
Self-Organizing Linear SearchJ. H. Hester and D. S. HirschbergUniversity of California, Irvine. Irvine, California 92717Algorithms that modify the order of linear search lists are surveyed. First theproblem, including assumptions and restrictions, is de�ned. Next a summary ofanalysis techniques and measurements that apply to these algorithms is given.The main portion of the survey presents algorithms in the literature with absoluteanalyses where available. The following section gives relative measures which areapplied between two or more algorithms. The �nal section presents open questions.Categories and Subject Descriptors: A.1 [General Literature]: Introduction andSurvey; D.4.2 [Operating Systems]: Storage Management|swapping ; E.1 [Data]:Data Structures|lists; tables; F.2.2 [Analysis of Algorithms and ProblemComplexity]: Nonnumerical Algorithms and Problems|Sorting and searching ;F.2.3 [Analysis of Algorithms and Problem Complexity]: Tradeo�s amongComplexity MeasuresGeneral Terms: Algorithms, Performance, TheoryAdditional Key Words and Phrases: Linear Search, Self organizing lists, RelativeMeasures, Convergence, LocalityINTRODUCTIONA linear search list is a list of initially unordered records that will be sequentiallysearched through on the basis of a key value associated with each record. The goalof the search may be merely to see if the record exists in the list, to look up dataassociated with the key, or to modify data within the record. A linear search list isordered in the sense that searches may only progress linearly (from the �rst recorduntil the desired record is found or the end of the list is encountered). The listis generally implemented as a sequentially allocated array (either containing therecords or pointers to them) or as a linked list. Linear searches on such a list arerequired in cases where the list is linked, or the elements are not ordered in anyway that would facilitate faster search techniques.It is assumed that some records are accessed more frequently than others.A self-organizing linear search list may permute the order of the records in somefashion after a record is found, attempting to place the more frequently-accessed



records closer to the front of the list to reduce future search times. What algorithmscan be used for this permutation, and how they perform relative to each other interms of expected search time, is the question we address in this article.Two examples of simple permutation algorithms are move-to-front, whichmoves the accessed record to the front of the list, shifting all records previouslyahead of it back one position; and transpose, which merely exchanges the accessedrecord with the one immediately ahead of it in the list. These will be described inmore detail later.Knuth [1973] describes several search methods that are usually more e�cientthan linear search. Bentley and McGeoch [1985] justify the use of self-organizinglinear search in the following three contexts:� When n is small (say, at most several dozen), the simplicity of the code canmake it faster than more complex algorithms. This occurs, for example, whenlinked lists are used to resolve collisions in a hash table.� When space is severely limited, sophisticated data structures may require toomuch space.� If the performance of linear search is almost (but not quite) good enough,a self-organizing linear search list may give acceptable performance withoutadding more than a few lines of code.As an example of the third context, they describe a case in which a VLSI circuit-simulation program spent �ve minutes in a setup phase, most of which was takenup by linear searches through a symbol table. Since this simulator was run on-line, the �ve minutes were annoying to those who were waiting for the simulationto begin. After incorporating a simple self-organizing search (about a half dozenadditional lines of code), the setup time was reduced to about thirty seconds, mostof which was not involved with searching the symbol table.- 2 -



This situation can also arise in a list of identi�ers maintained by a compileror interpreter; for example, in the scatter table used by the University of Californiaat Irvine's (UCI) LISP system. Identi�ers are hashed into a list of buckets, each ofwhich is an unordered linear list of identi�er descriptions. Virtually every commandinterpreted by the system involves one or more accesses to elements in the scattertable. Since most programs tend to access some identi�ers more often than others,we would like the more frequently-accessed identi�ers to be be nearer the front ofthe list in order to obtain a lower average search cost. However, the lists cannotbe ordered initially, since the number of references to each identi�er is not known.0. RESTRICTIONSPermutation algorithms are algorithms that maintain self-organizing lists by per-muting the records. The accessed record is the record currently being searched for,and the probed record is the record currently being looking at during a search.Several limiting assumptions apply to the problem of self-organizing linearsearch. The primary assumption is that the probability of access to any record isunknown prior to its access. However, we can assume that the access probabilitiesfollow some distribution or general rule, without knowing how that applies toindividual records.Only algorithms concerning linear lists are considered. Although some workhas been done with arranging the records in self-organizing trees, which dramati-cally reduces search time, linear lists are still widely used due to savings in spaceand code complexity. Among the references given in this survey, Bitner [1979] givesan extensive discussion on trees and Gonnet et al. [1981] mention trees brie
y.In the general case, a permutation algorithm could completely reorder thelist at any time. We consider only algorithms that apply permutations after eachaccess, and whose permutations involve moving the accessed record some distance- 3 -



forward in the list, leaving the rest of the records unchanged relative to each other.Note that any permutation algorithm that �ts this restriction will leave the listunchanged whenever the �rst record is accessed.We also assume that the search will not access records that are not found inthe list, and that each record in the list will be accessed at least once.Finally, we assume that the time required by any execution of the permutationalgorithm is never more than a constant times the time required for the searchimmediately prior to that execution, although many of the surveyed algorithmsperform the permutation in constant time.1. MEASURESBefore trying to �nd a good permutation algorithm, it is necessary to de�ne whatis meant by \good." Arbitrarily label the records 1 to n. Let � be the searchsequence, such that �[k] is the label of the record to be searched for on the kthaccess. Let �(�; a) represent the con�guration of the list (the ordering of therecords) such that �(�; a)r is the location in the list of the record labeled r afterthe �rst a accesses from � (and the permutation following each access) have takenplace. The �rst record is de�ned to be in location 1 and the last record in a listof n records is in location n. �(�; 0) represents the initial con�guration of the list,and will be denoted by � for simplicity.1.1. CostThe cost of a permutation algorithm � for a given � and � is the average costper access, in terms of the number of probes required to �nd the accessed recordand the amount of work required to permute the records afterwards. We denote�(�; k�1)�[k] to be the location of the kth record to be accessed (which is equivalentto the number of probes required to �nd it). Thus C�(�; �) (the cost for searching- 4 -



