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Algorithms that modify the order of linear search lists are surveyed. First the
problem, including assumptions and restrictions, is defined. Next a summary of
analysis techniques and measurements that apply to these algorithms is given.
The main portion of the survey presents algorithms in the literature with absolute
analyses where available. The following section gives relative measures which are
applied between two or more algorithms. The final section presents open questions.
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INTRODUCTION

A linear search list is a list of initially unordered records that will be sequentially
searched through on the basis of a key value associated with each record. The goal
of the search may be merely to see if the record exists in the list, to look up data
associated with the key, or to modify data within the record. A linear search list is
ordered in the sense that searches may only progress linearly (from the first record
until the desired record is found or the end of the list is encountered). The list
is generally implemented as a sequentially allocated array (either containing the
records or pointers to them) or as a linked list. Linear searches on such a list are
required in cases where the list is linked, or the elements are not ordered in any
way that would facilitate faster search techniques.

It is assumed that some records are accessed more frequently than others.
A self-organizing linear search list may permute the order of the records in some

fashion after a record is found, attempting to place the more frequently-accessed



records closer to the front of the list to reduce future search times. What algorithms
can be used for this permutation, and how they perform relative to each other in

terms of expected search time, is the question we address in this article.

Two examples of simple permutation algorithms are mowve-to-front, which
moves the accessed record to the front of the list, shifting all records previously
ahead of it back one position; and transpose, which merely exchanges the accessed
record with the one immediately ahead of it in the list. These will be described in

more detail later.

Knuth [1973] describes several search methods that are usually more efficient
than linear search. Bentley and McGeoch [1985] justify the use of self-organizing

linear search in the following three contexts:

e When n is small (say, at most several dozen), the simplicity of the code can
make 1t faster than more complex algorithms. This occurs, for example, when

linked lists are used to resolve collisions in a hash table.

e  When space is severely limited, sophisticated data structures may require too

much space.

o If the performance of linear search is almost (but not quite) good enough,
a self-organizing linear search list may give acceptable performance without

adding more than a few lines of code.

As an example of the third context, they describe a case in which a VLSI circuit-
simulation program spent five minutes in a setup phase, most of which was taken
up by linear searches through a symbol table. Since this simulator was run on-
line, the five minutes were annoying to those who were waiting for the simulation
to begin. After incorporating a simple self-organizing search (about a half dozen
additional lines of code), the setup time was reduced to about thirty seconds, most

of which was not involved with searching the symbol table.



This situation can also arise in a list of identifiers maintained by a compiler
or interpreter; for example, in the scatter table used by the University of California
at Irvine’s (UCI) LISP system. Identifiers are hashed into a list of buckets, each of
which is an unordered linear list of identifier descriptions. Virtually every command
interpreted by the system involves one or more accesses to elements in the scatter
table. Since most programs tend to access some identifiers more often than others,
we would like the more frequently-accessed identifiers to be be nearer the front of
the list in order to obtain a lower average search cost. However, the lists cannot

be ordered initially, since the number of references to each identifier is not known.

0. RESTRICTIONS

Permutation algorithms are algorithms that maintain self-organizing lists by per-
muting the records. The accessed record is the record currently being searched for,

and the probed record is the record currently being looking at during a search.

Several limiting assumptions apply to the problem of self-organizing linear
search. The primary assumption is that the probability of access to any record is
unknown prior to its access. However, we can assume that the access probabilities
follow some distribution or general rule, without knowing how that applies to

individual records.

Only algorithms concerning linear lists are considered. Although some work
has been done with arranging the records in self-organizing trees, which dramati-
cally reduces search time, linear lists are still widely used due to savings in space
and code complexity. Among the references given in this survey, Bitner [1979] gives

an extensive discussion on trees and Gonnet et al. [1981] mention trees briefly.

In the general case, a permutation algorithm could completely reorder the
list at any time. We consider only algorithms that apply permutations after each

access, and whose permutations involve moving the accessed record some distance



forward in the list, leaving the rest of the records unchanged relative to each other.
Note that aeny permutation algorithm that fits this restriction will leave the list

unchanged whenever the first record is accessed.

We also assume that the search will not access records that are not found in

the list, and that each record in the list will be accessed at least once.

Finally, we assume that the time required by any execution of the permutation
algorithm is never more than a constant times the time required for the search
immediately prior to that execution, although many of the surveyed algorithms

perform the permutation in constant time.

1. MEASURES

Before trying to find a good permutation algorithm, it is necessary to define what
is meant by “good.” Arbitrarily label the records 1 to n. Let p be the search
sequence, such that p[k] is the label of the record to be searched for on the k'
access. Let A(p,a) represent the configuration of the list (the ordering of the
records) such that A(p,a), is the location in the list of the record labeled r after
the first a accesses from p (and the permutation following each access) have taken
place. The first record is defined to be in location 1 and the last record in a list
of n records is in location n. A(p,0) represents the initial configuration of the list,

and will be denoted by A for simplicity.

1.1. Cost

The cost of a permutation algorithm « for a given A and p is the average cost
per access, in terms of the number of probes required to find the accessed record
and the amount of work required to permute the records afterwards. We denote
A(p, k—1) 3 to be the location of the k'™ record to be accessed (which is equivalent

to the number of probes required to find it). Thus Cy (A, p) (the cost for searching



and reordering using permutation algorithm «) is the sum of this value for all

accesses in p divided by the total number of accesses in p:

o]

Alp, k= 1)
Ca(Np) = h=l + permutation cost of «

1P|

An example incorporating an application of this formula is given in the section on

locality.

Unfortunately, it is assumed that p is unknown at the start of the searches.
Therefore a permutation algorithm can only be measured by making some as-
sumptions about the search sequence. The following measures and assumptions

are used.

