
Geometric Thickness of Complete GraphsMichael B. Dillencourt?, David Eppstein??, Daniel S. HirschbergInformation and Computer Science, University of California, Irvine, CA 92697-3425,USA.Email: fdillenco,eppstein,dang@ics.uci.eduAbstract. We de�ne the geometric thickness of a graph to be the small-est number of layers such that we can draw the graph in the plane withstraight-line edges and assign each edge to a layer so that no two edgeson the same layer cross. The geometric thickness lies between two previ-ously studied quantities, the (graph-theoretical) thickness and the bookthickness. We investigate the geometric thickness of the family of com-plete graphs, fKng. We show that the geometric thickness of Kn liesbetween d(n=5:646) + 0:342e and dn=4e, and we give exact values of thegeometric thickness of Kn for n � 12 and n 2 f15; 16g.1 IntroductionSuppose we wish to display a nonplanar graph on a color terminal in a way thatminimizes the apparent complexity to a user viewing the graph. One possibleapproach would be to use straight-line edges, color each edge, and require thattwo intersecting edges have distinct colors. A natural question then arises: for agiven graph, what is the minimum number of colors required?Or suppose we wish to print a circuit onto a circuit board, using uninsulatedwires, so that if two wires cross, they must be on di�erent layers, and that wewish to minimize the number of layers required. If we allow each wire to bendarbitrarily, this problem has been studied previously; indeed, it reduces to thegraph-theoretical thickness of a graph, de�ned below. However, suppose that wewish to further reduce the complexity of the layout by restricting the number ofbends in each wire. In particular, if we do not allow any bends, then the questionbecomes: for a given circuit, what is the minimum number of layers required toprint the circuit using straight-line wires?These two problems motivate the subject of this paper, namely the geometricthickness of a graph. We de�ne �g(G), the geometric thickness of a graph G, tobe the smallest value of k such that we can assign planar point locations to thevertices of G, represent each edge of G as a line segment, and assign each edgeto one of k layers so that no two edges on the same layer cross. This correspondsto the notion of \real linear thickness" introduced by Kainen [10].A related notion is that of (graph-theoretical) thickness of a graph, �(G),which has been studied extensively [1, 5, 6, 7, 9, 11] and has been de�ned as the? Supported by NSF Grants CDA-9617349 and CCR-9703572.?? Supported by NSF Grant CCR-9258355 and matching funds from Xerox Corp.



minimum number of planar graphs into which a graph can be decomposed. Thekey di�erence between geometric thickness and graph-theoretical thickness isthat geometric thickness requires that the vertex placements be consistent at alllayers and that straight-line edges be used, whereas graph-theoretical thicknessimposes no consistency requirement between layers.Alternatively, the graph-theoretical thickness can be de�ned as the mini-mum number of planar layers required to embed a graph such that the vertexplacements agree on all layers but the edges can be arbitrary curves [10]. Theequivalence of the two de�nitions follows from the observation that, given anyplanar embedding of a graph, the vertex locations can be reassigned arbitrarilyin the plane without altering the topology of the planar embedding provided weare allowed to bend the edges at will [10]. This observation is easily veri�ed byinduction, moving one vertex at a time.The (graph-theoretical) thickness is now known for all complete graphs [1,2, 3, 12, 13], and is given by the following formula:�(Kn) = 8>><>>: 1; 1 � n � 42; 5 � n � 83; 9 � n � 10�n+26 � ; n > 10 (1:1)Another notion related to geometric thickness is the book thickness of a graphG, bt(G), de�ned as follows [4]. A book with k pages or a k-book , is a line L (calledthe spine) in 3-space together with k distinct half-planes (called pages) havingL as their common boundary. A k-book embedding of G is an embedding of G ina k-book such that each vertex is on the spine, each edge either lies entirely inthe spine or is a curve lying in a single page, and no two edges intersect exceptat their endpoints. The book thickness of G is then the smallest k such that Ghas a k-book embedding.It is not hard to see that the book thickness of a graph is equivalent to arestricted version of the geometric thickness where the vertices are required toform the vertices of a convex n-gon. This is essentially Lemma 2.1, page 321 of[4]. It follows that �(G) � �g(G) � bt(G). It is shown in [4] that bt(Kn) = dn=2e.In this paper, we focus on the geometric thickness of complete graphs. InSection 2 we provide an upper bound, �g(Kn) � dn=4e. In Section 3 we providea lower bound. In particular, we show that �g(Kn) � l3�p72 (n+ 1)m � � n+15:646�.This follows from a more precise expression which gives a slightly better lowerbound for certain values of n.These lower and upper bounds do not match in general. The smallest valuesfor which they do not match are n 2 f13; 14; 15g. For these values of n, the upperbound on �g(Kn) from Section 2 is 4, and the lower bound from Section 3 is 3.In Section 4, we resolve one of these three cases by showing that �g(K15) = 4.For n = 16 the two bounds match again, but they are distinct for all larger n.Section 5 contains a table of the lower and upper bounds on �g(Kn) establishedin this paper for n � 100 and lists a few open problems.
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(b)Fig. 1. Construction for embedding K2k with geometric thickness of k=2, illustratedfor k = 10. (a) The inner ring. (b) The outer ring. The circle in the center of (b)represents the inner ring shown in (a).2 Upper BoundsTheorem1. �g(Kn) � dn=4e.Proof. Assume that n is a multiple of 4, and let n = 2k (so, in particular, k iseven). We show that n vertices can be arranged in two rings of k vertices each,an outer ring and an inner ring , so that Kn can be embedded using only k=2layers and with no edges on the same layer crossing.The vertices of the inner ring are arranged to form a regular k-gon. For eachpair of diametrically opposite vertices P and Q, consider the zigzag path as il-lustrated by the thicker lines in Figure 1(a). This path has exactly one diagonalconnecting diametrically opposite points (namely, the diagonal connecting thetwo dark points in the �gure.) Note that the union of these zigzag paths, taken



