
Algorithmica (1987) 2:91-95 Algorithmica
�9 1987 Springer-Verlag New York Inc.

The Set LCS Problem

D. S. Hirschberg 1 and L. L. Larmore ~

Abstract. An efficient algorithm is presented that solves a generalization of the Longest Common
Subsequence problem, in which one of the two input strings contains sets of symbols which may be
permuted. This problem arises from a music application.

Key Words. Subsequence, Common subsequence, Dynamic programming.

1. Introduction. The Longest Common Subsequence (LCS) problem can be
described as follows: Given two sequences A = {a~}l___i<_m and B = {bj}l<_j<_n, find
a longest sequence which is a subsequence of both A and/3. The LCS problem
has been solved in quadratic time and linear space [H], and there is known a
subquadratic time algorithm [MP].

In this paper, we discuss a generalization of the LCS (suggested by Roger
Dannenberg [D]), which we call the Set LCS (SLCS) problem. One sequence
(in some alphabet E) B ={bj}l<_j<_n is given, as before. Instead of a second
sequence in E, we are given a sequence of subsets of E, namely a = {Ek}l_<k_<,,
where the sum of the cardinalities of the Ek is m. We say that a sequence
A = { a l } l < _ i < _ m is a flattening of a if A is the concatenation of strings, the kth of
which is some permutation of Yk.

We define the SLCS problem to be the problem of finding a longest common
subsequence of A and B, where B is fixed and A ranges over all possible flattenings
of a given string of subsets "oz.

The SLCS problem has application to a problem in music [BD]. Computer-
driven music accompaniment has been based on matching polyphonic perform-
ances (scores) against a solo score. Polphonic music is a performance in which
multiple notes can occur simultaneously, such as in a chord. A polyphonic score
can be described as a sequence of sets of notes. The problem is to decide when
notes of the solo score are to be played so as to accompany the performance in
progress. The simultaneous notes may be matched in any order. In [BD], a
heuristic is proposed for solving the SLCS problem. This heuristic obtains reason-
able but not always optimal length common subsequences. It might not be possible
to guarantee an optimal solution for the real-time application. We consider the
case of an off-line application.

In the next section, we present an O(mn) algorithm which solves the SLCS
problem. The algorithm is reminiscent of the classic dynamic programming

t Department of Information and Computer Science, University of California, Irvine, CA 92717,
USA.

Received July 15, 1985; revised March 15, 1986. Communicated by David P. Dobkin.

92 D.S. Hirschberg and L. L. Larmore

algorithm for the LCS problem. We refer the reader to [H] for a discussion of
that algorithm.

Throughout this paper, we use the following substring notation: if X =
XlX2.. . xN is a string (of elements or sets), X (s : t) denotes the substring xs . . . x,,
and Xt denotes the (prefix) substring x l . . . xt. Given an instance (or, B) of the
SLCS problem, we say that a sequence y is a candidate(i,j) if y is a common
subsequence of both Bj and some flattening of a~. 3' is a solution(i, j) if y is a
candidate(i , j) having maximal length.

2. The Algorithm. Define ~(i , j) as the length of a solution(i, j) . Thus, ~(i , j) =
0 if either i = 0 or j = 0 , and Le(r, n) is the length of the desired final solution.
The following recurrence is crucial to our algorithm.

~(i , j) = max{~(i - 1, k) + IY~ ~ {bk+l , . . . , bj}l for 0 -< k - j } .

Our algorithm computes the values for a matrix 5f[, , *], which agree with the
theoretical values of ~ (* , *). We also indicate how to define a system of pointers
which will allow recovery of a solution sequence, without increasing the
asymptotic time complexity.

The zeroth row ~ [0 , *] is identically zero. For each i > 0 , the algorithm
computes the values in row i of ~ from the already computed values in row
i - 1, using the rule that, as a function of its second parameter alone, 5~(i, -) is
the minimum monotone increasing function such that ~(i , j)>-peak[j] for all j.
The output of the main algorithm is the array 5f[*, *].

Main Algorithm
5r for all O - < j - < n
f o r i ~ l t o r d o

begin
Findpeaks(i)
5f[i, 0] ~ 0
for j ~ 1 to n do

5~[i,j] ~ max{peak[j], ZP[i,j - 1]}
end

The main loop of the algorithm contains an invocation of Findpeaks. The input
for Findpeaks(i) is the matrix row 5r 1, *] ,and its output is the array peak[*].

We give an intuitive explanation of Findpeaks as follows. A solution(i, j)
consists of the concatenation of a so lu t ion(i -1 , k) with a subsequence of B(k+
l : j) , for an appropriate k, consisting of elements of Ei. Suppose that 6 is a
subsequence of B (k + l : j) consisting of distinct elements, each of which is a
member of Ei. Appending 6 to any candidate (i - 1 , k) produces a candidate
(i,j). It follows that 5f(i , j)>_s The procedure Findpeaks(i)
searches for such subsequences and, if one is found, sets the value of peak[j] to

The Set LCS Problem 93

be the new candidate length for ~ [i , j] , provided it is larger than the largest
previously found candidate length.