1.1.1. Asymptotic Cost

In the general case, the asymptotic cost of a permutation algorithm is the average
cost over all A and p. But the use of permutation algorithms implies the assumption
that at any given time some records are expected to be accessed with a higher
probability than others. Without this expectation, it must be assumed that records
are accessed entirely at random, and no amount of ordering would increase the
chance of the next-accessed record being closer to the front of the list. Therefore
analyses of asymptotic cost usually assume some constraints on the access strings
that p can contain. A common assumption is that each record k£ has a fixed
probability of access P throughout p. It is often further assumed that the fixed

probabilities of record accesses follow a known probability distribution.

1.1.2. Worst Case Cost
The worst case cost of a permutation algorithm « is the maximum value of Cy (A, p)
over all A and p. Note that, by the given definition of cost, the worst case is bounded

above by n since cost is measured per access.



1.1.3. Amortized Cost

Worst case analyses often take the worst case of any step in a process and multiply
it by the number of steps. In many processes, it is impossible for that worst case to
occur at every step. Amortized analysis takes this into account and gives (usually
worst case) analyses of algorithms on a multiple-instruction basis, which can yield

a tighter bound than straight worst case analyses.

1.2. Convergence to Steady State

It is expected that the results of applying a permutation algorithm will cause
records in the list that are more frequently accessed to be moved closer to the front
of the list. However, it is unreasonable to expect the list to ever converge to and
remain at a perfect ordering based on access probabilities. Thus the algorithms
are expected to approach a steady state, where many further permutations are
not expected to increase or decrease the expected search time significantly. Note
that this steady state is not any particular list configuration, but rather a set of
configurations that all have expected search costs close to the same value, which
will be the value of the cost function Cy(A, p) for large |p| (the asymptotic cost of
the algorithm). The amount of time, or number of accesses, required to approach

the steady state is the convergence of the algorithm.

It is not well defined how close the expected cost of a configuration must be
to the algorithm’s asymptotic cost in order to be considered part of the steady
state. Algorithms that cause extreme permutations will cause larger changes
to the expected cost than do algorithms that make minor changes. For exam-
ple, mowve-to-front makes a much larger change than transpose; thus, even when
move-to-front approaches its steady state, the cost of a search is expected to have a

larger deviation from mowve-to-front’s asymptotic cost than the deviation expected



by transpose. The steady state can thus be said to include all possible configura-
tions, with each configuration given a probabilistic weight as to how frequently it

is expected to occur.

1.2.1. Locality

As stated earlier, it is commonly assumed that the probability of access for each
record 1s fixed for any given p. Since it is also usually assumed that accesses are
independent of each other, the average case analyses tend to assume that all access

sequences (which have the same set of access probabilities) are equally likely.

This assumption fails to model a common attribute of access sequences called
locality, where subsequences of p may have relative frequencies of access that are
drastically different from the overall relative frequencies. For example, consider
a list of 26 records with keys “a” through “z”. Each record is accessed exactly
ten times, so that the fixed probability of each record is 21—6. Whenever a record is

found, it is moved to the front of the list if it is not already there.

First, let p consist of 10 repetitions of a string of “a” through “z” (alphabet-
ically ordered), so that accesses to the same record are always spaced 26 apart.
In this case, all accesses (except the first) to each record will take 26 probes.
Multiplying the number of records (26) by the number of accesses to each record
(9—mnot counting the first) by the number of probes for each access (26) gives the
total number probes for all but the first access to each record. The first access
will take between 26 and the key’s location in the alphabet. For example, the
first access to a can take between 1 and 26 probes, since a could be anywhere in
the list. But the first access to d cannot be less than 4 since a, b, and ¢ have
been accessed and therefore placed ahead of d. Assuming the best case (when A

is initially alphabetically ordered), the total number of probes for first accesses is



just the sum from 1 to 26. Thus the best case cost of this algorithm given p will be

26
26(9)(26) + 3. i
1=1
= 2475
260

Now consider the worst case cost of a different sequence p which accesses “a”

ten times in a row, followed by ten accesses to “b”, continuing until it ends with
ten accesses to “z”. As in the previous case, the number of probes for the first
access to each record is between 26 and the key’s location in the alphabet. All

other accesses take only one probe. The worst case cost in this example will be

26(9)(1) + % 26

260

= 3.5

Note that the worst case of the second example is far better than the best case
of the first example. This demonstrates the fact that the cost of this permutation
algorithm can differ greatly for the same fixed probabilities if accesses in p to the
same record tend to cluster together instead of being dispersed throughout p.

These two examples highlight the change in behavior based on the locality of
the search sequence. Permutation algorithms are designed not necessarily just to
try to order the list of records by their total frequencies of access. The algorithms
can also try to put records near the front that have been accessed more frequently
in the recent past. This is usually desirable since many access sequences (such
as variable accesses in a program or words in a document) tend to demonstrate
locality.

Denning and Schwartz [1972] define the following principle of locality for
page accesses in operating systems, but it applies equally well in cases of record
or variable accesses for most programming contexts: (1) during any interval of
time, a program distributes its accesses non-uniformly over its pages; (2) taken

as a function of time, the frequency with which a given page is accessed tends



to change slowly, i.e. it is quasi-stationary; and (3) correlation between immediate
past and immediate future access patterns tends to be high, whereas the correlation
between disjoint access patterns tends to zero as the distance between them tends
to infinity. This principle, which defines locality in programs’ accesses to pages
of memory, can be directly translated into a principle describing locality in access

sequences’ accesses to records in a list.