over all k=2 pairs of diametrically opposite vertices, contains all �k2� edges con-necting vertices on the inner ring. Note also that for each choice of diametricallyopposite vertices, parallel rays can be drawn through each vertex, in two op-posite directions, so that none of the rays crosses any edge of the zigzag path.These rays are also illustrated in Figure 1(a).By continuity, if the in�nite endpoints of a collection of parallel rays (e.g.,the family of rays pointing \upwards" in Figure 1(a)) are replaced by a suit-ably chosen common endpoint (so that the rays become segments), the commonendpoint can be chosen so that none of the segments cross any of the edges ofthe zigzag path. We do this for each collection of parallel rays, thus forming anouter ring of k vertices. This can be done in such a way that the vertices onthe outer ring also form a regular k-gon. By further stretching the outer ring ifnecessary, and by moving the inner ring slightly, the �gure can be perturbed sothat none of the diagonals of the polygon comprising the outer ring intersect thepolygon comprising the inner ring. The outer ring constructed in this fashion isillustrated in Figure 1(b).Once the 2k vertices have been placed as described above, the edges of thecomplete graph can be decomposed into k=2 layers. Each layer consists of:1. A zigzag path through the outer ring, as shown in Figure 1(b).2. All edges connecting V and V 0 to vertices of the inner ring, where V andV 0 are the (unique) pair of diametrically opposite points joined by an edgein the zigzag path through the outer ring. (These edges are shown as edgesconnecting the circle with V and V 0 in Figure 1(b), and as arrows in Fig-ure 1(a)).3. The zigzag path through the inner ring that does not intersect any of theedges connecting V and V 0 with inner-ring vertices. (These are the heavierlines in Figure 1(a).)It is straightforward to verify that this is indeed a decomposition of the edgesof Kn into k=2 = n=4 layers.3 Lower BoundsTheorem2. For all n � 1,�g(Kn) � max1�x�n=2 �n2�� 2�x2� � 33n� 2x� 7 : (3:1)In particular, for n � 12,�g(Kn) � &3�p72 n+ 0:342' � l n5:646 + 0:342m (3:2)Proof. We �rst prove a slightly less precise bound, namely�g(Kn) � 3�p72 n� O(1): (3:3)



For graph G and vertex set X, let G[X] denote the subgraph of G induced by X.Let S be any planar point set, and let T1; . . .Tk be a set of planar triangulationssuch that every segment connecting two points in S is an edge of at least one ofthe Ti. Find two parallel lines that cut S into three subsets A, B, and C (withB the middle set), with jAj = jCj = x, where x is a value to be chosen later. Forany Ti, the subgraph Ti[A] is connected, because any line joining two verticesof A can be retracted onto a path through Ti[A] by moving it away from theline separating A from B. Similarly, Ti[C] is connected, and hence each of thesubgraphs Ti[A] and Ti[C] has at least x� 1 edges.By Euler's formula, each Ti has at most 3n�6 edges, so the number of edgesof Ti not belonging to Ti[A][ Ti[C] is at most 3n� 6� 2(x� 1) = 3n� 2x� 4.Hence �n2� � 2�x2�+ k(3n� 2x� 4): (3:4)Solving for k, we have k � �n2� � 2�x2�3n� 2x� 4 ;and hence k � n2 � 2x26n� 4x �O(1): (3:5)If x = cn for some constant c, then the fraction in (3.5) is of the form n(1 �2c2)=(6 � 4c). This is maximized when c = (3 �p7)=2. Substituting the valuex = (3 �p7)n=2 into (3.5) yields (3.3).To obtain the sharper conclusion of the theorem, observe that by choosingthe direction of the two parallel lines appropriately, we can force at least onepoint of the convex hull of S to lie in B. Hence, of the edges of Ti that do notbelong to Ti[A][Ti[C], at least three are on the convex hull. If we do not countthese three edges, then each Ti has at most 3n� 2x� 7 edges not belonging toTi[A] [ Ti[C], and we can strengthen (3.4) to�n2�� 3 � 2�x2�+ k(3n� 2x� 7);or k � �n2�� 2�x2�� 33n� 2x� 7 : (3:6)Since (3.6) holds for any x, (3.1) follows.To prove (3.2), let f(x) be the expression on the right-hand side of (3.6).Consider the inequality f(x) � x0, where x0 is a constant to be speci�ed later.After cross-multiplication, this inequality becomes� x2 + x+ n22 � n2 � 3� (3n� 7� 2x)x0 � 0: (3:7)The expression in the left-hand side of (3.7) represents an inverted parabola inx. If we let x = x0, we obtainx20 + (8� 3n)x0 + n22 � n2 � 3 � 0; (3:8)



