
52. NoU, R. Reforming Regulation. The Brookings Inst., Washington,
D.C., 1971.
53. Parker, D.B. Crime by Computer. Scribners, New York, 1976.
54. Peterson, H.E., and Turn, R. System implications of information
privacy. Proc. AFIPS 1967 SJCC, Vol. 30, AFIPS Press, Montvale,
N.J., pp. 291-300.
55. Portway, P.S. EFT systems? No thanks, not yet. Computerworld
12, 2 (Jan. 9, 1978), 14--16, 21, 23-25.
56. Privacy Protection Study Commission. Personal Privacy in an
Information Society. U.S. Gov't. Printing Office, Washington, D.C.,
July, 1977.
57. Prives, D. The explosion of state laws on electronic fund transfer
systems. P-76-1, Prog. Inform. Technologies and Public Policy,
Harvard U., Cambridge, Mass., 1976.
58. Reid, S. The New Industrial Order: Concentration Regulation and
Public Policy. McGraw-Hill, New York, 1976.
59. Richardson, D.W. Electric Money:. Evolution of an Electronic
Funds-Transfer System. M.I.T. Press, Cambridge, Mass., 1970.
60. Rose, S. More bang for the buck: The magic of electronic
banking. Fortune 95, 5 (1977), 202-226.
61. Rossman, L.W. Financial industry sees EFT privacy laws
adequate. American Banker CXLL 210 (Oct. 28, 1976), 1, 11.
62. Rule, J. Private Lives and Public Surveillance. Schocken Books,
New York, 1974.
63. Rule, J. Value Choices in Electronic Funds Transfer Policy.
Office of Telecommunications Policy, Executive Office of the
President, Washington, D.C., Oct. 1975.
64. Saltzer, J., and Schroeder, M. The protection of information in
computer systems. Proc. IEEE 65, 9 (Sept. 1975), 1278-1308.
65. Sayre, K., Ed. Values in the Electric Power Industry. U. of Notre
Dame Press, Notre Dame, Ind., 1977.
66. Schick, B. Some impacts of electronic funds transfer on consumer
transactions. Federal Reserve Bank of Boston. The economics of a
national electronics funds transfer system. Conf. Ser. No. 13, Boston,
Mass., Oct. 1974, pp. 165-179.
67. Schuck, P.H. Electronic funds transfer: A technology in search of
a market. Maryland Law Review 35, 1 (1975), 74--87.
68. Schultze, L. The public use of the private interest. Harpers 254,
1524 (May 1977), 43-62.
69. Simpson, R.C. Money transfer services. Computers and Society 7,
4 (Winter 1976), 3-9.
70. Steifel, R.C. A checkless society or an unchecked society?
Computers and Automation 19 (Oct. 1970), 32-35.
71. Sterling, T., and Laudon, K. Humanizing information systems.
Datamation 22, 12 (Dec. 1976), 53-59.
72. The time is NOW. Forbes Magazine 120, 1 (July 1, 1977), 61-62.
73. Turoff, M., and Mitroff, I. A case study of technology assessment
applied to the "cashless society" concept. Technol. Forecasting Soc.,
Change 7 (1975), 317-325.
74. Weissman, C. Secure computer operation with virtual machine
partitioning. Proc. AFIPS 1975 NCC, Vol. 44, AFIPS Press,
Montvale, N.J., 1975, pp. 929-934.
75. U.S. Dept. HEW, Secretary's Advisory Committee on Automated
Personal Data Systems. Records Computers, and the Rights of
Citizens. Washington, D.C., 1973.
76. Walker, G. M. Electronic funds transfer systems. Electronics
(July 24, 1975), 79-85.
77. Webber, M. The BART experience--What have we learned? The
Public Interest, Vol. 45 (Fall 1976), 79-108.
78. Weizenbaum, J. Computer Power and Human Reason. Freeman,
San Fransisco, 1976.
79. Wessel, M. Freedom's Edge: The Computer Threat to Society.
Addison-Wesley, Reading, Mass., 1974.
80. Westin, A., and Baker, M. Databanks in a Free Society.
Quadrangle Books, New York, 1972.
81. Whiteside, T. Computer Capers. Crowell, New York, 1978.
82. Wilcox, C., and Shepard, W. Public Policies Towards Business.
Richard D. Irwin, Homewood, Fifth ed., 1975.
83. Winner, L. Autonomous Technology: Technology Out-of-Control
as a Theme in Political Thought. M.I.T. Press, Cambridge, Mass.,
1977.
8,1. Wise, D. The American Police State. Random House, New York,
1976.