1.2.2. Measures of Convergence
Bitner [1979] proposes a measure of convergence (called overwork) as the area

between two curves on a graph:

cost A

expected cost \
asymptotic cost /

overwork

o
-

number of requests

Figure 2.1 Bitner’s Overwork Measure of Convergence
The horizontal (independent) axis is the number of record accesses performed (a
range from 0 to oo). The first (and usually higher) curve is the average cost of an

algorithm as a function of the number of accesses. When only a few accesses have



been made, this curve can be expected to be high since the list still has close to a
random ordering, making it unlikely that records with high access probabilities will
be near the front. This curve approaches the asymptotic cost of the algorithm as the
number of accesses increases. The asymptotic cost of the algorithm is the second
curve (a straight horizontal line), and the overwork is defined as the area between
the expected cost curve and its asymptote. An algorithm is said to converge faster

than another algorithm if its overwork area is less.

One way of looking at the overwork measure is to consider the amortized cost
in terms of overwork. For example, if the overwork of a permutation algorithm is
2N, then after N accesses at most 2 “extra” probes per access occurred. After N2

accesses the amortized (average) “extra” cost per access is O(N~1).

When convergence is expressed as a measure of time, an interesting question
is how quickly an algorithm adjusts to changes in locality during search sequences.
Tradeoffs between swift convergence and low asymptotic cost will be shown for
several classes of permutation algorithms, but absolute measures of convergence

for algorithms are rare.

1.3. Relative Measurements
The difficulty in finding absolute measures for permutation algorithms makes rela-
tive measurements desirable. Measuring algorithms relative to each other is useful
both when no direct measure can be obtained for a given algorithm, and when the
comparison between measures for two or more algorithms is not possible. Relative
comparisons may be based on any of the measures mentioned in the previous
sections.

Costs of algorithms are often compared to the cost of the optimal static
ordering, in which the records are initially ordered by their static probabilities
of access and left in that order throughout the access sequence. The optimal static

ordering is not a permutation algorithm by our definitions, since it uses knowledge
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about probabilities that are assumed to be unavailable before the searches begin.
This ordering provides a worst case cost of no more than n/2 (when the probabilities
are equal), and a best case approaching 1 (as the differences in probabilities

increase).

It should be noted that the optimal static ordering is not optimal overall. If
locality of accesses is allowed, it is possible for self-adjusting algorithms to have
lower cost than the optimal static ordering. Recall the examples given in Section
2.2.1, where ten calls are made to each of 26 keys. An optimal static ordering would
require an average of 13.5 probes for any p of the type used in those examples. This
is less than the best case with no locality (24.75), but more than the worst case with
complete locality (3.5). Thus the relative effectiveness of permutation algorithms
as compared to the optimal static ordering is heavily dependent on the degree of

locality in the access string p.

In order to compare the relative convergence of mowve-to-front and transpose,
Bitner [1979] suggests a modification of his overwork measure that uses the ex-
pected cost of mowve-to-front for the higher curve of his graph, and the expected
cost of transpose (rather than the asymptotic cost of move-to-front) for the lower
curve. A generalization of this measure allows us to compare the convergence of any
two permutation algorithms by using their respective cost curves as the upper and
lower curves of the graph, and examining the resultant area between them. This
could be further generalized to compare the convergences of several permutation
algorithms to each other, by choosing a permutation algorithm (not necessarily one
of those in the set to be compared) as a metric and comparing the areas resulting
from using its cost curve as a lower (or upper) bound to the cost curves of each
of the other algorithms. Bitner chose the cost curve of transpose as a lower bound
because he was only interested in the relative convergence of mowve-to-front and

transpose. In the general case of using a single algorithm as a ruler to compare
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several algorithms, transpose still seems a good choice due to its low asymptotic

cost and stability.

2. KNOWN ALGORITHMS AND ANALYSES

There is a wealth of information about permutation algorithms in the literature.
Bitner [1979] and Gonnet et al. [1981] provide surveys of the most common algo-
rithms and their analyses. However, much work has followed since these surveys
appeared, consisting of a few new algorithms, but primarily of more enlightening

relative measures between existing algorithms.

Many analyses involve unrealistically simple distributions, such as all (or all
but one) of the records having the same probabilities of access; or show that the
asymptotic cost of algorithms that depend on some constant parameter improve
monotonically as the parameter increases (or decreases, in a very few cases).
Although the proofs are complex, the results are generally intuitive, and will be
treated as such in this survey. A better feel for the effects of these parameters may

be gained through the tables provided in the section on empirical comparisons.

2.1. Move-to-front

The mowve-to-front algorithm was used in our preceding example of the effects of
locality, and is by far the most commonly analyzed of the algorithms presented
here. When the accessed record is found, it is moved to the front of the list, if it is
not already there. All records that the accessed record passes are moved back one

to make room.

The move-to-front algorithm tends to converge quickly, but has a large asymp-
totic cost. Every time a record with low access probability is accessed, it is moved
all the way to the front, which increases the costs of future accesses to many other

records.
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The asymptotic cost for a general p has been shown by several analyses
[McCabe 1965; Burville and Kingman 1973; Knuth 1973; Hendricks 1976;
Rivest 1976; Bitner 1979] to be:

This cost includes only the search time; it could be as much as twice this value if

the time to permute the records were included.

Hendricks [1972] applies Markov chains to the same problem, obtaining the
same solution with possibly less work. He extends the application [1973] to
move-to-k strategies, which cause the records ahead of location k to move back-

wards on the list.

Rivest [1976] shows that the expected cost of move-to-front for Zipt’s dis-
tribution (pi = 1/(@Hn)> is O(Inn) times faster than a random ordering of the

records.

Gonnet et al.  [1981] give expected  cost  formulas  for
move-to-front making several assumptions about the distributions of access prob-

abilities, and compare them to the expected cost of the optimal static ordering:

Zipt’s law: p; =1/(:H,), OPT =n/H,

p=oma — Ly o)
COST = n Hn 2 [0}
oSt 51n2 = 1.38629
OPT = n2=1.

