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A parallel bucket-sort algorithm is presented that 
requires time O(log n) and the use of n processors. The 
algorithm makes use of a technique that requires more 
space than the product of processors and time. A 
realistic model is used in which no memory contention 
is permitted. A procedure is also presented to sort n 
numbers in time O(k log n) using n 1+1/k processors, for 
k an arbitrary integer. The model of computation for 
this procedure permits simultaneous fetches from the 
same memory location. 
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There is often a time-space tradeoff in serial algo- 
rithms. In order to solve a problem within a certain time 
bound, a minimal amount of space is required. This 
space requirement may be reduced if we aUow more time 
for the process. In the limit, there wiU be a minimum 
amount of space required. 

Much work has recently been devoted to developing 
algorithms for paraUel processors. Problem areas include 
sorting [3, 6, 16, 17], evaluation of polynomials, and 
general arithmetic expressions [14, 4], and matrix- and 
graph theoretic problems [15, 5, 2, 12, 9]. In parallel 
algorithms, there is a similar tradeoff between time and 
the number of processors used. In order to solve a 
problem using a bounded number of processors, a min- 
imal amount of time is required. This time requirement 
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may be reduced if we allow more processors to help in 
the computation. In the limit, there will be a min imum 
time requirement. 

We shall present an algorithm design technique 
which dramatically exemplifies the three-way tradeoff  
between space, time, and processors. It is hoped that this 
technique can also be applied to strictly serial algorithms. 

Muller and Preparata [13] were the first to exhibit a 
network capable of  sorting n numbers in time O(log n). 
Their  method required O ( n  2) processing elements. We 
shall present an algorithm for sorting n numbers in time 
O(log n) that requires asymptotically fewer processors. 

We first present parallel bucket-sorting algorithms in 
which, at the expense of  greater space requirements, the 
number  of  processors and the amount  of  time used are 
both reduced. The algorithms are unusual in that the 
space requirements are greater than the processor time 
requirements. 

Our computational  model assumes that all processors 
have access to a common memory  as well as having 
small local memories. All processors are synchronized 
and follow the instructions of  a unique instruction 
stream. This model has been called an SIMD (Single 
Instruction stream, Multiple Data  stream) computer  [7]. 
The instructions may involve memory  references or con- 
stants that are a linear function of  the bits in the binary 
representation of  the p r o c e s s o r  n u m b e r ,  the processors 
being numbered by consecutive integers starting from 
zero. We assume that the addition of  two numbers can 
be executed in one time unit. 

Our preliminary algorithm will sort n numbers using 
n (parallel) processors in time O(log n) under the as- 

c n sumption that the numbers that are to be sorted, { i}i=l, 
are from {0, 1 . . . . .  m - 1} and with the proviso that 
duplicate numbers (should there be any) are to be dis- 
carded. The proviso will be dropped in the second al- 
gorithm. This is a parallel version of the "bucket  sort." 

An obvious implementat ion of  the parallel bucket 
sort would be for each processor p i  (which has tempo- 
rarily been "assigned to" cz, the ith number  being sorted) 
to place the value i in bucket ci. The problem with this 
solution is that, in general, there may be several values 
of  i with identical numbers c~. A memory  conflict would 
result f rom the simultaneous attempts of  several proces- 
sors to store different values of  i into the same bucket. 

Our answer to this problem is to eliminate duplicate 
copies of  the same number.  Processor p~ will be (tempo- 
rarily) deactivated if there is another processor p j  whose 
index, j ,  is smaller than i, and cj = ci. Then, for each 
number  appearing among the numbers being sorted, 
only one processor (the one with smallest index) will be 
active when we place i in bucket c~. 

Our implementat ion of  the elimination procedure is 
interesting. We shall have m areas of  memory,  one for 
each bucket. Each area will be of  size n, the number  of  
input numbers  to be sorted. Within each area, j ,  the 
processors ( p i )  having ci = j will leave marks indicating 
their presence. Then, in a binary-tree fashion, they will 
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search for the presence of  (the marks of) other active 
processors. I f  two processors discover each other's pres- 
ence (such discoveries will turn out to be simultaneous), 
the lower ranking one (i.e. the one with smaller index) 
will continue while the higher ranking one will deacti- 
vate. 