and reordering using permutation algorithm �) is the sum of this value for allaccesses in � divided by the total number of accesses in �:C�(�; �) = j�jPk=1�(�; k � 1)�[k]j�j + permutation cost of �An example incorporating an application of this formula is given in the section onlocality.Unfortunately, it is assumed that � is unknown at the start of the searches.Therefore a permutation algorithm can only be measured by making some as-sumptions about the search sequence. The following measures and assumptionsare used.1.1.1. Asymptotic CostIn the general case, the asymptotic cost of a permutation algorithm is the averagecost over all � and �. But the use of permutation algorithms implies the assumptionthat at any given time some records are expected to be accessed with a higherprobability than others. Without this expectation, it must be assumed that recordsare accessed entirely at random, and no amount of ordering would increase thechance of the next-accessed record being closer to the front of the list. Thereforeanalyses of asymptotic cost usually assume some constraints on the access stringsthat � can contain. A common assumption is that each record k has a �xedprobability of access Pk throughout �. It is often further assumed that the �xedprobabilities of record accesses follow a known probability distribution.1.1.2. Worst Case CostThe worst case cost of a permutation algorithm � is the maximum value of C�(�; �)over all � and �. Note that, by the given de�nition of cost, the worst case is boundedabove by n since cost is measured per access.- 5 -



1.1.3. Amortized CostWorst case analyses often take the worst case of any step in a process and multiplyit by the number of steps. In many processes, it is impossible for that worst case tooccur at every step. Amortized analysis takes this into account and gives (usuallyworst case) analyses of algorithms on a multiple-instruction basis, which can yielda tighter bound than straight worst case analyses.1.2. Convergence to Steady StateIt is expected that the results of applying a permutation algorithm will causerecords in the list that are more frequently accessed to be moved closer to the frontof the list. However, it is unreasonable to expect the list to ever converge to andremain at a perfect ordering based on access probabilities. Thus the algorithmsare expected to approach a steady state, where many further permutations arenot expected to increase or decrease the expected search time signi�cantly. Notethat this steady state is not any particular list con�guration, but rather a set ofcon�gurations that all have expected search costs close to the same value, whichwill be the value of the cost function C�(�; �) for large j�j (the asymptotic cost ofthe algorithm). The amount of time, or number of accesses, required to approachthe steady state is the convergence of the algorithm.It is not well de�ned how close the expected cost of a con�guration must beto the algorithm's asymptotic cost in order to be considered part of the steadystate. Algorithms that cause extreme permutations will cause larger changesto the expected cost than do algorithms that make minor changes. For exam-ple, move-to-front makes a much larger change than transpose ; thus, even whenmove-to-front approaches its steady state, the cost of a search is expected to have alarger deviation from move-to-front's asymptotic cost than the deviation expected- 6 -



by transpose. The steady state can thus be said to include all possible con�gura-tions, with each con�guration given a probabilistic weight as to how frequently itis expected to occur.1.2.1. LocalityAs stated earlier, it is commonly assumed that the probability of access for eachrecord is �xed for any given �. Since it is also usually assumed that accesses areindependent of each other, the average case analyses tend to assume that all accesssequences (which have the same set of access probabilities) are equally likely.This assumption fails to model a common attribute of access sequences calledlocality, where subsequences of � may have relative frequencies of access that aredrastically di�erent from the overall relative frequencies. For example, considera list of 26 records with keys \a" through \z". Each record is accessed exactlyten times, so that the �xed probability of each record is 126 . Whenever a record isfound, it is moved to the front of the list if it is not already there.First, let � consist of 10 repetitions of a string of \a" through \z" (alphabet-ically ordered), so that accesses to the same record are always spaced 26 apart.In this case, all accesses (except the �rst) to each record will take 26 probes.Multiplying the number of records (26) by the number of accesses to each record(9|not counting the �rst) by the number of probes for each access (26) gives thetotal number probes for all but the �rst access to each record. The �rst accesswill take between 26 and the key's location in the alphabet. For example, the�rst access to a can take between 1 and 26 probes, since a could be anywhere inthe list. But the �rst access to d cannot be less than 4 since a, b, and c havebeen accessed and therefore placed ahead of d. Assuming the best case (when �is initially alphabetically ordered), the total number of probes for �rst accesses is- 7 -



just the sum from 1 to 26. Thus the best case cost of this algorithm given � will be26(9)(26) + 26Pi=1 i260 = 24:75Now consider the worst case cost of a di�erent sequence � which accesses \a"ten times in a row, followed by ten accesses to \b", continuing until it ends withten accesses to \z". As in the previous case, the number of probes for the �rstaccess to each record is between 26 and the key's location in the alphabet. Allother accesses take only one probe. The worst case cost in this example will be26(9)(1) + 26Pi=1 26260 = 3:5Note that the worst case of the second example is far better than the best caseof the �rst example. This demonstrates the fact that the cost of this permutationalgorithm can di�er greatly for the same �xed probabilities if accesses in � to thesame record tend to cluster together instead of being dispersed throughout �.These two examples highlight the change in behavior based on the locality ofthe search sequence. Permutation algorithms are designed not necessarily just totry to order the list of records by their total frequencies of access. The algorithmscan also try to put records near the front that have been accessed more frequentlyin the recent past. This is usually desirable since many access sequences (suchas variable accesses in a program or words in a document) tend to demonstratelocality.Denning and Schwartz [1972] de�ne the following principle of locality forpage accesses in operating systems, but it applies equally well in cases of recordor variable accesses for most programming contexts: (1) during any interval oftime, a program distributes its accesses non-uniformly over its pages; (2) takenas a function of time, the frequency with which a given page is accessed tends- 8 -



to change slowly, i.e. it is quasi-stationary; and (3) correlation between immediatepast and immediate future access patterns tends to be high, whereas the correlationbetween disjoint access patterns tends to zero as the distance between them tendsto in�nity. This principle, which de�nes locality in programs' accesses to pagesof memory, can be directly translated into a principle describing locality in accesssequences' accesses to records in a list.1.2.2. Measures of ConvergenceBitner [1979] proposes a measure of convergence (called overwork) as the areabetween two curves on a graph:cost
number of requestsasymptotic costexpected costoverwork