Lotka’s Law: p; = 1/(i2HY), OPT = H,/H

3 1
cost = —Ilnn — 0.00206339... + O <ﬂ>

n
cost

=1.
OPT 57080

<

ARSI
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Exponential dist.: p; = (1 — a)ai_l, OPT =1/(1—a)

costzl—l—ZZ

1+al
=1
2ln2 1 lna
—O(nlaq) - 2—2 - _ %
Olln"a) = - =5~ 54
cost
<2In2=1. 29...
OPT = n 38629
2 1—¢ 2
Wedge dist.: p; = M, oPT =" i
n“+n
4(1 —In2 51 —1n2
cost:%n—ﬂn—l—%—l—O(l)
cost
< — =1.
OPT_4(1 1n2) 1.22741

Bitner [1979] gives the overwork of mowve-to-front as

2
1 i — Dy
OVyrr = 5 > <M>

I<icicn \Pi T D
He then shows that this is less than n(n — 1)/4 for every probability distribution
withn >2. If py=0and p;=1/(n—1), 2 <i<n, then

n—1

OVyrr = 5

(Although this distribution is a bit simple, it will be used later for comparison with
a similar analysis for transpose.) For Zipt’s law he gives a complex formula, which

for large n simplifies to OVyrp ~ .057n>.

2.2. Transpose
The accessed record, if not at the front of the list, is moved up one position by
changing places with the record just ahead of it. Under this method, a record only
approaches the front of the list if it is accessed frequently. This algorithm has a
minor advantage in that it is also efficient to implement in sequential arrays.

The slower record movement gives transpose slower convergence, but its

stability tends to keep its steady state closer to optimal static ordering. If there
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is little locality in the accesses, this results in a lower asymptotic cost. Intuitively,
move-to-front has a high asymptotic cost due to its potential to make big mistakes
by moving a record all the way to the front on the basis of a single access. Unless
that record is accessed again in the near future, the only effect of this move is to
increase the expected search time for many other records. Transpose avoids this
potential error by being far more conservative in its record moves. A record can
only be advanced to the front if it is accessed frequently. In cases where there is
much locality in the accesses, transpose may be too slow in adjusting to the changes
of locality, and a more radical algorithm such as mowve-to-front may be justified.

Rivest [1976] gives the average search time of transpose as:

> (H pf(i’w)> ij -7 (7)

et =1

) G

T =1

where 7 denotes a possible ordering of the records, 7(j) denotes the jth record in
that ordering, and 6(¢, 7) denotes the quantity ¢ — 7(¢), or the distance that record
¢ will be displaced from its original location in 7.

Bitner could not find a general overwork formula for transpose, but in the
case of py =0 and p; =1/(n —1), 2 <i <n, he showed it to be:

n?—1
6

OVTR —

It should be noted that this is O(n) greater than his bound for move-to-front. Bitner
gives analysis for both algorithms under another (even more simple) distribution,
with the same results. He also manually calculates the values of overwork for
transpose under Zipf’s law for various values of n. His values appear to be O(n3),
which is again O(n) greater than his overwork measure for move-to-front.

Gonnet et al. [1981] show that transpose may take as many as (n?) accesses

to reach within a factor of 1 4 € of the steady state behavior. For this result, they
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assume that the expected cost of the steady state of transpose is less than twice
the expected cost of the optimal static ordering. This is generally true, but not
always (see the section on comparisons between algorithms). Thus, since they only

wanted to show that transpose may take this long, their proof is valid.

2.3. Count

A count is kept of the number of accesses to each record. After each access, the
accessed record’s count is incremented. That record is then moved forward to the
first position in front of all records with lower counts. Thus, records in the list
are always ordered by increasing value of their counts. At the end of the access
sequence the list will be perfectly ordered by the access probabilities of the records,
which is an optimal static order for that list. Note that during the access sequence
the list will not be in the optimal static order, but will approach it as the sequence
progresses. This method has obvious disadvantages: it uses extra memory on the

order of the size of the list, and is relatively insensitive to locality in accesses.

Bitner [1979] suggests a variation on counts called the limited difference rule
to limit the potential size of the count fields. The count field of a record ¢ stores the
difference of the access counts between record ¢ and record ¢ —1 (recall that records
are ordered by access counts). Thus an access to a given record will cause the count
of record ¢ to be incremented, and the count of record 2 + 1 to be decremented.
These difference counts may not be increased above a limiting value. He shows
that the performance approaches the optimal static ordering as the limit on the

difference increases, and is close even for small limits (see Section 4.5, Table 4.3).

2.4, Move-ahead-k

Mowve-ahead-k is a compromise between the relative extremes of mowve-to-front and

transpose. In the simple case, move-ahead-k simply moves the record forward &
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positions. By this definition, if f is the distance to the front, mowve-to-front is
move-ahead-f and transpose is move-ahead-1.

This can be generalized to move a percentage of the distance to the front, or
some other function based on the distance. Other parameters to the function may
also be of interest, such as how many accesses have taken place so far. As usual, if
the distance to be moved exceeds the distance to the front, then the record is only
moved to (or left at) the front.

Implementation of move-ahead-k is straightforward for constant values of
k, by keeping a queue of pointers to the last k records probed. Searching back
k positions may also be possible, but only if the list provides backward links.
Searching forward is undesirable due to the fact that this would effectively double
the search time by requiring a second traversal of the list. Allowing k to be a
function of the distance to the front implies similar problems. It might seem
feasible to maintain a back pointer, advancing it to maintain the correct distance
from the currently probed record, but this has the same cost as performing a second

traversal at the end of the search.