Findpeaks makes use of an array first and a data structure U, which we call
a unique stack. A unique stack is a stack with the condition that no member can
occur twice in the stack. When Push(x, U) is executed for some item x, x is first
deleted from U if it is already a member. In Findpeaks(i), as k varies, U is a
list of all members of V~ which are found in the substring B(k + 1: n) in the order
in which they first occur. For any x E U, first[x] is the index of that first occurrence.
Findpeaks(i) finds peaks of candidate lengths for ~[i , j] constructed from
~ f (i - 1 , k) plus the number of elements in U (elements of 5:~) in B (k + l : j) .
However, these peaks are determined only for positions j which contain an
element of U. Those positions "in between" would have the same value of peak,
and these values are filled in by the inner loop of the main program.

Findpeaks(i)
U <-- empty stack
for k <-n down to 0 do

begin
peak[k] ~- length ~- ~[i - 1, k]
for x ~- elements of U, from Top(U) to Bottom(U), do

begin
length ~- length + 1
peak[first[x]] ~- max{length, peak[first[x]]}

end
x (- b k
if x ~ E~ then

begin
Push(x, U)
first[x] <-- k

end
end

Recovery o f a Solution Sequence. A solution(/ , j) , for any i and j, can be
recovered after the algorithm is finished if an array of backpointers is maintained.
Each backpointer is an (i , j) pair, and a new value of a backpointer is needed
whenever a new (i.e. higher) value of peak is assigned, and also whenever ~[i , j]
is assigned the value of oY[i , j -1] within the inner loop of the main program.
Inclusion of these backpointers does not increase the time complexity of the
algorithm, and recovery of a solution(/,j) takes time O (~ (i , j)) . The details,
which we leave as an exercise to the reader, are straightforward.

Time Complexity. There are a number of ways to implement the unique stack.
One method represents U as a singly linked list, while maintaining a vector of
pointers, one per symbol in alphabet E. The pointer or symbol tr is -h (NIL) if o-

94 D.S. Hirschberg and L. L. Larmore

is not on the stack, otherwise it points at the element above cr's occurrence in
U. It will take only O(1) time to push an element x onto U since we can find
where x is located in the linked list by an array lookup, delete x from the list
and then insert x at the top end of U.

Each traversal of U requires o(1~,1) time, and there are O(n) such traversals
during the ith iteration of the main loop of the algorithm. Since the sum of the
cardinalities of the El is m, the total time spent on traversing the unique stack
is O(mn). All other parts of the algorithm combined require only O(rn) time.

The foregoing assumes a finite alphabet, since there must be an array indexed
by elements of E. The algorithm does extend to the case of arbitrary size alphabet
but requires considerably more care and an O(m log m) preprocessing sort in
order to translate symbols in E to indices in the range [1, m].

Space Complexity. The algorithm, as presented, requires O(rn) space for the
array S~, and O(m) space for the unique stack. The space complexity for the
algorithm that recovers a solution sequence can be reduced to O(m + n) by using
a straightforward extension of the divide-and-conquer technique developed for
the LCS problem [H].

Correctness. We will omit the bulk of the details of the proof of correctness,
since they are f a i ry straightforward. Essentially, that proof consists of verification
of the following two-part loop invariant, which we leave as an exercise to the
reader.

F(i): After Findpeaks(i) has executed during the ith iteration of the main loop
of the algorithm, the following two conditions hold for all 0 - < j - < n.

FI(i) : peak[j]<-~(i,j).
F2(i): There exists some jo<-j such that peak[jo] >- ~(i,j).

S(i): After i iterations of the main loop of the algorithm,
~[i,j] = ~(i , j) for all 0 - < j - < n.

Correctness of the algorithm follows immediately from S, since the values of row i
of *Y are assigned once and are never reassigned.

3. Some Open Questions
1. Since there is an algorithm [MP] to solve the LCS problem in time

O(n2/log n), where n is the length of each string, the time for the SLCS problem
might also be reduced by a logarithmic factor. However, it may seem unlikely
that the approach in IMP] will extend to the SLCS problem since the values of
a submatrix of ~ are not dependent on just the values at two of its borders.

2. Consider a generalization of the SLCS problem, the Set-Set LCS problem,
in which two sequences of sets are given and the problem is to find the longest
sequence which is a common subsequence of flattenings of the two sequences of
sets. Is this problem even in the class P?

The Set LCS Problem 95

3. Can any lower bounds be placed on the performance of algorithms (real-
time, on-line, or off-line) for the SLCS and Set-Set LCS problems?

4. Is it possible to solve the SLCS problem in time O(rn + m log m)?

Acknowledgment. The authors wish to thank an anonymous referee for suggest-
ing the elegant method of maintaining the unique stack.

References

[BD] J.J. Block and R. B. Dannenberg, Real-time computer accompaniment of keyboard perform-
ances, Proceedings of the 1985 International Computer Music Conference, August 1985.

[D] R.B. Dannenberg, Personal communication to D. S. Hirschberg, June 1985.
[H] D.S. Hirschberg, A linear space algorithm for computing maximal common subsequences,

Comm. ACM, 18, 6 (June 1975), 341-343.
[MP] W.J. Masek and M. S. Paterson, A faster algorithm for computing string-edit distances, J.

Comp. System Sci., 20, 1 (1980), 18-31.

