
Efficient Optimal Pagination of Scrolls

L. L. Larmore
California State University, Dominguez Hills

D. S. Hirschberg
University of California, Irvine

Abstract

Diehr and Faaland developed an algorithm that finds the minimum sum of key length

pagination of a scroll of n items, and which uses OP(n lg n) time and OP(n) space, solving a

problem posed by McCreight. An improved algorithm is given which uses OP(n) time and OP(n)

space.

Introduction

Suppose that we are given a scroll of n items of varying length. Let wi > 0 be the length

of the ith item. A boundary sequence is a sequence 0 = s0 < s1 < ... < sv+1 = n+1 such that pmin ≤

Σs
k–1

<i<s
k

wi ≤ pmax for all 1 ≤ k ≤ v+1, where 0 ≤ pmin < pmax are fixed. The length of that

boundary sequence is defined to be Σ1≤k≤vws
k

. McCreight [McC 77] asks whether we can

"quickly" find a boundary sequence of minimum length.

Diehr and Faaland [DieFaa 84] develop an algorithm which finds the minimum length

boundary sequence in OP(n lg n) time, using OP(n) storage. In this paper, we introduce an

algorithm which requires both OP(n) time and OP(n) space.

For convenience, assign any positive value, say 1, to wn+1 and w0.

Define GapP(a,b) as the sum of the lengths of the scroll items, wiP, strictly between the ath

and the bth items. Note that GapP(a,a+1) = 0. Define GapP(a,a) = –waO.

Define boolean function Page(a,b) to be true iff pmin ≤ GapP(a,b) ≤ pmax.

This research was supported in part by a California State University PAID grant and National Science Foundation
Grant MCS-82-00362.

 2

For any 0 ≤ a ≤ b ≤ n+1, we define an admissable path from a to b to be a sequence s0, s1,

... sv such that Page(sk–1,sk) for each 0 < k ≤ v. The length of that path is Σ1≤k≤vws
k

. If there

exists an admissable path from 0 to j, we say that j is accessable.

For any 0 ≤ i ≤ n+1, define fP(i) to be the minimum length of all paths from 0 to i. If i is

inaccessable, let fP(i) = ∞.

For each 0 < i ≤ n+1 such that Page(k,i) for some k, define ρ(i) to be the unique number

which satisfies the following three conditions:

(i) Page(ρ(i),i)

(ii) fP(ρ(i)) is minimized subject to (i)

(iii) ρ(i) is minimized subject to (i) and (ii)

If there is no k for which Page(k,i) is true, then ρ(i) is undefined. Also, ρ(0) is undefined.

Computation of fP and ρ clearly suffices to find the minimum length boundary sequence.

A boundary sequence exists if and only if fP(n+1) < ∞, and the minimum length boundary

sequence can be found (in reverse order) by using ρ.

 3

The Algorithm

Main Procedure

Step 1. Initialization:
Compute Sum[i] = Σk≤iw[k], 0 ≤ i ≤ n+1
next[i] ← –1, 0 ≤ i ≤ n+1
fP[0], rho ← 0

Step 2. For i := 1 to n+1 do Steps 3 through 6
Step 3. Advance_rho
Step 4. If not Page(rho,i) then fP[i] ← ∞
Step 5. Otherwise

fP[i] ← fP[rho] + w[i]
ρ[i] ← rho

Step 6. Update_arrays
Step 7. Halt

Procedure Advance_rho

Step 1. While GapP(rho,i) > pmax do
rho ← rho+1

Step 2. While rho < next[rho] and GapP(next[rho],i) ≥ pmin do
rho ← next[rho]

Step 3. Return

Procedure Update_arrays

Step 1. j ← i–1
Step 2. While fP[j] > fP[i] do

next[j] ← i
j ← backup[j]

Step 3. backup[i] ← j
Step 4. Return

Proof of Correctness

It is important to distinguish between the functions fP(i) and ρ(i) on the one hand, which

are defined abstractly, and the arrays fP[i] and ρ[i], whose values are assigned dynamically during

 4

execution of the algorithm.

We remind the reader that, for all 0 < i ≤ n+1, either fP(i) = ∞ or fP(i) = fP(ρ(i)) + wiO.

Intuitively, the algorithm works as follows. rho is a running "temporary" ρ(i), which

never decreases. When rho is too small because GapP(rho,i) > pmaxP, rho is incremented by 1

until GapP is small enough. We then need to increase rho, minimizing the fP value, thus obtaining

ρ(i). In [DieFaa 84], a heap of possible values is maintained, and it takes Θ(lg n) time to find

ρ(i). In our algorithm, the pointer next tells us where to look next. Even though it might take

Θ(n) time to find ρ(i) for a particular i, the total time for these searches over all i is still only

OP(n), since rho never decreases. The pointer array backup is used for updating next, and also for

updating itself.

Our method of proof is to define a loop invariant, and to prove inductively that the loop

invariant holds after any number of iterations of the loop of Main.

