Efficient Optimal Pagination of Scrolls

L.L. Larmore
California State University, Dominguez Hills
D. S Hirschberg
University of California, Irvine

Abstract

Diehr and Faaland devel oped an algorithm that finds the minimum sum of key length
pagination of ascroll of nitems, and which uses O(n Ig n) time and O(n) space, solving a
problem posed by McCreight. Animproved algorithm is given which uses O(n) time and O(n)

space.
I ntroduction

Suppose that we are given ascroll of nitems of varying length. Let w, > 0 be the length

of theithitem. A boundary sequenceisasequence0=s,<s <..<s ,=n+lsuchthatp

> sisg M
boundary sequence is defined to be =

. <
mn —
<p_ foral 1<sks<v+l, whereO<p . <p _ aefixed. Thelength of that
me%(. McCreight [McC 77] asks whether we can

"quickly" find a boundary sequence of minimum length.

Diehr and Faaland [DieFaa 84] develop an agorithm which finds the minimum length
boundary sequence in O(n Ig n) time, using O(n) storage. In this paper, we introduce an
algorithm which requires both O(n) time and O(n) space.

For convenience, assign any positive value, say 1, tow,_ , and w,.

Define Gap(a,b) as the sum of the lengths of the scroll items, w., strictly between the a
and the b items. Note that Gap(a,atl) = 0. Define Gap(a,a) =-w,, .

Define boolean function Page(a,b) to betrueiff p ; < Gap(ab)<p,_, .

This research was supported in part by a California State University PAID grant and National Science Foundation
Grant MCS-82-00362.

2
For any 0 < a< b < n+1, we define an admissable path from ato b to be a sequence s, s;,
... S, such that Page(s,_,,s) for each 0 <k<v. Thelength of that path is lelevwsk. If there
exists an admissable path from 0 to j, we say that j is accessable.

For any 0 <i < n+1, define f(i) to be the minimum length of all pathsfrom Otoi. Ifiis
inaccessable, let f(i) = co.

For each 0 <i < n+1 such that Page(k,i) for some k, define p(i) to be the unique number
which satisfies the following three conditions:
(i) Page(p(i).i)
@ii) f(p(i)) is minimized subject to (i)
(iii) p(i) isminimized subject to (i) and (ii)
If thereis no k for which Page(k,i) istrue, then p(i) is undefined. Also, p(0) is undefined.

Computation of f and p clearly sufficesto find the minimum length boundary sequence.
A boundary sequence exists if and only if f(n+1) < oo, and the minimum length boundary

sequence can be found (in reverse order) by using p.

The Algorithm

Main Procedure

Step 1. Initialization:
Compute Sum[i] =%, _WK], 0<i<n+l
next[i] « -1,0<i<n+l

f[0], rho <« O

Step 2. For i := 1 to n+1 do Steps 3 through 6
Step 3. Advance rho
Step 4. If not Page(rho,i) then f[i] — oo
Step 5. Otherwise

f[i] < f[rho] +w[i]

p[i] < rho
Step 6. Update_arrays

Step 7. Halt
Procedure Advance rho

Step 1. While Gap(rho,i) >p_ do
rho — rho+1

Step 2. Whilerho < next[rho] and Gap(next[rho],i) = p,
rho — next[rho]

do

min
Step 3. Return

Procedure Update arrays

Stepl.j « i1
Step 2. Whilef[j] > f[i] do
next[j] « i
J — backup(j]
Step 3. backup[i] « |
Step 4. Return

Proof of Correctness

It isimportant to distinguish between the functions f(i) and p(i) on the one hand, which

are defined abstractly, and the arrays f[i] and p[i], whose values are assigned dynamically during

execution of the algorithm.
We remind the reader that, for all 0 <i < n+1, either f(i) = o or (i) =f(p(i)) +w .

Intuitively, the algorithm works as follows. rho isarunning "temporary" p(i), which
never decreases. When rho istoo small because Gap(rho,i) > p, . rhoisincremented by 1
until Gap is small enough. We then need to increase rho, minimizing the f value, thus obtaining
p(i). In[DieFaa84], aheap of possible valuesis maintained, and it takes ©(lg n) time to find
p(i). Inour agorithm, the pointer next tells us where to look next. Even though it might take
©(n) timeto find p(i) for aparticular i, the total time for these searches over al i is still only
O(n), sincerho never decreases. The pointer array backup is used for updating next, and also for
updating itself.

Our method of proof isto define aloop invariant, and to prove inductively that the loop
invariant holds after any number of iterations of the loop of Main.