The move-ahead-k algorithm was initially proposed by Rivest [1976]. Gonnet
et al. [1979] theorize that, for j > k, move-ahead-j converges faster than
move-ahead-k, but at the penalty of a higher asymptotic cost. Section 4.5, Table

4.2 gives empirical evidence to support this.

2.5. JUMP

Hester and Hirschberg [1985] propose a randomized method of leaving a back
pointer behind during the search, to be used later as the destination for moving
a record forward. This avoids the costly second traversal of the list described in
relation to move-ahead-k algorithms, where each access might require reading pages
from slower secondary memory, such as when the records are large or when there

are many records. Since moving the pointer forward slowly as the probes progress
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would be the same as performing a linear traversal at the end of the search, the
pointer must occasionally be jumped forward to the record that was just probed.
The pointer is advanced to the probed record if and only if the probed record is
not the accessed record, and a boolean function JUMP is true. JUMP can be a
function of variables such as the current position of the back pointer, the position of
the probed record, and/or the number of accesses preceding the current one. They
present definitions of JUMP functions that demonstrate (on the average case) the
same behavior as mowve-to-front, transpose, and move-ahead-k (for k being any

desired constant or fraction of the distance to the front of the list).

2.6. Meta Algorithms

The following meta algorithms may be applied in conjunction with permutation
algorithms. At the time when a permutation algorithm would normally be invoked,
the meta algorithm decides whether to call the permutation algorithm or leave
things as they are. The purpose is to slow the convergence of the permutation
algorithm by not moving records only on the basis of single accesses, to reduce the

effects of a one-time access to a record.

2.6.1. Move Every k' Access

McCabe [1965] considers applying the permutation algorithm only once every k
accesses to reduce the time spent reordering the list. He shows that, independent
of the value of k, the asymptotic cost of searches would be exactly the same as if the
meta algorithm were not used. However, the meta algorithm requires k times the
number of accesses required by the permutation algorithm (by itself) to approach

this asymptote.

2.6.2. k-in-a-row
The permutation algorithm is applied only if the accessed record has been accessed

k times in a row. If the record is accessed even twice in a row, the chances
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are greater that it will have additional accesses in the near future. This has the
advantage of not requiring as much memory as do count rules, since it only needs
to remember the last record accessed, and a single counter for the number of recent

consecutive accesses to that record.

Kan and Ross [1980] propose this scheme and use semi-Markov chains to
analyze k-in-a-row policies. They show that the proportion of time that the
element with the it largest probability of access will spend in the i** location

approaches 1 as k approaches oc.

Gonnet et al. [1979] show that, for & = 2, the convergence using move-to-front
is the same as that of transpose. They also suggest a minor modification called the
batched k heuristic, which groups accesses into batches of size k, and applies the
permutation algorithm only when all k accesses in a batch are to the same record.
This tends to slow down convergence a bit more than k-in-a-row, and provides a

lower asymptotic cost.

Bitner [1979] suggests a modification to the k-in-a-row strategy called wast
¢ and move, which incorporates finite counters for each record. After a record
has been accessed ¢ times (not necessarily in a row) the permutation algorithm is
applied and the counter for that record is reset. He also suggests a modification
where all of the counters are reset whenever one reaches the limit. These algorithms

are compared in Section 4.5, Table 4.3.

2.6.3. Probabilistic Application of Move Rules

Kan and Ross [1980] suggest an alternative to k-in-a-row that slows down conver-
gence by applying a permutation algorithm to the accessed record ¢ with probability
a;, 1 <12 < n. They show that if the a; are equal for all 7, then the asymptotic
cost will be the same as the original algorithm without the probabilities. They also

show that the results for transpose are independent of the values of «;.

- 19 -



Oommen [1984] proposes a method he calls stochastic move-to-front which
combines the properties of Kan and Ross’s method with those of count. Instead
of using a single fixed probability, each record r; has its own probability p; which
is used to determine whether that record, after being accessed, is to be moved.
Oommen only considers move-to-front for the permutation algorithm. Initially
all probabilities are 1. After each access, the access probability of the accessed
record is decreased by a multiplicative constant, and all other probabilities remain
unchanged. Note that the probabilities provide information equivalent to that of a
count for each record: smaller probabilities correspond to larger frequency counts.
After every T accesses, the list is sorted on the values of the probabilities. As
the probabilities decrease, the list will be less likely to change during 7' accesses.
Thus by using a sort that is O(nlogn) in the worst case and O(n) if the list is
nearly sorted, the cost of applying this sort is minimal after some initial settling
down. Although this scheme may cause the record order to converge to any of
the n! possibilities, Oommen shows that the multiplicative constant for changing
probabilities may be chosen to make the probability of convergence on the optimal

static ordering as near unity as desired.

2.6.4. Implicit Data Structures

Frederickson [1984] considers the case where there are also fixed probabilities
of searching for values other than the keys. Although this normally leads to
tree structures, he proposes algorithms that use linear lists of binary search lists.
Records are stored in groups, each group being maintained in lexicographic order
to allow binary search within the group. The list of groups is searched linearly until
the desired record is found. When a record is found in group ¢, it is moved into the
first group, and records are chosen at random from groups 1 to ¢ — 1 to be moved
back one group. Thus this algorithm applies an analogue of the move-to-front

algorithm over a different set of objects. A similar algorithm is suggested that
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uses transpose for the group moves. He shows that these algorithms have average
expected search costs for the i'" record of O(log min{1/p;, n}) He extends these
algorithms to include a similar bound for unsuccessful searches (substitute ¢; for
p; in the above formula, where ¢; is the probability of accessing a range of missing
keys). The extension involves applying the permutation only every n accesses
and performing the movement during the intervening accesses to minimize extra

traversals.