Loop invariant. For any 0 ≤ i ≤ n+1, the following conditions hold after i iterations of

the loop of Main:

L1(i): If ρ(i) is defined, rho = ρ(i). Otherwise, rho is the smallest j such that GapP(j,i) ≤ pmax.

L2(i): For all 0 ≤ j ≤ i, fP[j] = fP(j).

L3(i): For all 0 ≤ j ≤ i, if ρ(j) is defined, ρ[j] = ρ(j). Otherwise, ρ[j] is undefined.

L4(i): For all 0 ≤ j ≤ i, next[j] is the smallest j < k ≤ i such that fP(k) < fP(j), provided there is such

a k. Otherwise, next[j] = –1.

L5(i): For all 0 < j ≤ i, backup[j] is the largest 0 ≤ k < j such that fP(k) ≤ fP(j).

It is clear that the loop invariant holds initially, i.e., after execution of Step 1 of Main,

i.e., when i = 0. Assume, now, that the loop invariant holds after (i–1) iterations of the loop, i≥1.

We show it still holds after one more iteration.

Define integers 0 ≤ αi ≤ βi ≤ i as follows. αi is as small as possible such that GapP(αiP,i) ≤

pmax, and βi is as small as possible such that GapP(βiP,i) < pmin. Note that {αi} and {βi} are

 5

monotone increasing sequences. It is seen that ρ(i) is defined if and only if αi < βiP, and that, if

ρ(i) is defined, the following conditions hold:

(i) αi ≤ ρ(i) < βi

(ii) fP(ρ(i)) is minimum subject to (i)

(iii) ρ(i) is minimum subject to (i) and (ii)

Proof of L1(i). If ρ(i–1) is not defined, rho = αi–1 before execution of Step 3 of Main.

After completion of Step 1 of Advance_rho, rho = αiO. If ρ(i–1) is defined, rho = ρ(i–1) before

execution of Step 3 of Main. After completion of Step 1 of Advance_rho, rho equals ρ(i–1) or

αiO, whichever is larger.

Consider two cases, ρ(i) is undefined and ρ(i) is defined.

If ρ(i) is undefined, then rho = αi after completion of Step 1 of Advance_rho and αi=βiO.

Step 2 will not loop at all since GapP(rho,i) < pmin. Therefore, for any k < rho=αiO, GapP(k,i) >

pmax. Thus L1(i) is satisfied.

On the other hand, suppose ρ(i) is defined. We define a loop invariant on the iterations of

Step 2 of Advance_rho:

AL1: rho < βi

AL2: fP(k) > fP(rho) for all αi ≤ k < rho

If rho = αi after Step 1, then rho = αi < βi so AL1 is satisfied and AL2 is vacuously

satisfied. On the other hand, if rho = ρ(i–1) after Step 1, AL1 is satisfied since rho < βi–1 ≤ βiO,

while AL2 is satisfied by definition of ρ(i–1), since αi–1 ≤ αiO. We now show that AL is

maintained by each iteration of Step 2 of Advance_rho.

We note that GapP is monotone decreasing in its first parameter. Suppose rho < next[rho]

and GapP(next[rho],i) ≥ pmin. Then next[rho] < βi by definition of βi and the monotonicity of

GapP. Also, fP(next[rho]) < fP(rho) ≤ fP(k) for all rho < k < next[rho], by L4(i–1). And, fP(next[rho])

< fP(rho) < fP(k) for all αi ≤ k < rho, by the previous AL2. Thus the assignment in Step 2 of

Advance_rho maintains the loop invariant AL.

 6

Step 2 of Advance_rho will complete only when either next[rho] = –1, which means that

fP(k) ≥ fP(rho) for all rho < k < i, or next[rho] ≥ βiO. In either case, fP(k) ≥ fP(rho) for all rho < k < βiO.

Together with AL2, this shows that fP(rho) is minimum in the range [αiO,βi–1] and so rho=ρ(i).

Therefore L1(i) is satisfied.

Proof of L2(i). By L2(i–1), fP[j]=fP(j) for all j < i. We note that i is accessable if and only

if Page(rho,i) and rho is accessable. If i is accessable, fP(i) = fP(rho)+wiO. fP[i] is set to that value

in Step 5 of Main.

Proof of L3(i). In the proof of L1(i), we established that rho = ρ(i) if and only if ρ(i) is

defined, i.e., if and only if Page(rho,i). ρ(i) is set to rho in Step 5 of Main.

Proof of L4(i) and L5(i). We define a loop invariant for Step 2 of Update_arrays:

LU1: next[j] = –1 (the sentinel value).

LU2: For all j < k < i, fP[k] > fP[i].

LU3: For all j < k < i, next[k] has its correct final value.

After execution of Step 1 of Update_arrays, j = i–1. By L4(i–1), next[i–1] = –1. Thus

LU1 holds. LU2 and LU3 hold vacuously.