Figure 2.1 Bitner's Overwork Measure of ConvergenceThe horizontal (independent) axis is the number of record accesses performed (arange from 0 to 1). The �rst (and usually higher) curve is the average cost of analgorithm as a function of the number of accesses. When only a few accesses have- 9 -



been made, this curve can be expected to be high since the list still has close to arandom ordering, making it unlikely that records with high access probabilities willbe near the front. This curve approaches the asymptotic cost of the algorithm as thenumber of accesses increases. The asymptotic cost of the algorithm is the secondcurve (a straight horizontal line), and the overwork is de�ned as the area betweenthe expected cost curve and its asymptote. An algorithm is said to converge fasterthan another algorithm if its overwork area is less.One way of looking at the overwork measure is to consider the amortized costin terms of overwork. For example, if the overwork of a permutation algorithm is2N , then after N accesses at most 2 \extra" probes per access occurred. After N2accesses the amortized (average) \extra" cost per access is O(N�1).When convergence is expressed as a measure of time, an interesting questionis how quickly an algorithm adjusts to changes in locality during search sequences.Tradeo�s between swift convergence and low asymptotic cost will be shown forseveral classes of permutation algorithms, but absolute measures of convergencefor algorithms are rare.1.3. Relative MeasurementsThe di�culty in �nding absolute measures for permutation algorithms makes rela-tive measurements desirable. Measuring algorithms relative to each other is usefulboth when no direct measure can be obtained for a given algorithm, and when thecomparison between measures for two or more algorithms is not possible. Relativecomparisons may be based on any of the measures mentioned in the previoussections.Costs of algorithms are often compared to the cost of the optimal staticordering, in which the records are initially ordered by their static probabilitiesof access and left in that order throughout the access sequence. The optimal staticordering is not a permutation algorithm by our de�nitions, since it uses knowledge- 10 -



about probabilities that are assumed to be unavailable before the searches begin.This ordering provides a worst case cost of no more than n=2 (when the probabilitiesare equal), and a best case approaching 1 (as the di�erences in probabilitiesincrease).It should be noted that the optimal static ordering is not optimal overall. Iflocality of accesses is allowed, it is possible for self-adjusting algorithms to havelower cost than the optimal static ordering. Recall the examples given in Section2.2.1, where ten calls are made to each of 26 keys. An optimal static ordering wouldrequire an average of 13.5 probes for any � of the type used in those examples. Thisis less than the best case with no locality (24.75), but more than the worst case withcomplete locality (3.5). Thus the relative e�ectiveness of permutation algorithmsas compared to the optimal static ordering is heavily dependent on the degree oflocality in the access string �.In order to compare the relative convergence of move-to-front and transpose,Bitner [1979] suggests a modi�cation of his overwork measure that uses the ex-pected cost of move-to-front for the higher curve of his graph, and the expectedcost of transpose (rather than the asymptotic cost of move-to-front) for the lowercurve. A generalization of this measure allows us to compare the convergence of anytwo permutation algorithms by using their respective cost curves as the upper andlower curves of the graph, and examining the resultant area between them. Thiscould be further generalized to compare the convergences of several permutationalgorithms to each other, by choosing a permutation algorithm (not necessarily oneof those in the set to be compared) as a metric and comparing the areas resultingfrom using its cost curve as a lower (or upper) bound to the cost curves of eachof the other algorithms. Bitner chose the cost curve of transpose as a lower boundbecause he was only interested in the relative convergence of move-to-front andtranspose. In the general case of using a single algorithm as a ruler to compare- 11 -



several algorithms, transpose still seems a good choice due to its low asymptoticcost and stability.2. KNOWN ALGORITHMS AND ANALYSESThere is a wealth of information about permutation algorithms in the literature.Bitner [1979] and Gonnet et al. [1981] provide surveys of the most common algo-rithms and their analyses. However, much work has followed since these surveysappeared, consisting of a few new algorithms, but primarily of more enlighteningrelative measures between existing algorithms.Many analyses involve unrealistically simple distributions, such as all (or allbut one) of the records having the same probabilities of access; or show that theasymptotic cost of algorithms that depend on some constant parameter improvemonotonically as the parameter increases (or decreases, in a very few cases).Although the proofs are complex, the results are generally intuitive, and will betreated as such in this survey. A better feel for the e�ects of these parameters maybe gained through the tables provided in the section on empirical comparisons.2.1. Move-to-frontThe move-to-front algorithm was used in our preceding example of the e�ects oflocality, and is by far the most commonly analyzed of the algorithms presentedhere. When the accessed record is found, it is moved to the front of the list, if it isnot already there. All records that the accessed record passes are moved back oneto make room.Themove-to-front algorithm tends to converge quickly, but has a large asymp-totic cost. Every time a record with low access probability is accessed, it is movedall the way to the front, which increases the costs of future accesses to many otherrecords. - 12 -