2.7. Hybrids

Mowe-to-front and transpose clearly have tradeoffs concerning convergence and
asymptotic cost. If it is known ahead of time that the number of accesses will be
small, move-to-front is probably the better algorithm, whereas transpose is better
if the number of accesses is expected to be large. A hybrid of these or other

algorithms that try to get the best of both measures might be feasible.

Bitner [1979] proposes a simple hybrid that uses the move-to-front algorithm
until its steady state is approached, and then switches to transpose. The difficulty
of deciding when to switch is a major problem. Since move-to-front performs best
when the list has a high degree of locality, it is even unclear if the best time
to switch to transpose can be determined for a fixed number of accesses. Bitner
suggests switching when the number of requests is between ©(n) and ©(n?). He
refers to his thesis, where he addressed the issue of finding good bounds for when
to change from one to the other, but found it difficult and was forced to make a

guess based on specific observations derived by assuming Zipf’s law.

Lam et al. [1981] propose a combination of transpose and count, where trans-
pose is used until a steady state is reached, and counts are maintained thereafter.
Since count is likely to make serious mistakes during the early accesses (similar to

those made by mowve-to-front), the intent is that transpose will be used during this
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period, allowing count to take over after things settle down. They gain a minor

savings in time by avoiding maintenance of the counts while transpose is running.

To give elements reasonable weights when count is started, the elements are
ordered on the value of f; +n — i, where f; is the frequency count of the it* record
in the list, and n — ¢ is the distance from that record’s location to the end of the
list. Thus the record’s location in the list is used as a weight, as is its frequency
count. They show that their generalized count algorithm performs better than
other methods of re-arrangement based on counts. They were unable to define
a suitable weighting scheme for a similar hybrid using move-to-front in place of

transpose .

In this study, Lam et al. fail to give a definition of how to detect a steady
state. One possibility is to maintain a finite queue of size k of the costs associated
with the most recent accesses, and define a steady state as one in which the average
cost of the last k£/2 accesses is not more than some e different from the average cost
of the k/2 accesses preceeding the last k/2 accesses. The values of k and e may
be tuned to reflect the particular permutation algorithm in question. For example,
move-to-front might require a larger value of € then transpose, since it makes more

extensive changes during a small number of accesses.

Tenenbaum and Nemes [1982] suggest two classes of hybrids. The first is
POS(k) for 1 < k < n. If the accessed record is found in a position < k,
it is transposed with its predecessor, otherwise it is moved to the k" position,
shifting all intervening records back one. Note that POS(1) is move-to-front, while
POS(n —1) is transpose.

The second class proposed by Tenenbaum and Nemes is SWITCH (k), which
is the same as POS except the uses of mowve-to-front and transpose are reversed:
an accessed record found in a location < k is moved to the front, and others are

transposed.
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3. COMPARISONS BETWEEN ALGORITHMS

Since it is often difficult to obtain a standard measure for permutation algorithms,
it is a common practice to simply measure the algorithms directly against each
other, either theoretically or through simulation. The following sections describe

these methods of comparison.

3.1. Optimal Algorithm?

Before we can ask whether an optimal memoryless strategy exists, we must define
what is meant by “optimal.” Rivest [1976] defines a permutation rule to be
optimal over a set of rules if it has the least cost of those rules for all probability
distributions and all initial orderings of the keys. He conjectures that transpose
is an optimal memoryless algorithm under this definition. Yao (in a personal
communication reported by Rivest) supports this conjecture by proving that, if
an optimal memoryless algorithm exists, it must be transpose. His proof gives a
distribution for each n for which transpose has least cost over all rules. Kan and
Ross [1980] also provide evidence to support Rivest’s conjecture by showing that
transpose is optimal over the rules that move a single element a number of places
closer to the front of the list, when all records except one have an equal probability

of access. This result also assumes no locality of accesses.

Anderson et al. [1982] provide a complex counterexample to Rivest’s conjec-
ture by presenting a single permutation algorithm that outperforms transpose in
the average case for a single access probability distribution. It should be noted
that their algorithm requires an arbitrary definition of the permutations to be
performed for each of the possible record locations in which the accessed record
might be found, and thus the rule itself is dependent on the number of records
rather than being a general rule that applies to any list. The algorithm also radi-
cally reorganizes the list, so it is not in the class of algorithms that only move the

accessed record some distance towards the front of the list. Thus the algorithm
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is memoryless in terms of information concerning accesses on the records, but the

algorithm itself requires ©(n?) space to define the permutations.

Therefore, no memoryless algorithm can be optimal over all p, and the follow-
ing analyses for different algorithms cannot be expected to demonstrate a complete
superiority for any given algorithm. Whether this holds true for algorithms which

only move a single record forward in the list is still unknown.

3.2. Asymptotic Cost

The asymptotic cost of move-to-front has been shown by many [McCabe 1965;
Knuth 1973; Hendricks 1976; Rivest 1976; Bitner 1979] to be at most twice the
asymptotic cost of the optimal static ordering. Rivest [1976] shows that the
asymptotic cost of transpose is less than or equal to that of move-to-front for

every probability distribution.

Bitner [1979] shows that count is asymptotically equal to the optimal static
ordering, and that the difference in cost between the two decreases exponentially
with time, so that count is not much worse than the optimal static ordering even
for fairly small numbers of accesses. He further shows that for all distributions
except (1) the normal distribution, and (2) the distribution in which a single key
has probability one, the wait ¢ and move algorithms will not approach the optimal
ordering as ¢ approaches infinity. He finally shows that the limited difference rule
is superior to the wait ¢ and mowve rules in both asymptotic cost and convergence.

This is supported in Section 4.5, Table 4.3.