There being n locations per area (numbered 0 
through n - 1), each processor pi can make its mark  at 
location i in area ci without fear of  memory  conflict. 
Iteratively, each processor then determines whether or 
not its "buddy"  is active within the same area. (Here, 
"buddy"  is defined analogously to the definition used in 
the Buddy System for dynamic memory  allocation 
[10].) I f  so, then the processor with higher rank (i.e. 
larger index 0 will deactivate. I f  the buddy is not active 
or if  it is active but is of  higher rank, then the processor 
will continue, shifting its mark  to the location of  the 
buddy if that location is of  lower index than the one 
currently in use. I f  the buddy was active, then, of  course, 
no shift will occur. 

After the kth iteration, a mark  will be present at each 
location whose last k bits are zeros and whose other 
(log n) - k bits coincide with the corresponding bits of  
the address of  a processor active in the same area. Thus, 
each such location will be marked iff any of  2 k processors 
had been active in that area originally. After log n 
iterations, the first location in an area will be marked iff 
any of  the n processors originally were active in that 
area, i.e. iff any of  the n numbers  to be sorted was j ,  the 
area bucket number.  

The algorithm is expressed formally below. Variables 
in capitals are in common memory,  variables in lower 
case are in local memory  (i.e. there will be one copy of  
each such variable for each processor). 

Algorithm l - -pa ra l l e l  bucket sort 
Input: 0_<i_<n- l A [ j , t ] = O  

O < _ j < _ m -  1 B [ j ] = O  

ci E {0, 1 ..... m - l } ,  not necessarily distinct 
Ou tpu t :O<i_n-  1 A [ j , i ] = O  

O <_j <_ m - 1 B[j]  = min is.t. ci = j ,  O if  none such 

Let ek -- 0 ... 0 10 ... O, all bits 0 except the kth from the 
fight 

for all / d o  

Let i = x~og ,~ ... x2x~ be the binary representation of i 
x ~ i x is the location that p~ is 

.4[c, x] ~ 1 
flag +- 1 
for k ,--- 1 step 1 until log n do 

begin 
buddy +- x • ek 
count ~ A[ci, buddy] 
if xk = i AND count ~ 0 then 

flag ~ 0 

if xk = 1 AND count = 0 AND 
flag = 1 then begin 
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marking 

flag = 1 iffpi is active 

address of buddy 
count ~ 0 if buddy is active 

if buddy is active and if we are 
the higher of the 2 then we'll 
wait and buddy will continue 
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A [ci, x] . . -  0 if buddy is not active then there 
x ~ buddy is no problem in using his 
A [ci, x] ~ 1 space 

end 
end 
if flag = 1 then B[ci] ~ i 
A[c,, x] , . -  0 

It  is n o t e d  tha t  this  bucke t - so r t  a l g o r i t h m  requ i r e s  

space  S = O ( m n ) ,  t i m e  T -- O( log  n), a n d  the  use  o f  n 

processors .  

W e  n o w  p resen t  a n o t h e r  bucke t - so r t  a l go r i t hm.  T h i s  

a l g o r i t h m  wi l l  g ive  the  ac tua l  r a n k i n g  o f  the  i n p u t  n u m -  

bers,  e q u a l  n u m b e r s  b e i n g  kep t  in  the  s a m e  re l a t ive  o r d e r  

bu t  ge t t ing  d i f f e r en t  ranks ,  a s s u m i n g  tha t  t he  i n p u t  n u m -  

bers  a re  f r o m  a p r e d e f i n e d  sma l l  set. 

T h e  a l g o r i t h m  fo l lows  the  s a m e  bas ic  pa t t e rn  set by  

o u r  p r e v i o u s  a lgo r i t hm.  H o w e v e r ,  ins tead  o f  a s imp le  

m a r k  bit, we  shal l  k e e p  a r u n n i n g  c o u n t  o f  h o w  m a n y  

p rocessors  were  o r i g ina l l y  ac t ive  in e a c h  b l o c k  o f  ind ices  

o f  size 2 k. I f  a p roces so r  e n c o u n t e r s  an  ac t ive  b u d d y  t h e n  

o n l y  the  l o w e r  b u d d y  c o n t i n u e s  to  be  act ive.  I n  a n y  case,  

a l l  p rocessors  p i  (ac t ive  o r  not )  wi l l  a d d  to the i r  r u n n i n g  

c o u n t  o f  the  n u m b e r  o f  p rocessors  ( that  were  o r ig ina l l y  

ac t ive)  h a v i n g  ind ices  g rea t e r  t h a n  i. A c t i v e  p rocessors  

k e e p  the i r  c o u n t  at the  h e a d  o f  the  la rges t  b l o c k  tha t  t h e y  

h a v e  i nves t i ga t ed  ( w h i c h  wi l l  be  o f  size 2k). A t  the  e n d  

the re  wi l l  be  at  m o s t  o n e  ac t ive  p roces so r  p e r  a r ea  a n d  

A [ j ,  0] wi l l  be  the  n u m b e r  o f  d i f f e ren t  f s  such  tha t  

ci = j .  A n  inac t i ve  processor ,  p~, wi l l  k e e p  its c o u n t  at  the  

h e a d  o f  the  la rges t  b lock  w h i c h  h a d  no  o t h e r  p rocessors  
o f  i n d e x  s m a l l e r  t h a n  i. 