The asymptotic cost for a general � has been shown by several analyses[McCabe 1965; Burville and Kingman 1973; Knuth 1973; Hendricks 1976;Rivest 1976; Bitner 1979] to be:1 + 2 X1�i�j�n PiPjPi + PjThis cost includes only the search time; it could be as much as twice this value ifthe time to permute the records were included.Hendricks [1972] applies Markov chains to the same problem, obtaining thesame solution with possibly less work. He extends the application [1973] tomove-to-k strategies, which cause the records ahead of location k to move back-wards on the list.Rivest [1976] shows that the expected cost of move-to-front for Zipf's dis-tribution �pi = 1=(iHn)� is O(lnn) times faster than a random ordering of therecords.Gonnet et al. [1981] give expected cost formulas formove-to-front making several assumptions about the distributions of access prob-abilities, and compare them to the expected cost of the optimal static ordering:Zipf's law: pi = 1=(iHn); OPT = n=Hncost = 2 ln 2 nHn � 12 + o(1)costOPT � 2 ln 2 = 1:38629 . . .Lotka's Law: pi = 1=(i2H(2)n ); OPT = Hn=H(2)ncost = 3� lnn� 0:00206339 . . . +O� lnnn �costOPT � �2 = 1:57080 . . .- 13 -



Exponential dist.: pi = (1� a)ai�1; OPT = 1=(1� a)cost = 1 + 2 1Xj=1 aj1 + aj= O(ln3 a) � 2 ln 2ln a � 12 � ln a24costOPT � 2 ln 2 = 1:38629 . . .Wedge dist.: pi = 2(n+ 1� i)n2 + n ; OPT = n+ 23cost = 4(1 � ln 2)3 n�Hn + 5(1� ln 2)3 +O(1)costOPT � 4(1 � ln 2) = 1:22741 . . .Bitner [1979] gives the overwork of move-to-front asOVMTF = 12 X1�i<j�n�pi � pjpi + pj�2He then shows that this is less than n(n � 1)=4 for every probability distributionwith n > 2. If p1 = 0 and pi = 1=(n� 1); 2 � i � n, thenOVMTF = n� 12(Although this distribution is a bit simple, it will be used later for comparison witha similar analysis for transpose.) For Zipf's law he gives a complex formula, whichfor large n simpli�es to OVMTF � :057n2.2.2. TransposeThe accessed record, if not at the front of the list, is moved up one position bychanging places with the record just ahead of it. Under this method, a record onlyapproaches the front of the list if it is accessed frequently. This algorithm has aminor advantage in that it is also e�cient to implement in sequential arrays.The slower record movement gives transpose slower convergence, but itsstability tends to keep its steady state closer to optimal static ordering. If there- 14 -



is little locality in the accesses, this results in a lower asymptotic cost. Intuitively,move-to-front has a high asymptotic cost due to its potential to make big mistakesby moving a record all the way to the front on the basis of a single access. Unlessthat record is accessed again in the near future, the only e�ect of this move is toincrease the expected search time for many other records. Transpose avoids thispotential error by being far more conservative in its record moves. A record canonly be advanced to the front if it is accessed frequently. In cases where there ismuch locality in the accesses, transpose may be too slow in adjusting to the changesof locality, and a more radical algorithm such as move-to-front may be justi�ed.Rivest [1976] gives the average search time of transpose as:X� 24 nYi=1 p�(i;�)i ! nXj=1 pj � �(j)35X� nYi=1 p�(i;�)iwhere � denotes a possible ordering of the records, �(j) denotes the jth record inthat ordering, and �(i; �) denotes the quantity i��(i), or the distance that recordi will be displaced from its original location in �.Bitner could not �nd a general overwork formula for transpose, but in thecase of p1 = 0 and pi = 1=(n� 1); 2 � i � n, he showed it to be:OVTR = n2 � 16It should be noted that this isO(n) greater than his bound formove-to-front. Bitnergives analysis for both algorithms under another (even more simple) distribution,with the same results. He also manually calculates the values of overwork fortranspose under Zipf's law for various values of n. His values appear to be O(n3),which is again O(n) greater than his overwork measure for move-to-front.Gonnet et al. [1981] show that transpose may take as many as 
(n2) accessesto reach within a factor of 1 + � of the steady state behavior. For this result, they- 15 -



assume that the expected cost of the steady state of transpose is less than twicethe expected cost of the optimal static ordering. This is generally true, but notalways (see the section on comparisons between algorithms). Thus, since they onlywanted to show that transpose may take this long, their proof is valid.2.3. CountA count is kept of the number of accesses to each record. After each access, theaccessed record's count is incremented. That record is then moved forward to the�rst position in front of all records with lower counts. Thus, records in the listare always ordered by increasing value of their counts. At the end of the accesssequence the list will be perfectly ordered by the access probabilities of the records,which is an optimal static order for that list. Note that during the access sequencethe list will not be in the optimal static order, but will approach it as the sequenceprogresses. This method has obvious disadvantages: it uses extra memory on theorder of the size of the list, and is relatively insensitive to locality in accesses.Bitner [1979] suggests a variation on counts called the limited di�erence ruleto limit the potential size of the count �elds. The count �eld of a record i stores thedi�erence of the access counts between record i and record i�1 (recall that recordsare ordered by access counts). Thus an access to a given record will cause the countof record i to be incremented, and the count of record i + 1 to be decremented.These di�erence counts may not be increased above a limiting value. He showsthat the performance approaches the optimal static ordering as the limit on thedi�erence increases, and is close even for small limits (see Section 4.5, Table 4.3).2.4. Move-ahead-kMove-ahead-k is a compromise between the relative extremes of move-to-front andtranspose. In the simple case, move-ahead-k simply moves the record forward k- 16 -