3.3. Worst Case

The worst case cost of move-to-front has been shown by many [Burville and
Kingman 1973; Knuth 1973; Hendricks 1976; Rivest 1976; Bitner 1979; Bentley
and McGeoch 1985; Sleator and Tarjan 1985] to be no more than twice that of the

optimal static ordering. The worst case cost of move-to-front, when there is no
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locality and the accessed record is always at the end of the list, is approximately n.
The cost using the optimal static ordering in the same situation is approximately
n/2. This does not show, but does suggest, that move-to-front is never worse than

twice the optimal static ordering.

Bentley and McGeoch [1985] point out with an amortized argument that
although the worst-case performances of mowve-to-front and count are no more than
twice that of the optimal static ordering, the worst-case performance of transpose
could be far worse. This can easily be seen by considering a case where two records
are alternately accessed many times. They will continue to exchange places without

advancing towards the front of the list.

Gonnet et al. [1981] show that, for a particular distribution, the average case
ratio of the cost of move-to-front to the cost of the optimal static ordering is 7/2.
Chung et al. [1985] show that this is an upper bound on the average case for all
distributions. The distribution provided by Gonnet et al. then serves to make this
bound tight.

Most relative analyses for the worst case of mowve-to-front are by techniques
that are not generally applicable. Sleator and Tarjan [1985] present a more gener-
alized technique. They give an amortized analysis, which they extend to show that
moving a record any fraction of the distance to the front of the list will be no more
than a constant times the optimal off-line algorithm. The constant is inversely
proportional to the fraction of the total distance moved. This result is valuable in

justifying algorithms such as mowve-ahead-k (for k a fraction of the distance to the

front) and JUMP.

3.4. Convergence
Bitner [1979] shows that, while transpose is asymptotically more efficient,
move-to-front often converges more quickly. As pointed out when presenting the

algorithms, he demonstrates that his overwork measure for move-to-front is a factor
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of n less than transpose for a variety of probability distributions. He also shows
that mowve-to-front converges faster than transpose by using his second measure of
convergence (the number of accesses, A, required for the expected cost of transpose
to be less than that of mowve-to-front) by pointing out that A increases quadratically

with n, which indicates that mowve-to-front converges faster than transpose.

3.5. Empirical Comparisons

Most of the literature deals with the behavior of the permutation algorithms in a
strictly theoretical manner. In general, the proofs verify intuitive expectations that
varying a parameter of the algorithm will cause the expected cost of the algorithm
to approach some asymptote. The following tables were provided by some authors

as support to their theorems.

The first table is a compilation of two tables provided by Bentley and
McGeoch [1985], comparing the results of running several common algorithms ap-

plied to files containing programs and text.

Distinet Total
File words words

P1 100 480 o o | oo o
P2 107 431 o of o o
P3 117 1,176 B o
P4 181 1,456 ok o
T1 471 1,888 o | o
T2 498 1,515 o X TRREICOREERPRRS o | 0OSO
T3 564 3,296 O e o e MTF
T4 999 5443 o |-ekeeen o * Count
T5 1,147 7482 |o*e---0 o Transpose
T6 1,590 7,654 o |--ke--oo o o Zipf
[ [ [ [ [ [ [
10 20 30 40

Average Search Cost
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Table 4.1 Measured Average Search Costs of Several Algorithms

The 'P’ and "T" in the file names indicate whether the file is Pascal source or English
text. OSO stands for the expected cost if the records are left in the optimal static
ordering, and MTF is the mowve-to-front algorithm. The mark for Zipf indicates the
expected cost of an optimal static ordering, assuming that the probabilities follow
Zipt’s distribution. Bentley and McGeoch compare this to the expected cost of the
optimal static ordering to suggest that the probabilities of the words are closer to
the Zipf distribution than a normal distribution (where the expected cost would

be about half the number of distinct words in the file).

The following table submitted by Tenenbaum [1978] contains a condensation
of a more extensive table of simulations on move-ahead-k algorithms. Files of
various sizes (N) containing data which was distributed by Zipf’s law were accessed
12,000 times, for 1 < k < 7. The best value of k (among those tested) is given for

the sizes tested.

N Best &

3-64
65-94
95-124
125-150
151-183
184-204
205-230

ST Ot W~

Table 4.2 Best k for Different Sized Files
Note that in this table there is no optimal value of k. Since the number of accesses
remains constant, the number of records in the list is shown to have a direct

correlation to the optimal value of k.

Bitner [1979] compared his limited difference rule to his two meta-algorithms,
using mowve-to-front and transpose for the permutation algorithms. He gives the

average of 200 trials of 1,000 accesses on a list of nine elements whose probabilities
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are given by Zipf’s law.

c= 0 1 2 3 4 )

Limited Difference rule
(maximum difference = ¢) 3.9739 3.4162 3.3026 3.2545 3.2288 3.2113
Wait ¢, move-to-front and clear 3.9739 3.6230 3.4668 3.3811 3.3285 —

Wait ¢, transpose and clear 3.4646 3.3399 3.2929 3.2670 3.2501 —
Wait ¢ and mowve-to-front 3.9739 3.8996 3.8591 3.8338 3.8165 3.8040
Wait ¢ and transpose 3.4646 3.3824 3.3576 3.3473 3.3312 3.3272

Table 4.3 Costs of Count Algorithms Relative to ¢
Comparing these costs to 3.1814 (the expected optimal cost under Zipf’s law) gives

an indication of how fast they converge as ¢ varies.