A l g o r i t h m  2 . 1 - - p a r a l l e l  b u c k e t  sort  (par t  1) 
Input: 0 _ < i _ < n -  1 A [ j , t ] = 0  

Local 
Output: 

Output: 

O<_j<_m - 1 B[J]=0  
cl E {0, 1 ..... m - 1} not necessarily distinct 

r = max k s.t. ~:1 t in same 2k-block as i 
with t. < i and ct = ci 

y = head of 2r-block containing i 
O<_i<_n - 1 A[j , t ]=0exceptA[ci ,  y ] = # o f t _ > i s . t ;  

Ct = Ci 

0 <_ j <-- m - 1 B[j] = rain i s.t. cl = j ,  0 if none such 
for all i do 

flag ~-- 1 
r ~ log n 
x ~ - - i  

y ~ - - i  

A [ci. y] ~-- 1 

for k ~-- 1 step 1 until log n do 
begin 

buddy ~- x @ eh 
count ~ A [cl. buddy] 
if  xk = 0 then A[ci. y] ..-- A[ci. y] 

+ count 
else  (Xk = 1) 
begin 

x ~-- buddy 

if  count ~ 0 

x is the head of the largest block 
that pi has counted 

y is the location at which pl is 
accumulating that count 

A[c,, y] will hold # of t s.t. 
t_> iand ct = ci 

if buddy is at higher index then 
accumulate count 

buddy is head of the 2k-size 
block 

if buddy is active then we are 
not lowest ranked in this 2 k- 
block 

659 

then if f lag = 1 then [flag~--O; 
r*- -k -  1] 

else  null 
else  (count=O) 

if  flag = 1 then 
begin 

Alc~. x] ~ -  A[c ,  y] 
A[ci,  y]  * " 0  

y~- -  X 

end (of then block) 
end (of else x~ = 1) 

end (of for loop) 
Blcd , . -  A[c~, y] 

(eliminates "dangling else") 
buddy is inactive 

if we are still active then our 
count must be moved to head 
of the block 

y will be zero here 

A t  this  p o i n t  we  h a v e  i so la ted  o n e  r e p r e s e n t a t i v e  o f  

e a c h  n u m b e r  tha t  appea r s  a m o n g  the  n u m b e r s  to be  

so r t ed  a n d  we  h a v e  o b t a i n e d  a c o u n t  o f  h o w  m a n y  t imes  

e a c h  n u m b e r  occurs .  W e  n o w  wi l l  a c c u m u l a t e  t he  c o u n t s  

( for  e a c h  n u m b e r  ci)  o f  a l l  n u m b e r s  tha t  a re  g rea t e r  t h a n  

ci in  o r d e r  to k n o w  the  ac tua l  r a n k i n g  o f  the  n u m b e r s ,  

a s s u m i n g  tha t  d u p l i c a t e  n u m b e r s  wi l l  be  kept .  T h i s  

a c c u m u l a t i o n  wi l l  be  d o n e  in  a m a n n e r  s imi la r  to tha t  

u sed  p rev ious ly .  

A l g o r i t h m  2 . 2 - - p a r a l l e l  b u c k e t  sort  (par t  2) 
Input: from Algorithm 2.1 
Output: 0 <_ i _< n - 1 D[i] = sorted position of c~ only for the first 

instance of each c~ 
larger values of cl will have smaller values of D = (CA of k 

s.t. ck>ci) + 1 
for all i do 

o[0 , -  0 
if  f lag = 1 then 
begin Let ci = Wlog . . . .  w2w~ be the binary representation of c~ 

flag2 ~-- 1 
W<---Ci 

Z ~"'Ci 

for k ,--  1 step 1 until log m do 
begin 

buddy ~- w • ek 
count ~ B[buddy] 
if  Wk = 0 then 

BIzl ,-- BIz] + count 
else (wk = 1) 