positions. By this de�nition, if f is the distance to the front, move-to-front ismove-ahead-f and transpose is move-ahead-1.This can be generalized to move a percentage of the distance to the front, orsome other function based on the distance. Other parameters to the function mayalso be of interest, such as how many accesses have taken place so far. As usual, ifthe distance to be moved exceeds the distance to the front, then the record is onlymoved to (or left at) the front.Implementation of move-ahead-k is straightforward for constant values ofk, by keeping a queue of pointers to the last k records probed. Searching backk positions may also be possible, but only if the list provides backward links.Searching forward is undesirable due to the fact that this would e�ectively doublethe search time by requiring a second traversal of the list. Allowing k to be afunction of the distance to the front implies similar problems. It might seemfeasible to maintain a back pointer, advancing it to maintain the correct distancefrom the currently probed record, but this has the same cost as performing a secondtraversal at the end of the search.The move-ahead-k algorithm was initially proposed by Rivest [1976]. Gonnetet al. [1979] theorize that, for j > k, move-ahead-j converges faster thanmove-ahead-k, but at the penalty of a higher asymptotic cost. Section 4.5, Table4.2 gives empirical evidence to support this.2.5. JUMPHester and Hirschberg [1985] propose a randomized method of leaving a backpointer behind during the search, to be used later as the destination for movinga record forward. This avoids the costly second traversal of the list described inrelation to move-ahead-k algorithms, where each access might require reading pagesfrom slower secondary memory, such as when the records are large or when thereare many records. Since moving the pointer forward slowly as the probes progress- 17 -



would be the same as performing a linear traversal at the end of the search, thepointer must occasionally be jumped forward to the record that was just probed.The pointer is advanced to the probed record if and only if the probed record isnot the accessed record, and a boolean function JUMP is true. JUMP can be afunction of variables such as the current position of the back pointer, the position ofthe probed record, and/or the number of accesses preceding the current one. Theypresent de�nitions of JUMP functions that demonstrate (on the average case) thesame behavior as move-to-front, transpose, and move-ahead-k (for k being anydesired constant or fraction of the distance to the front of the list).2.6. Meta AlgorithmsThe following meta algorithms may be applied in conjunction with permutationalgorithms. At the time when a permutation algorithm would normally be invoked,the meta algorithm decides whether to call the permutation algorithm or leavethings as they are. The purpose is to slow the convergence of the permutationalgorithm by not moving records only on the basis of single accesses, to reduce thee�ects of a one-time access to a record.2.6.1. Move Every kth AccessMcCabe [1965] considers applying the permutation algorithm only once every kaccesses to reduce the time spent reordering the list. He shows that, independentof the value of k, the asymptotic cost of searches would be exactly the same as if themeta algorithm were not used. However, the meta algorithm requires k times thenumber of accesses required by the permutation algorithm (by itself) to approachthis asymptote.2.6.2. k-in-a-rowThe permutation algorithm is applied only if the accessed record has been accessedk times in a row. If the record is accessed even twice in a row, the chances- 18 -



are greater that it will have additional accesses in the near future. This has theadvantage of not requiring as much memory as do count rules, since it only needsto remember the last record accessed, and a single counter for the number of recentconsecutive accesses to that record.Kan and Ross [1980] propose this scheme and use semi-Markov chains toanalyze k-in-a-row policies. They show that the proportion of time that theelement with the ith largest probability of access will spend in the ith locationapproaches 1 as k approaches 1.Gonnet et al. [1979] show that, for k = 2, the convergence usingmove-to-frontis the same as that of transpose. They also suggest a minor modi�cation called thebatched k heuristic, which groups accesses into batches of size k, and applies thepermutation algorithm only when all k accesses in a batch are to the same record.This tends to slow down convergence a bit more than k-in-a-row, and provides alower asymptotic cost.Bitner [1979] suggests a modi�cation to the k-in-a-row strategy called waitc and move, which incorporates �nite counters for each record. After a recordhas been accessed c times (not necessarily in a row) the permutation algorithm isapplied and the counter for that record is reset. He also suggests a modi�cationwhere all of the counters are reset whenever one reaches the limit. These algorithmsare compared in Section 4.5, Table 4.3.2.6.3. Probabilistic Application of Move RulesKan and Ross [1980] suggest an alternative to k-in-a-row that slows down conver-gence by applying a permutation algorithm to the accessed record i with probability�i, 1 � i � n. They show that if the �i are equal for all i, then the asymptoticcost will be the same as the original algorithm without the probabilities. They alsoshow that the results for transpose are independent of the values of �i.- 19 -



Oommen [1984] proposes a method he calls stochastic move-to-front whichcombines the properties of Kan and Ross's method with those of count. Insteadof using a single �xed probability, each record ri has its own probability pi whichis used to determine whether that record, after being accessed, is to be moved.Oommen only considers move-to-front for the permutation algorithm. Initiallyall probabilities are 1. After each access, the access probability of the accessedrecord is decreased by a multiplicative constant, and all other probabilities remainunchanged. Note that the probabilities provide information equivalent to that of acount for each record: smaller probabilities correspond to larger frequency counts.After every T accesses, the list is sorted on the values of the probabilities. Asthe probabilities decrease, the list will be less likely to change during T accesses.Thus by using a sort that is O(n log n) in the worst case and O(n) if the list isnearly sorted, the cost of applying this sort is minimal after some initial settlingdown. Although this scheme may cause the record order to converge to any ofthe n! possibilities, Oommen shows that the multiplicative constant for changingprobabilities may be chosen to make the probability of convergence on the optimalstatic ordering as near unity as desired.2.6.4. Implicit Data StructuresFrederickson [1984] considers the case where there are also �xed probabilitiesof searching for values other than the keys. Although this normally leads totree structures, he proposes algorithms that use linear lists of binary search lists.Records are stored in groups, each group being maintained in lexicographic orderto allow binary search within the group. The list of groups is searched linearly untilthe desired record is found. When a record is found in group i, it is moved into the�rst group, and records are chosen at random from groups 1 to i � 1 to be movedback one group. Thus this algorithm applies an analogue of the move-to-frontalgorithm over a di�erent set of objects. A similar algorithm is suggested that- 20 -