Oommen [1984] gives some simulations on his stochastic move-to-front method}
that indicate fast convergence on the optimal ordering. Each test consisted of the
average of ten trials consisting of 4,000 accesses on a list of words distributed one

of three ways (s; is the probability of access):

DIST1: s;, =k - (N —-1+1) where k1 = 1/25\;1@'
DIST2: s; = ko /1 where ky =1/ EZNZI i1
DIST3: s; = k3 /2! where k3 =1/ EZNZI 27

Note that DIST2 is Zipf’s law. Sorting cycles occurred every 100 accesses. The
table shows the accuracy, ACC’(:L'), and the average number of moves performed
each cycle, IA&’T(:L'), after o cycles have taken place. The accuracy is defined as
the fraction of distinct pairs of records that are correctly ordered (by the optimal
static ordering) relative to each other. Thus an accuracy of 1 is the optimal static

ordering, and an accuracy of 0.5 is what is expected for an initial random ordering
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of records.

N Distribution ACC(0) ACC(10) Kp(0) Kp(10)
DIST1 0.48 0.92 35.10  0.30
10 DIST? 0.55 0.94 29.50  0.40
DIST3 0.41 0.90 1820  0.30
DIST1 0.50 0.89 43.00  0.70
15 DIST? 0.50 0.90 33.80  1.00
DIST3 0.51 0.83 21.50  0.20
DIST1 0.52 0.87 52.00  1.00
25 DIST? 0.50 0.88 36.50  1.10
DIST3 0.49 0.83 18.60  0.41
DIST1 0.52 0.87 60.80  0.90
40 DIST? 0.48 0.87 37.00  1.40
DIST3 0.46 0.87 19.70  0.40

Table 4.4 Simulations of Stochastic Move-to-front
The table shows that, after just ten cycles, the records are very near the optimal
static ordering, and this ordering will tend to persist since the frequency of further

record moves is low.

4. OPEN PROBLEMS

Since it has been shown that no single optimal permutation algorithm exists,
it becomes necessary to try to characterize the circumstances that indicate an
advantage in using a particular algorithm. There are several conditions to consider,

which give rise to the following open questions concerning algorithms.

4.1. Direct Analyses

Mowe-to-front is the only permutation algorithm that has been extensively ana-
lyzed. Transpose is widely mentioned in the literature but authors merely state
an inability to obtain theoretical bounds on its performance, and most of the work
on other algorithms merely shows how their behavior changes as parameters vary.

Direct bounds on the behaviors of these algorithms are needed to allow realistic
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comparisons. Bentley and McGeoch [1985] showed in their table of simulations of
common permutation algorithms that Zipf’s law seems to be a good approximation
of the distribution of common files of words, so direct analyses under the assump-
tion of accesses following Zipt’s law would be valuable. Other distributions would

also be interesting.

4.2. Locality/Convergence

Hendricks [1976] mentions the open problem of relaxing the assumption of inde-
pendence for analysis of permutation algorithms. He suggests a model by which,
when a record is accessed, its probability of access in the future is increased (or de-
creased). He does not suggest how other probabilities should be altered to account

for this.

As yet, no good definition for locality of accesses has been applied to the
problem of measuring self-organizing linear search. This is unfortunate, since
taking advantage of locality is one of the main reasons for using these techniques
in the first place, and the lack of definition restricts measures of convergence to

very general cases.

4.3. Optimize Algorithms for a Given Level of Locality

Once an algorithm can be analyzed in terms of its performance for a given function
of locality in an access sequence, developing algorithms that optimize convergence
for that function of locality is an obvious step. A few hybrids were suggested, such
as using mowve-to-front initially and then switching to transpose, which quickly con-
verge to a steady state and also have a good asymptotic cost. As was pointed out,
the best time to switch to transpose (and similar problems in other algorithms)
is difficult to know when we assume no knowledge about the access sequence.
However, if we allow knowledge of the approximate degree of locality of the se-

quence, we may be able to tailor these algorithms effectively.
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Hybrids are not the only method of controlling response to locality. The
move-ahead-k algorithm could also be considered, especially the extended definition
that allows moving a function of the distance to the front rather than a fixed

constant.

4.4. Choosing an Algorithm

Bentley and McGeoch [1985] give the following advice about choosing between the

three permutation algorithms that are widely mentioned in the literature:

o  Move-to-front. A linked-list implementation is preferable for most applications
when using mowve-to-front. The search makes few comparisons, both in the
amortized sense and when observed on real data; furthermore, it exploits
locality of reference present in the input. The linked list implementation is
natural for an environment supporting dynamic storage allocation and yields
an efficient reorganization strategy.

o  Transpose. If storage is extremely limited and pointers for lists cannot be used,
then the array implementation of transpose gives very efficient reorganization.
Its worst-case performance is poor, but it performs well on the average.

o  (Count. Although this heuristic does make a small number of comparisons, its
higher move costs and extra storage requirements could be a hindrance for
some applications. It should probably be considered only for applications in
which the counts are already needed for other purposes.

The above comments concerning move-to-front can be generalized to include
the various algorithms that move records forward a fraction of the distance to the
front of the list. Similarly, the comments concerning transpose can be generalized to
include algorithms that move records forward by a fixed distance. Meta algorithms
may be applied to the above as well. It might be possible to derive rules for
finding good values of the parameters associated with these algorithms for common

distributions of access sequences. The algorithms’ performances could likely benefit
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from tuning the values of such parameters for a particular application. Such tuning
may be sufficient in itself to find good parameter values in reasonable time without

the application of formal rules.

5. SUMMARY

Self-organizing lists have been in the literature for almost twenty years, and in that
time many permutation algorithms have been proposed that move the accessed
record forward by various distances, either constant or based on the location of the
record or past events. We have presented these algorithms along with the analyses
for them.

The majority of the literature deals with only a few of the permutation algo-
rithms. Many analyses on the same algorithms are given, either demonstrating a
new method of analysis or providing results based on different criteria. Almost all
average case analyses assume no locality, which is unreasonable in many applica-
tions. While move-to-front has been shown to be better in some real applications
than transpose, there are no guidelines for choosing between the algorithms that

move the accessed record some distance between the two extremes.
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