and if we let x = x0 + 1 we obtain the same inequality. Now, consider x0 of theform An +B � �. Choose A and B so that if � = 0, the terms involving n2 andn vanish in (3.8). This gives the values A = (3�p7)=2 and B = p7(23=14)� 4.Substituting x0 = An+B� � with these values of A and B into (3.8), we obtainp7 � � � n+ (�2 � 23�p7 � 3=28) � 0: (3:9)For � = 0:0045, (3.9) will be true when n � 12. Therefore, for all x 2 [x0; x0+1],f(x) � x0, when � = 0:0045 and n � 12. In particular, f(dx0e) � x0. Since k isan integer, (3.2) follows from (3.6).4 The Geometric Thickness of K15The lower bounds on geometric thickness provided by equation (3.1) of The-orem 2 are asymptotically larger than the lower bounds on graph-theoreticalthickness provided by equation (1.1), and they are in fact at least as large forall values of n � 12. However, they are not tight. In particular, we show that�g(K15) = 4, even though (3.1) only gives a lower bound of 3.Theorem3. �g(K15) = 4.To prove this theorem, we �rst note that the upper bound, �g(K15) � 4,follows immediately from Theorem 1.To prove the lower bound, assume that we are given a planar point set S,with jSj = 15. We show that there cannot exist a set of three triangulations ofS that cover all �152 � = 105 line segments joining pairs of points in S. We usethe following two facts: (1) A planar triangulation with n vertices and b convexhull vertices contains 3n � 3 � b edges; and (2) Any planar triangulation of agiven point set necessarily contains all convex hull edges. There are several cases,depending on how many points of S lie on the convex hull.Case 1: 3 points on convex hull. Let the convex hull points be A, B and C. LetA1 (respectively, B1, C1) be the point furthest from edge BC (respectively AC,AB) within triangle ABC. Let A2 (respectively, B2, C2) be the point next fur-thest from edge BC (respectively AC, AB) within triangle ABC.Lemma4. The edge AA1 will appear in every triangulation of S.Proof. Orient triangle ABC so that edge BC is on the x-axis and point A isabove the x-axis. For an edge PQ to intersect AA1, at least one of P or Q mustlie above the line parallel to BC that passes through A1. But there is only onesuch point, namely A.Lemma5. At least one of the edges A1A2 or AA2 will appear in every triangu-lation of S.