uses transpose for the group moves. He shows that these algorithms have averageexpected search costs for the ith record of O�logminf1=pi; ng�. He extends thesealgorithms to include a similar bound for unsuccessful searches (substitute qi forpi in the above formula, where qi is the probability of accessing a range of missingkeys). The extension involves applying the permutation only every n accessesand performing the movement during the intervening accesses to minimize extratraversals.2.7. HybridsMove-to-front and transpose clearly have tradeo�s concerning convergence andasymptotic cost. If it is known ahead of time that the number of accesses will besmall, move-to-front is probably the better algorithm, whereas transpose is betterif the number of accesses is expected to be large. A hybrid of these or otheralgorithms that try to get the best of both measures might be feasible.Bitner [1979] proposes a simple hybrid that uses the move-to-front algorithmuntil its steady state is approached, and then switches to transpose. The di�cultyof deciding when to switch is a major problem. Since move-to-front performs bestwhen the list has a high degree of locality, it is even unclear if the best timeto switch to transpose can be determined for a �xed number of accesses. Bitnersuggests switching when the number of requests is between �(n) and �(n2). Herefers to his thesis, where he addressed the issue of �nding good bounds for whento change from one to the other, but found it di�cult and was forced to make aguess based on speci�c observations derived by assuming Zipf's law.Lam et al. [1981] propose a combination of transpose and count, where trans-pose is used until a steady state is reached, and counts are maintained thereafter.Since count is likely to make serious mistakes during the early accesses (similar tothose made by move-to-front), the intent is that transpose will be used during this- 21 -



period, allowing count to take over after things settle down. They gain a minorsavings in time by avoiding maintenance of the counts while transpose is running.To give elements reasonable weights when count is started, the elements areordered on the value of fi +n� i, where fi is the frequency count of the ith recordin the list, and n � i is the distance from that record's location to the end of thelist. Thus the record's location in the list is used as a weight, as is its frequencycount. They show that their generalized count algorithm performs better thanother methods of re-arrangement based on counts. They were unable to de�nea suitable weighting scheme for a similar hybrid using move-to-front in place oftranspose .In this study, Lam et al. fail to give a de�nition of how to detect a steadystate. One possibility is to maintain a �nite queue of size k of the costs associatedwith the most recent accesses, and de�ne a steady state as one in which the averagecost of the last k=2 accesses is not more than some � di�erent from the average costof the k=2 accesses preceeding the last k=2 accesses. The values of k and � maybe tuned to re
ect the particular permutation algorithm in question. For example,move-to-front might require a larger value of � then transpose, since it makes moreextensive changes during a small number of accesses.Tenenbaum and Nemes [1982] suggest two classes of hybrids. The �rst isPOS (k) for 1 � k � n. If the accessed record is found in a position � k,it is transposed with its predecessor, otherwise it is moved to the kth position,shifting all intervening records back one. Note that POS (1) is move-to-front, whilePOS (n � 1) is transpose.The second class proposed by Tenenbaum and Nemes is SWITCH (k), whichis the same as POS except the uses of move-to-front and transpose are reversed:an accessed record found in a location � k is moved to the front, and others aretransposed. - 22 -



3. COMPARISONS BETWEEN ALGORITHMSSince it is often di�cult to obtain a standard measure for permutation algorithms,it is a common practice to simply measure the algorithms directly against eachother, either theoretically or through simulation. The following sections describethese methods of comparison.3.1. Optimal Algorithm?Before we can ask whether an optimal memoryless strategy exists, we must de�newhat is meant by \optimal." Rivest [1976] de�nes a permutation rule to beoptimal over a set of rules if it has the least cost of those rules for all probabilitydistributions and all initial orderings of the keys. He conjectures that transposeis an optimal memoryless algorithm under this de�nition. Yao (in a personalcommunication reported by Rivest) supports this conjecture by proving that, ifan optimal memoryless algorithm exists, it must be transpose. His proof gives adistribution for each n for which transpose has least cost over all rules. Kan andRoss [1980] also provide evidence to support Rivest's conjecture by showing thattranspose is optimal over the rules that move a single element a number of placescloser to the front of the list, when all records except one have an equal probabilityof access. This result also assumes no locality of accesses.Anderson et al. [1982] provide a complex counterexample to Rivest's conjec-ture by presenting a single permutation algorithm that outperforms transpose inthe average case for a single access probability distribution. It should be notedthat their algorithm requires an arbitrary de�nition of the permutations to beperformed for each of the possible record locations in which the accessed recordmight be found, and thus the rule itself is dependent on the number of recordsrather than being a general rule that applies to any list. The algorithm also radi-cally reorganizes the list, so it is not in the class of algorithms that only move theaccessed record some distance towards the front of the list. Thus the algorithm- 23 -



is memoryless in terms of information concerning accesses on the records, but thealgorithm itself requires �(n2) space to de�ne the permutations.Therefore, no memoryless algorithm can be optimal over all �, and the follow-ing analyses for di�erent algorithms cannot be expected to demonstrate a completesuperiority for any given algorithm. Whether this holds true for algorithms whichonly move a single record forward in the list is still unknown.3.2. Asymptotic CostThe asymptotic cost of move-to-front has been shown by many [McCabe 1965;Knuth 1973; Hendricks 1976; Rivest 1976; Bitner 1979] to be at most twice theasymptotic cost of the optimal static ordering. Rivest [1976] shows that theasymptotic cost of transpose is less than or equal to that of move-to-front forevery probability distribution.Bitner [1979] shows that count is asymptotically equal to the optimal staticordering, and that the di�erence in cost between the two decreases exponentiallywith time, so that count is not much worse than the optimal static ordering evenfor fairly small numbers of accesses. He further shows that for all distributionsexcept (1) the normal distribution, and (2) the distribution in which a single keyhas probability one, the wait c and move algorithms will not approach the optimalordering as c approaches in�nity. He �nally shows that the limited di�erence ruleis superior to the wait c and move rules in both asymptotic cost and convergence.This is supported in Section 4.5, Table 4.3.3.3. Worst CaseThe worst case cost of move-to-front has been shown by many [Burville andKingman 1973; Knuth 1973; Hendricks 1976; Rivest 1976; Bitner 1979; Bentleyand McGeoch 1985; Sleator and Tarjan 1985] to be no more than twice that of theoptimal static ordering. The worst case cost of move-to-front, when there is no- 24 -