Suppose LU holds before an iteration of Step 2. We show that it still holds after that

iteration.

Since the loop is iterating, we have that fP[i] < fP[j]. Also, fP[k] ≥ fP[j] for all j < k < i, by

LU1 which states that next[j] = –1, and by L4(i–1). Thus, the correct final value of next[j]

should be i, by definition of next. Step 2 makes the correct assignment. It is already true that

next[k] has the correct final value for all k where backup[j] < k < j, by L4(i–1) and L5(i–1), since

fP[k] > fP[j] in that range. By previous LU3, next[k] is already the correct final value, for all j < k <

i. Thus, next[k] will be the correct final value for all k in the range backup[j] < k < i. Thus, after

the assignment j ← backup[j], LU3 is preserved.

Since the loop is iterating, fP[j] > fP[i]. By LU2, fP[k] > fP[i] for all j < k < i. By L5(i–1),

 7

fP[k] > fP[j] for backup[j] < k < j. Therefore, fP[k] > fP[i] for backup[j] < k < i. The assignment j ←

backup[j] thus preserves LU2.

After the first assignment of Step 2, next[j] = i and this is the correct assignment as

shown two paragraphs above. As a result, fP[k] ≥ fP[j] for all j < k < i. By L5(i–1), fP[k] > fP[j] for

backup[j] < k < j, and fP[backup[j]] ≤ fP[j]. Therefore, for backup[j] < k ≤ j, fP[k] ≥ fP[j] ≥

fP[backup[j]]. Combining this last inequality with the first inequality of this paragraph, fP[k] ≥

fP[backup[j]] for backup[j] < k < i. Therefore, by L4(i–1), next[backup[j]] = –1. Thus, LU1 is

preserved when j is reassigned.

We have therefore shown that LU is invariant.

When Step 3 of Update_arrays is executed, fP[j] ≤ fP[i] since Step 2 no longer is iterating,

and also fP[k] > fP[i] for all j < k < i by LU2. Thus Step 3 asssigns the correct value of backup[i].

By L5(i–1), all previous values of backup are correct, and therefore L5(i) is true.

We are left only with verification of L4(i). next[i] = –1 since it was never reset and that

is its correct value. For all k < backup[i], L4(i–1) assures that next[k] is correct, since the fact

that fP[i] ≥ fP[backup[i]] rules out i as a possible value for next[k], and there is no other new

candidate. For backup[i] < k < i, next[k] is correct by LU3 and the fact that the final value of j in

Update_arrays is backup[i]. It only remains to show that next[backup[i]] has its correct value;

By LU1, we know it is still –1.

By L4(i–1), for all backup[i] < k ≤ i–1, fP[k] ≥ fP[backup[i]]. The only possible remaining

candidate for next[backup[i]] is thus i, which is ruled out since fP[i] ≥ fP[backup[i]]. Therefore

next[backup[i]] = –1 is correct. We conclude that L4(i) holds.

Finally, the algorithm is correct by L2(n+1) and L3(n+1).

Proof of Linear Time and Space Complexity

 8

Storage. Only five arrays are needed: Sum, fP, ρ, next, and backup. Each of these is

linear. The values of GapP and Page can be computed as needed in OP(1) time each, using Sum.

Time for the Main Algorithm. Step 1 takes OP(n) time. The main loop (Steps 3 through 6)

is executed n+1 times. We look at each step from 3 to 6 separately.

Step 3 is executed n times, and each execution is in OP(n) time. But we show (below) that

the total time of all those executions is still OP(n).

Steps 4 and 5 are clearly done in OP(1) time, for a total of OP(n) time.

Step 6 is executed n times, and each execution is in OP(n) time. But we show (below) that

the total time of all those executions is still OP(n).

Time for procedure Advance_rho. This procedure is called n+1 times. Each iteration of

Step 1 or Step 2 increases the value of rho, which is bounded above by n+1. rho never is

decreased. Therefore, the total number of iterations of Step 1 and Step 2 together, over all calls

of the procedure, cannot exceed n. Thus the total execution time for procedure Advance_rho

summed over all calls is OP(n).

Time for procedure Update_arrays. This procedure is called n+1 times. Thus, Steps 1

and 3 are executed a total of n+1 times each. Each time Step 2 iterates, the value of some next[j]

is changed from being –1 (the sentinel) to a value more than j. Since the values of next are never

reassigned, it is clear that the total number of times Step 2 iterates, over all calls, cannot exceed

n+1. It follows that the total execution time for procedure Update_arrays summed over all calls

is OP(n).

References

[DieFaa 84] Diehr, G. and Faaland, B. ‘‘Optimal pagination of B-trees with variable-length

items," Comm. ACM 27, 3 (March 1984), 241-247.

 9

[McC 77] McCreight, E.M. ‘‘Pagination of B*-trees with variable-length records," Comm.

ACM 20, 9 (Sept. 1977), 670-674.