Proof. Orient triangle ABC so that edge BC is on the x-axis and point A isabove the x-axis. For an edge PQ to intersect A1A2 or AA2, at least one of P orQ must lie above the line parallel to BC that passes through A2. There are onlytwo such points, A and A1. Hence an edge intersecting A1A2 must necessarilybe AX and an edge intersecting AA2 must necessarily be A1Y , for some pointsX and Y outside triangle AA1A2. Since edges AX and A1Y both split triangleAA1A2, they intersect, so both edges cannot be present in a triangulation. Itfollows that either A1A2 or AA2 must be present.Now let Z be the set of 12 edges consisting of the three convex hull edgesand the nine edges pp1; pp2; p1p2 (where p 2 fA;B;Cg). Each triangulation ofS contains 39 edges, and since any triangulation contains all three convex hulledges, it follows from Lemmas 4 and 5 that at least 9 edges of any triangulationmust belong to Z. Hence a triangulation contains at most 30 edges not in Z.Thus three triangulations can contain at most 30 �3+12 = 102 edges, and hencecannot contain all 105 edges joining pairs of points in S.Case 2: 4 points on convex hull. Let A,B,C,D be the four convex hull vertices.Assume triangle DAB has at least one point of S in its interior (if not, switch Aand C). Let A1 be the point inside triangle DAB furthest from the line DB. ByLemma 4, the edge AA1 must appear in every triangulation of S, as must the 4convex hull edges. Since any triangulation of S has 38 edges, three triangulationscan account for at most 3 � 33 + 5 = 104 edges.Case 3: 5 or more points on convex hull. Let h be the number of points on theconvex hull. A triangulation of S will have 42�h edges, and all h hull edges mustbe in each triangulation. So the total number of edges in three triangulations isat most 3(42� 2h) + h = 126� 5h, which is at most 101 for h � 5.This completes the proof of Theorem 3.5 Final RemarksIn this paper we have de�ned the geometric thickness, �g , of a graph, a mea-sure of approximate planarity that we believe is a natural notion. We have estab-lished upper bounds and lower bounds on the geometric thickness of completegraphs. Table 1 contains the upper and lower bounds on �g(Kn) for n � 100.Many open questions remain about geometric thickness. Here we mentionseveral.1. Find exact values for �g(Kn) (i.e., remove the gap between upper and lowerbounds in Table 1). In particular, what are the values for K13 and K14?2. What is the smallest graph G for which �g(G) > �(G)? We note that theexistence of a graph G such that �g(G) > �(G) (e.g., K15) establishes Con-jecture 2.4 of [10].3. Is it true that �g(G) = O (�(G)) for all graphs G? It follows from Theorem 1that this is true for complete graphs.4. What is the complexity of computing �g(G) for a given graph G? In par-ticular, is it NP-complete? (Computing �(G) is known to be NP-complete[11].)



Table 1. Upper and lower bounds on �g(Kn) established in this paper.n LB UB1- 4 1 15- 8 2 29-12 3 313-14 3 415-16 4 417-20 4 521-24 5 625-26 5 727-28 6 729-31 6 832 7 833-36 7 937 7 10
n LB UB38-40 8 1041-43 8 1144 9 1145-48 9 1249-52 10 1353-54 10 1455-56 11 1457-60 11 1561-64 12 1665 12 1766-68 13 1769-71 13 1872 14 18

n LB UB73-76 14 1977 14 2078-80 15 2081-82 15 2183-84 16 2185-88 16 2289-92 17 2393-94 17 2495-96 18 2497-99 18 25100 19 25Note: Upper bounds are from Theorem 1. The lower bounds for n � 12 are fromTheorem 2, with the exception of the lower bound for n = 15 which is from Theorem 3.Lower bounds for n < 12 are from (1.1).References1. V. B. Alekseev and V. S. Gon�cakov. The thickness of an arbitrary complete graph.Math USSR Sbornik, 30(2):187{202, 1976.2. L. W. Beineke. The decomposition of complete graphs into planar subgraphs. InF. Harary, editor, Graph Theory and Theoretical Physics, chapter 4, pages 139{153.Academic Press, London, UK, 1967.3. L. W. Beineke and F. Harary. The thickness of the complete graph. CanadianJournal of Mathematics, 17:850{859, 1965.4. F. Bernhart and P. C. Kainen. The book thickness of a graph. Journal of Combi-natorial Theory Series B, 27:320{331, 1979.5. R. Cimikowski. On heuristics for determining the thickness of a graph. Informa-tion Sciences, 85:87{98, 1995.6. A. M. Dean, J. P. Hutchinson, and E. R. Scheinerman. On the thickness andarboricity of a graph. Journal of Combinatorial Theory Series B, 52:147{151,1991.7. J. H. Halton. On the thickness of graphs of given degree. Information Sciences,54:219{238, 1991.8. N. Harts�eld and G. Ringel. Pearls in Graph Theory. Academic Press, Boston,MA, 1990.9. B. Jackson and G. Ringel. Plane constructions for graphs, networks, and maps:Measurements of planarity. In G. Hammer and Pallaschke D, editors, Selected Top-ics in Operations Research and Mathematical Economics: Proceedings of the 8thSymposium on Operations Research, pages 315{324, Karlsruhe, West Germany, Au-gust 1983. Springer-Verlag Lecture Notes in Economics and Mathematical Systems226.



10. P. C. Kainen. Thickness and coarseness of graphs. Abhandlungen aus dem Math-ematischen Seminar der Universit�at Hamburg, 39:88{95, 1973.11. A. Mans�eld. Determining the thickness of a graph is NP-hard. MathematicalProceedings of the Cambridge Philosophical Society, 93(9):9{23, 1983.12. J. Mayer. Decomposition de K16 en trois graphes planaires. Journal of Combina-torial Theory Series B, 13:71, 1972.13. J. Vasak. The thickness of the complete graph having 6m+4 points. Manuscript.Cited in [8, 9].
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