locality and the accessed record is always at the end of the list, is approximately n.The cost using the optimal static ordering in the same situation is approximatelyn=2. This does not show, but does suggest, that move-to-front is never worse thantwice the optimal static ordering.Bentley and McGeoch [1985] point out with an amortized argument thatalthough the worst-case performances of move-to-front and count are no more thantwice that of the optimal static ordering, the worst-case performance of transposecould be far worse. This can easily be seen by considering a case where two recordsare alternately accessed many times. They will continue to exchange places withoutadvancing towards the front of the list.Gonnet et al. [1981] show that, for a particular distribution, the average caseratio of the cost of move-to-front to the cost of the optimal static ordering is �=2.Chung et al. [1985] show that this is an upper bound on the average case for alldistributions. The distribution provided by Gonnet et al. then serves to make thisbound tight.Most relative analyses for the worst case of move-to-front are by techniquesthat are not generally applicable. Sleator and Tarjan [1985] present a more gener-alized technique. They give an amortized analysis, which they extend to show thatmoving a record any fraction of the distance to the front of the list will be no morethan a constant times the optimal o�-line algorithm. The constant is inverselyproportional to the fraction of the total distance moved. This result is valuable injustifying algorithms such as move-ahead-k (for k a fraction of the distance to thefront) and JUMP .3.4. ConvergenceBitner [1979] shows that, while transpose is asymptotically more e�cient,move-to-front often converges more quickly. As pointed out when presenting thealgorithms, he demonstrates that his overwork measure formove-to-front is a factor- 25 -



of n less than transpose for a variety of probability distributions. He also showsthat move-to-front converges faster than transpose by using his second measure ofconvergence (the number of accesses, A, required for the expected cost of transposeto be less than that ofmove-to-front) by pointing out that A increases quadraticallywith n, which indicates that move-to-front converges faster than transpose.3.5. Empirical ComparisonsMost of the literature deals with the behavior of the permutation algorithms in astrictly theoretical manner. In general, the proofs verify intuitive expectations thatvarying a parameter of the algorithm will cause the expected cost of the algorithmto approach some asymptote. The following tables were provided by some authorsas support to their theorems.The �rst table is a compilation of two tables provided by Bentley andMcGeoch [1985], comparing the results of running several common algorithms ap-plied to �les containing programs and text.
10 20 30 40Average Search Cost j OSO� MTF� Count� Transpose� Zipf

File Distinctwords TotalwordsP1 100 480 j� � ��P2 107 431 j� � ��P3 117 1,176 j� � ��P4 181 1,456 j� � ��T1 471 1,888 j � � ��T2 498 1,515 j � � ��T3 564 3,296 j� � ��T4 999 5,443 j �� ��T5 1,147 7,482 j �� ��T6 1,590 7,654 j �� �� - 26 -



Table 4.1 Measured Average Search Costs of Several AlgorithmsThe 'P' and 'T' in the �le names indicate whether the �le is Pascal source or Englishtext. OSO stands for the expected cost if the records are left in the optimal staticordering, and MTF is the move-to-front algorithm. The mark for Zipf indicates theexpected cost of an optimal static ordering, assuming that the probabilities followZipf's distribution. Bentley and McGeoch compare this to the expected cost of theoptimal static ordering to suggest that the probabilities of the words are closer tothe Zipf distribution than a normal distribution (where the expected cost wouldbe about half the number of distinct words in the �le).The following table submitted by Tenenbaum [1978] contains a condensationof a more extensive table of simulations on move-ahead-k algorithms. Files ofvarious sizes (N) containing data which was distributed by Zipf's law were accessed12; 000 times, for 1 � k � 7. The best value of k (among those tested) is given forthe sizes tested. N Best k3{64 165{94 295{124 3125{150 4151{183 5184{204 6205{230 7Table 4.2 Best k for Di�erent Sized FilesNote that in this table there is no optimal value of k. Since the number of accessesremains constant, the number of records in the list is shown to have a directcorrelation to the optimal value of k.Bitner [1979] compared his limited di�erence rule to his two meta-algorithms,using move-to-front and transpose for the permutation algorithms. He gives theaverage of 200 trials of 1; 000 accesses on a list of nine elements whose probabilities- 27 -



are given by Zipf's law. c = 0 1 2 3 4 5Limited Di�erence rule(maximum di�erence = c) 3:9739 3:4162 3:3026 3:2545 3:2288 3:2113Wait c, move-to-front and clear 3:9739 3:6230 3:4668 3:3811 3:3285 |Wait c, transpose and clear 3:4646 3:3399 3:2929 3:2670 3:2501 |Wait c and move-to-front 3:9739 3:8996 3:8591 3:8338 3:8165 3:8040Wait c and transpose 3:4646 3:3824 3:3576 3:3473 3:3312 3:3272Table 4.3 Costs of Count Algorithms Relative to cComparing these costs to 3:1814 (the expected optimal cost under Zipf's law) givesan indication of how fast they converge as c varies.Oommen [1984] gives some simulations on his stochastic move-to-front methodthat indicate fast convergence on the optimal ordering. Each test consisted of theaverage of ten trials consisting of 4; 000 accesses on a list of words distributed oneof three ways (si is the probability of access):DIST1: si = k1 � (N � I + 1) where k1 = 1=PNi=1 iDIST2: si = k2=i where k2 = 1=PNi=1 i�1DIST3: si = k3=2i where k3 = 1=PNi=1 2�iNote that DIST2 is Zipf's law. Sorting cycles occurred every 100 accesses. Thetable shows the accuracy, ACĈ(x), and the average number of moves performedeach cycle, K̂T (x), after x cycles have taken place. The accuracy is de�ned asthe fraction of distinct pairs of records that are correctly ordered (by the optimalstatic ordering) relative to each other. Thus an accuracy of 1 is the optimal staticordering, and an accuracy of 0:5 is what is expected for an initial random ordering- 28 -



