS

- Latitude and Longitude
- What are they?
- Datum
Intro to Location

- Describe Lat, Long
 - (x, y)
- Datum
 - mean
 - earth models
Global Location GPS

- Latitude:
 - 0° (equator)
 - 90° N (North Pole)
 - 90° S (South Pole)
- Longitude:
 - 0° (Greenwich Meridian)
 - 180° W (International Date Line)

- Latitude is fat!
Global Location GPS

Mathematical Model

Datum

WGS-84

100's of them

WGS-72

(Latitude, Longitude)

(x, y)
Global Location GPS

- Current GPS
 - Fully operational
 - accurate, continuous, global 3-D position and velocity
 - also distributes universal coordinated time
- 24 original satellites
- 6 orbital places
- 4 satellites per plane
- not geosynchronous
- world-wide monitoring stations

Global Location GPS

- Current GPS
 - Based on
 - Time Of Arrival (TOA) of radio signal
 - knowledge of satellite orbits
 - Satellites have atomic clocks on board
 - 2 frequencies
 - L1 1575.42 MHz
 - L2 1227.6 MHz
Global Location GPS

- Current GPS
- Broadcasts
 - Time of transmission
 - Ephemeris: Precise satellite orbital info
 - Almanac: System health info, rough orbital info for all satellites
Global Location GPS

- Current GPS

- Receiver requirements
 - Must have local clock
 - 3-D position requires four satellites
 - four unknowns (what are they?)
 - time or height reduces this
Global Location GPS

- Basic concept is based on the foghorn paradigm
- but in 3-D
Global Location GPS

- Basic concept is based on a foghorn paradigm
- but in 3-D
Global Location GPS

1 sec
Global Location GPS
Global Location GPS

1 sec

1.5 sec
Global Location GPS

Intro to Location

Flickr: mafleen, greenstorm, templarion
Global Location GPS

- Basic concept is based on the foghorn paradigm
- but in 3-D
Global Location GPS

• What are the implications of this design on
 • scalability of the system?
 • privacy of users?
 • security of users?
 • reliability?
 • implications on device?
Global Location GPS

- GPS accuracy
 - 13 m 95% of the time horizontal
 - 22 m 95% of the time vertical system
 - 40 ns 95% of the time
- How do you design for this?
- Urban canyons
 - What are they?
- Japanese response, European response
Global Location GPS
Global Location GPS

- The current and future of GPS
 - WAAS
 - Additional satellites in geosynchronous orbit
 - DGPS assistance from a land based receiver
 - Galileo
 - European competitor
 - GPS compatible
 - GLONASS
 - Russian competitor
Global Location GPS

• The current and future of GPS
 • WAAS
 • Additional satellites in geosynchronous orbit
 • DGPS assistance from a land based receiver
• Galileo
 • European competitor
 • GPS compatible
• GLONASS
 • Russian competitor