Loop invariant. For any 0<i < n+1, the following conditions hold after i iterations of
the loop of Main:

L1(i): If p(i) isdefined, rho = p(i). Otherwise, rho isthe smallest j such that Gap(j,i) < p, -

L2(i): Fordl O<j<i, f[j] =1()).

L3(i): Foral 0<j<i,if p(j) isdefined, p[j] =p(j). Otherwise, p[j] is undefined.

L4(i): Foral O<j<i,next[j] isthesmallest j <k <i such that f(k) < f(j), provided there is such
ak. Otherwise, next[j] = -1.

L5(i): Foral 0<j<i, backup[j] isthelargest 0 < k <j such that f(k) < f(j).

It is clear that the loop invariant holdsinitially, i.e., after execution of Step 1 of Main,
i.e., wheni =0. Assume, now, that the loop invariant holds after (i—1) iterations of the loop, i=1.
We show it still holds after one more iteration.

DefineintegersO< a; < 3, < i asfollows. a; isassmall as possible such that Gap(a;.i) <
P @Nd B, isassmall as possible such that Gap(, i) < p, ;- Notethat {a.} and{f3} are

monotone increasing sequences. It is seen that p(i) is defined if and only if o, <3, and that, if
p(i) is defined, the following conditions hold:

i) o<p()<B

(i) f(p(i)) isminimum subject to (i)

(@iii) p(i) isminimum subject to (i) and (ii)

Proof of L1(i). If p(i—1) is not defined, rho = a,_, before execution of Step 3 of Main.
After completion of Step 1 of Advance_rho, rho=a. . If p(i—1) is defined, rho = p(i-1) before
execution of Step 3 of Main. After completion of Step 1 of Advance_rho, rho equals p(i—1) or
a,, whichever islarger.

Consider two cases, p(i) is undefined and p(i) is defined.

If p(i) is undefined, then rho = a; after completion of Step 1 of Advance_rho and o=, .
Step 2 will not loop at all since Gap(rho,i) <p, ;.. Therefore, for any k <rho=a,, Gap(k,i) >
Prax: ThusL1(i) is satisfied.

On the other hand, suppose p(i) is defined. We define aloop invariant on the iterations of
Step 2 of Advance_rho:

AL1: rho<f,

AL2: f(k) >f(rho) for all o, <k <rho

If rho = a; after Step 1, thenrho = o, <3, so ALl is satisfied and AL2 is vacuously
satisfied. On the other hand, if rho = p(i-1) after Step 1, ALl issatisfied sincerho<B,_, <f3;,
while AL2 is satisfied by definition of p(i-1), sincea, , < ;. Wenow show that AL is
maintained by each iteration of Step 2 of Advance rho.

We note that Gap is monotone decreasing in itsfirst parameter. Suppose rho < next[rho]
and Gap(next[rho],i) = p; . Then next[rho] <3, by definition of 3, and the monotonicity of
Gap. Also, f(next[rho]) < f(rho) < f(k) for all rho < k < next[rho], by L4(i—1). And, f(next[rho])
<f(rho) <f(k) for al a; < k<rho, by the previous AL2. Thusthe assignment in Step 2 of
Advance rho maintains the loop invariant AL.

6
Step 2 of Advance_rho will complete only when either next[rho] = —1, which means that
f(k) = f(rho) for al rho <k <i, or next[rho] = {3, . In either case, f(k) = f(rho) for al rho <k <f3;.
Together with AL2, this shows that f(rho) is minimum in the range [a; ,3,—1] and so rho=p(i).
Therefore L1(i) is satisfied.

Proof of L2(i). By L2(i-1), f[j]=f(j) for all j <i. Wenotethat i is accessable if and only
if Page(rho,i) and rho is accessable. If i isaccessable, f(i) = f(rho)+w; . f[i] is set to that value
in Step 5 of Main.

Proof of L3(i). Inthe proof of L1(i), we established that rho = p(i) if and only if p(i) is
defined, i.e., if and only if Page(rho,i). p(i) issettorhoin Step 5 of Main.

Proof of L4(i) and L5(i). We define aloop invariant for Step 2 of Update_arrays.
LUL: next[j] = -1 (the sentinel value).
LU2: Forall j <k<i, f[K] > f[i].
LU3: For all j <k<i, next[K] hasits correct final value.

After execution of Step 1 of Update_arrays, | = i—1. By L4(i—1), next[i—-1] =—1. Thus
LU1 holds. LU2 and LU3 hold vacuously.

Suppose LU holds before an iteration of Step 2. We show that it still holds after that
iteration.