of records. N Distribution ACĈ(0) ACĈ(10) K̂T (0) K̂T (10)DIST1 0:48 0:92 35:10 0:3010 DIST2 0:55 0:94 29:50 0:40DIST3 0:41 0:90 18:20 0:30DIST1 0:50 0:89 43:00 0:7015 DIST2 0:50 0:90 33:80 1:00DIST3 0:51 0:83 21:50 0:20DIST1 0:52 0:87 52:00 1:0025 DIST2 0:50 0:88 36:50 1:10DIST3 0:49 0:83 18:60 0:41DIST1 0:52 0:87 60:80 0:9040 DIST2 0:48 0:87 37:00 1:40DIST3 0:46 0:87 19:70 0:40Table 4.4 Simulations of Stochastic Move-to-frontThe table shows that, after just ten cycles, the records are very near the optimalstatic ordering, and this ordering will tend to persist since the frequency of furtherrecord moves is low.4. OPEN PROBLEMSSince it has been shown that no single optimal permutation algorithm exists,it becomes necessary to try to characterize the circumstances that indicate anadvantage in using a particular algorithm. There are several conditions to consider,which give rise to the following open questions concerning algorithms.4.1. Direct AnalysesMove-to-front is the only permutation algorithm that has been extensively ana-lyzed. Transpose is widely mentioned in the literature but authors merely statean inability to obtain theoretical bounds on its performance, and most of the workon other algorithms merely shows how their behavior changes as parameters vary.Direct bounds on the behaviors of these algorithms are needed to allow realistic- 29 -



comparisons. Bentley and McGeoch [1985] showed in their table of simulations ofcommon permutation algorithms that Zipf's law seems to be a good approximationof the distribution of common �les of words, so direct analyses under the assump-tion of accesses following Zipf's law would be valuable. Other distributions wouldalso be interesting.4.2. Locality/ConvergenceHendricks [1976] mentions the open problem of relaxing the assumption of inde-pendence for analysis of permutation algorithms. He suggests a model by which,when a record is accessed, its probability of access in the future is increased (or de-creased). He does not suggest how other probabilities should be altered to accountfor this.As yet, no good de�nition for locality of accesses has been applied to theproblem of measuring self-organizing linear search. This is unfortunate, sincetaking advantage of locality is one of the main reasons for using these techniquesin the �rst place, and the lack of de�nition restricts measures of convergence tovery general cases.4.3. Optimize Algorithms for a Given Level of LocalityOnce an algorithm can be analyzed in terms of its performance for a given functionof locality in an access sequence, developing algorithms that optimize convergencefor that function of locality is an obvious step. A few hybrids were suggested, suchas usingmove-to-front initially and then switching to transpose , which quickly con-verge to a steady state and also have a good asymptotic cost. As was pointed out,the best time to switch to transpose (and similar problems in other algorithms)is di�cult to know when we assume no knowledge about the access sequence.However, if we allow knowledge of the approximate degree of locality of the se-quence, we may be able to tailor these algorithms e�ectively.- 30 -



Hybrids are not the only method of controlling response to locality. Themove-ahead-k algorithm could also be considered, especially the extended de�nitionthat allows moving a function of the distance to the front rather than a �xedconstant.4.4. Choosing an AlgorithmBentley and McGeoch [1985] give the following advice about choosing between thethree permutation algorithms that are widely mentioned in the literature:� Move-to-front. A linked-list implementation is preferable for most applicationswhen using move-to-front . The search makes few comparisons, both in theamortized sense and when observed on real data; furthermore, it exploitslocality of reference present in the input. The linked list implementation isnatural for an environment supporting dynamic storage allocation and yieldsan e�cient reorganization strategy.� Transpose. If storage is extremely limited and pointers for lists cannot be used,then the array implementation of transpose gives very e�cient reorganization.Its worst-case performance is poor, but it performs well on the average.� Count. Although this heuristic does make a small number of comparisons, itshigher move costs and extra storage requirements could be a hindrance forsome applications. It should probably be considered only for applications inwhich the counts are already needed for other purposes.The above comments concerning move-to-front can be generalized to includethe various algorithms that move records forward a fraction of the distance to thefront of the list. Similarly, the comments concerning transpose can be generalized toinclude algorithms that move records forward by a �xed distance. Meta algorithmsmay be applied to the above as well. It might be possible to derive rules for�nding good values of the parameters associated with these algorithms for commondistributions of access sequences. The algorithms' performances could likely bene�t- 31 -



from tuning the values of such parameters for a particular application. Such tuningmay be su�cient in itself to �nd good parameter values in reasonable time withoutthe application of formal rules.5. SUMMARYSelf-organizing lists have been in the literature for almost twenty years, and in thattime many permutation algorithms have been proposed that move the accessedrecord forward by various distances, either constant or based on the location of therecord or past events. We have presented these algorithms along with the analysesfor them.The majority of the literature deals with only a few of the permutation algo-rithms. Many analyses on the same algorithms are given, either demonstrating anew method of analysis or providing results based on di�erent criteria. Almost allaverage case analyses assume no locality, which is unreasonable in many applica-tions. While move-to-front has been shown to be better in some real applicationsthan transpose, there are no guidelines for choosing between the algorithms thatmove the accessed record some distance between the two extremes.ACKNOWLEDGMENTSOur thanks to the referees, whose comments on the original draft led to considerableenhancements and other improvements. Also to V. Zielinski, the technical editor,whose comments and suggestions corrected several cases of unclear presentation.
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