begin w ~-- buddy 
if  count # 0 then 

flag2 ,.- 0 
else if flag 2= 1 then 

begin 
B[w] *-- B[z] 
B[z] , . -  0 
g ~ - - w  

end (of then block) 
end (of else Wk=I) 

end (of for loop) 
Dlt] ,-- BIz] - .4[c,, y] + l 
A[c ,  y] ,-- B[z] 
B[z] ,--- 0 

end (of if flag= 1) 

w is head of the largest block 
that pi has counted 

z is the location at which pl is 
accumulating that count 

B[z] now = # of k s.t. ck = z 

B[z] will = # of k s.t. ck -> z 

A t  this  point ,  the  r e p r e s e n t a t i v e  o f  e a c h  n u m b e r  tha t  

a p p e a r s  a m o n g  the  (ci}  has  a c o u n t  o f  the  to ta l  n u m b e r  
o f  c / s  t ha t  a re  g rea t e r  t h a n  it p lus  the  n u m b e r  o f  c t ' s  t h a t  
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are equal to it. Each of  the duplicates has a count of  the 
number of  ct's that are equal to it but of  higher index. 
The D-value, i.e. rank, is just the difference of  these two 
quantities plus one. 

The D-value of  the representatives was calculated at 
the end of  Algorithm 2.2 and so the D-values of  the 
dupl:icates can be calculated by: 

for all i do 
if  f lag ffi 0 t h e n  D[z] ..--A[ci, 0] -A[c i ,  y] + 1 

If we insist that not more than one processor may 
simultaneously access a location, not even for fetches, 
then the D-values of  duplicates can be evaluated using 
the reverse of  the procedure of  Algorithm 2.1. This is 
done below in Algorithm 2.3. 

Algorithm 2.3--paraUel bucket sort (part 3) 
Input: from Algori thm 2.2 
Output: 0 _ < i _ < n -  1 A [ j , i  1 = 0  

0 _< j _< m - l D[ll = sorted position o f  c~ 
= # o f k s . t .  c k > c ~  

+ # o f  k - -  < is. t .  Ck = ci 

larger values of  ci will have smaller values of  D 
equal  values o f  c~ will keep relative order 

for all i d o  
for k *-- (log n) - 1 step - 1 until  0 do 
if r = k then 
begin get value ofA [ci, 0] from buddy 
x ~ y ~9 e,. location 
D[i] ~ Alci. x] - A l c l .  y] + 1 
A[ci,  y] *'-" A[ci,  x] 
end 
else if r > k then 

begin 
x ~--y OR ( / A N D  ek) 
i f  x ~ y then begin 

A[ci,  x] *-- A[ci,  y]  

.4[c, yl ,---0 
end (of then block) 

end (of if r > k )  

(end o f  for loop) 
a lc ,  y] ~ - 0  

It is noted that Algorithm 2 (the sequence of  Algo- 
rithms 2.1, 2.2, 2.3) requires space S = O ( m n ) ,  time 
T = O(log n + log m), and the use of  n processors. 

The algorithms given above assume that an area (,4) 
of  memory has been initialized to zero. This is not 
unreasonable. Many instances of  this algorithm can be 
executed one after another. The memory will be clear 
upon the termination of  each program. 

However, there are methods which make it unnec- 
essary to initialize the area. For  serial programs, one can 
include at each location a pointer to a backpointer on a 
stack. Each time an entry is accessed, verification can be 
made that the contents are not random by checking that 
the pointer in that entry points to the active region on 
the stack and that the backpointer points to the entry 
Ill • 

This method is also valid for parallel programs unless 
we add the restriction that simultaneous multiple access 
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to the same location is prohibited even for memory-fetch 
instructions. It is possible that several entries that are 
accessed in parallel may have random contents, more 
than one of  which points to the same location. A memory 
fetch conflict would ensue. 

For  situations similar to that in Algorithm 2, the 
following is a possible solution. At each step of  the 
process, each active processor can initialize the location 
its buddy is working on (to zero), then reinitialize the 
contents of  the location it is working on (to its latest 
value). A location will thus be initialized if  either of  the 
two processes to which it might be relevant is active. 

We now present algorithms that will sort n arbitrary 
numbers in time O(log n). They are based on an exten- 
sion of  an algorithm due to Gavril [8] that merges two 
linearly-ordered sets in time O(log n). Our first algorithm 
to do this, Algorithm 3, will require the use of  n 3/2 

processors. 