Since the loop is iterating, we have that f[i] <f[j]. Also, f[K] = f[j] for all j <k<i, by
LU1 which states that next[j] =1, and by L4(i—1). Thus, the correct final value of next[j]
should bei, by definition of next. Step 2 makes the correct assignment. It is aready true that
next[K] has the correct fina value for all k where backup[j] < k <j, by L4(i—1) and L5(i-1), since
f[k] > f[j] in that range. By previous LU3, next[K] is already the correct fina value, for all j <k <
i. Thus, next[k] will be the correct final value for al k in the range backup[j] < k<i. Thus, after
the assignment j — backup[j], LU3 is preserved.

Since theloop isiterating, f[j] > f[i]. By LUZ2, f[k] > f[i] for dl j <k <i. By L5(i-1),

7
f[Kk] > f[j] for backup[j] <k <]. Therefore, f[K] > f[i] for backup[j] < k<i. Theassignmentj
backup[j] thus preserves LU2.

After the first assignment of Step 2, next[j] =i and thisisthe correct assignment as
shown two paragraphs above. Asaresult, f[k] = f[j] for all j <k <i. By L5(i-1), f[k] > f[]] for
backup[j] < k <j, and f[backup[j]] < f[j]. Therefore, for backup[j] < k<j, f[k] = f[j] =
f[backup[j]]. Combining thislast inequality with the first inequality of this paragraph, f[k] =
f[backup[j]] for backup[j] < k<i. Therefore, by L4(i-1), next[backup[j]] =-1. Thus, LUlis
preserved when | is reassigned.

We have therefore shown that LU isinvariant.

When Step 3 of Update_arraysis executed, f[j] < f[i] since Step 2 no longer isiterating,
and also f[k] > f[i] for all j <k <i by LU2. Thus Step 3 asssigns the correct value of backupJ[i].
By L5(i—1), al previous values of backup are correct, and therefore L5(i) is true.

We are left only with verification of L4(i). next[i] =—1 since it was never reset and that
isits correct value. For all k < backup[i], L4(i—1) assures that next[K] is correct, since the fact
that f[i] = f[backup[i]] rulesout i as a possible value for next[k], and there is no other new
candidate. For backup[i] <k <i, next[K] is correct by LU3 and the fact that the final value of j in
Update arraysis backup[i]. It only remainsto show that next[backup[i]] hasits correct value;
By LU1, weknow it isstill —1.

By L4(i-1), for all backup[i] < k<i-1, f[k] = f[backup[i]]. The only possible remaining
candidate for next[backup[i]] isthusi, which isruled out since f[i] = f[backup[i]]. Therefore
next[backup[i]] =—1 is correct. We conclude that L4(i) holds.

Finally, the algorithm is correct by L2(n+1) and L3(n+1).

Proof of Linear Time and Space Complexity

Sorage. Only five arrays are needed: Sum, f, p, next, and backup. Each of theseis
linear. The values of Gap and Page can be computed as needed in O(1) time each, using Sum.

Time for the Main Algorithm. Step 1 takes O(n) time. The main loop (Steps 3 through 6)
is executed n+1 times. Welook at each step from 3 to 6 separately.

Step 3 is executed n times, and each execution isin O(n) time. But we show (below) that
the total time of all those executionsis still O(n).

Steps 4 and 5 are clearly donein O(1) time, for atotal of O(n) time.

Step 6 is executed n times, and each execution isin O(n) time. But we show (below) that

the total time of all those executionsis still O(n).

Time for procedure Advance rho. Thisprocedureis called n+1 times. Each iteration of
Step 1 or Step 2 increases the value of rho, which is bounded above by n+1. rho never is
decreased. Therefore, the total number of iterations of Step 1 and Step 2 together, over al calls
of the procedure, cannot exceed n. Thusthe total execution time for procedure Advance rho
summed over al calsis O(n).

Time for procedure Update _arrays. This procedureis called n+1times. Thus, Steps 1
and 3 are executed atotal of n+1 times each. Each time Step 2 iterates, the value of some next[|]
is changed from being —1 (the sentinel) to avalue more than j. Since the values of next are never
reassigned, it is clear that the total number of times Step 2 iterates, over all calls, cannot exceed
n+1. It follows that the total execution time for procedure Update arrays summed over all calls
iIsO(n).

References

[DieFaa84] Diehr, G. and Faaland, B. “Optimal pagination of B-trees with variable-length
items," Comm. ACM 27, 3 (March 1984), 241-247.

9
[McC 77] McCreight, E.M. “Pagination of B*-trees with variable-length records,” Comm.
ACM 20, 9 (Sept. 1977), 670-674.