Algorithm 3--paraUel sort using n a/2 processors 
Input: 0 <_ i _< n - 1 ci E integers 
Output: {ci} will be stably sorted, smallest first 

1. Partition the n input numbers  into n ~/2 groups, each having n ~/2 

elements. 
2. Within each group do 

For each element, j ,  determine count[j]  = (#  of  i such that c,<cj)  + 

( #  o f  i<_j such that ci=cj) .  This  can be done in time O(log n) using 
n ~/2 processors per element (a total o f  n processors per group or n 3/2 

processors in toto). The n ~/2 processors for element j will be assigned, 
one to each element i in j ' s  group, to compare c~ with cj. Summing  
the results o f  these comparisons can be done in time O(log n). 

3. Within each group do 
Bucket sort the elements, using count[j]  as the key for the j t h  
element in the group. This is done by: Ccoun~jl ",-- ci, where j and 
count[ j ]  are offsets (of value at most  n ~/2) from the beginning o f  
each group. There will be no memory  conflicts since the count[ j ] ' s  
within a group are all distinct. Steps 2 and 3 have effectively sorted 
the elements within each group using an "Enumerat ion Sort" [1 I]. 

4. All elements do a binary search o f  the n ~/2 groups. That  is, each 
element(cj) in group g, has n ~/2 processors which are assigned, one to 
each group, to do a binary search on the elements in a group (which 
are sorted) so as to determine, for all groups k, the value of  

count[j ,  k] = if  k < g, # o f  elements i such that cl <-- cj 

i l k  = g , j  

if  k > g, # o f  elements i such that c~ < c i 

where ci refers to the ith element in group k and cj is fLxed. 
5. For all elements, j ,  evaluate count[j]  = sum (over k) of  count- 
[ j ,  k]. This can be done in time O(log n) and requires n ~/2 processors 
per element for a total of  n 3/2 processors. 
6. Do a bucket sort on all n elements using count[ j ]  as the key for the 
j t h  element. Again, there will be no memory  conflicts since count[ j ]  
will be the rank o f  t h e j t h  element. 
7. END of  Algori thm 3. 

We note that Algorithm 3 requires time O(log n) and 
the use of  n 3/2 processors. We now show a simple modi- 
fication of  Algorithm 3 which will use the same order of  
magnitude of  time and require only n 4/3 processors. 

Algorithm 4---parallel sort using n 4/3 processors 
1. Partition the n input numbers  into n 2/3 groups each having n ~/3 

elements. 
2. Within each group do 

For each element, j ,  determine count[j]  = # of  i such that c~ < cj) 
+ ( #  o f  i _< j such that cl = ci). 
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3. Within each group do 
Bucket sort the count[j]'s obtained in step 2. This will rearrange the 
elements in rank order within each group. 

4. Divide the n 2/3 groups into n '/3 sectors, each sector consisting o f n  '/3 
groups. 
5. Within each sector do 

For each element ( j )  in group g, do a binary search of each of the 
n '/a groups i n j ' s  sector to determine, for all k, the value of 

count[j, k] = if k < g, # of i in group k such that ci <- c i 
i l k  = g , j  
if k > g, # of i in group k such that ci < cj. 

Then, for each element j, evaluate count[j] = (#  of i in j ' s  sector 
such that ci < cj) + (#  of i <_ j in j ' s  sector such that ci = cy). This 
number is simply the sum (over k) of count[j, k]. 

6. Within each sector, do a bucket sort of the elements within the 
sector using count[j] as they key for element./'. This will rearrange the 
elements in rank order within each sector. 
7. For all elements ( j )  in sector t, do a binary search of each of the n '/3 
sectors to determine, for all k, the value of 

count[j, k] = i l k  < t, # of i  in sector k such that cz <- c i 
i l k  = t , j  
if k > t, # of i in sector k such that ci < cj. 

Then evaluate count[j] = the sum (over k) of count[j, k]. 
8. Do a bucket sort of all n elements. 
9. END of Algorithm 4. 

In a like manner, we can exhibit an algorithm to sort 
n numbers in O(k log n) time that uses n 1+1/k processors. 
Interestingly, by setting k -- log n (initially splitting the 
n elements into n/2 groups of  2 each), we obtain an 
algorithm to sort n numbers in O(log 2 n) time using O(n) 
processors, the same resources used by Batcher's algo- 
rithms. 

We note that these algorithms, although avoiding 
memory-store conflicts, do have memory-fetch conflicts. 
That  is, we allow more than one processor to simulta- 
neously access the same memory location. As an open 
problem, we pose the question: Can n numbers be sorted 
in time O(log n) if memory-fetch conflicts are not per- 
mitted? 
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