Programming
Techniques

S. L. Graham, R. L. Rivest
Editors

Fast Parallel Sorting
Algorithms
D. S. Hirschberg
Rice University

A parallel bucket-sort algorithm is presented that
requires time O(log n) and the use of n processors. The
algorithm makes use of a technique that requires more
space than the product of processors and time. A
realistic model is used in which no memory contention
is permitted. A procedure is also presented to sort n
numbers in time O(k log n) using n 1+1/k processors, for
k an arbitrary integer. The model of computation for
this procedure permits simultaneous fetches from the
same memory location.

Key Words and Phrases: parallel processing,
sorting, algorithms, bucket sort

CR Categories: 3.74, 4.34, 5.25, 5.31

There is often a time-space tradeoff in serial algo-
rithms. In order to solve a problem within a certain time
bound, a minimal amount of space is required. This
space requirement may be reduced if we aUow more time
for the process. In the limit, there wiU be a minimum
amount of space required.

Much work has recently been devoted to developing
algorithms for paraUel processors. Problem areas include
sorting [3, 6, 16, 17], evaluation of polynomials, and
general arithmetic expressions [14, 4], and matrix- and
graph theoretic problems [15, 5, 2, 12, 9]. In parallel
algorithms, there is a similar tradeoff between time and
the number of processors used. In order to solve a
problem using a bounded number of processors, a min-
imal amount of time is required. This time requirement

General permission to make fair use in teaching or research of all
or part of this material is granted to individual readers and to nonprofit
libraries acting for them provided that ACM's copyright notice is given
and that reference is made to the publication, to its date of issue, and
to the fact that reprinting privileges were granted by permission of the
Association for Computing Machinery. To otherwise reprint a figure,
table, other substantial excerpt, or the entire work requires specific
permission as does republication, or systematic or multiple reproduc-
tion.

Research supported by NSF grant MCS-76-07683.
Author's present address: Department of Electrical Engineering,

Rice University, Houston, TX, 77001.
© 1978 ACM 0001-0782/78/0800-0657 $00.75

657 Communications August 1978
of Volume 21
the ACM Number 8

may be reduced if we allow more processors to help in
the computation. In the limit, there will be a min imum
time requirement.

We shall present an algorithm design technique
which dramatically exemplifies the three-way tradeoff
between space, time, and processors. It is hoped that this
technique can also be applied to strictly serial algorithms.

Muller and Preparata [13] were the first to exhibit a
network capable of sorting n numbers in time O(log n).
Their method required O (n 2) processing elements. We
shall present an algorithm for sorting n numbers in time
O(log n) that requires asymptotically fewer processors.

We first present parallel bucket-sorting algorithms in
which, at the expense of greater space requirements, the
number of processors and the amount of time used are
both reduced. The algorithms are unusual in that the
space requirements are greater than the processor time
requirements.

Our computational model assumes that all processors
have access to a common memory as well as having
small local memories. All processors are synchronized
and follow the instructions of a unique instruction
stream. This model has been called an SIMD (Single
Instruction stream, Multiple Data stream) computer [7].
The instructions may involve memory references or con-
stants that are a linear function of the bits in the binary
representation of the p r o c e s s o r n u m b e r , the processors
being numbered by consecutive integers starting from
zero. We assume that the addition of two numbers can
be executed in one time unit.

Our preliminary algorithm will sort n numbers using
n (parallel) processors in time O(log n) under the as-

c n sumption that the numbers that are to be sorted, { i}i=l,
are from {0, 1 m - 1} and with the proviso that
duplicate numbers (should there be any) are to be dis-
carded. The proviso will be dropped in the second al-
gorithm. This is a parallel version of the "bucket sort."

An obvious implementat ion of the parallel bucket
sort would be for each processor p i (which has tempo-
rarily been "assigned to" cz, the ith number being sorted)
to place the value i in bucket ci. The problem with this
solution is that, in general, there may be several values
of i with identical numbers c~. A memory conflict would
result f rom the simultaneous attempts of several proces-
sors to store different values of i into the same bucket.

Our answer to this problem is to eliminate duplicate
copies of the same number. Processor p~ will be (tempo-
rarily) deactivated if there is another processor p j whose
index, j , is smaller than i, and cj = ci. Then, for each
number appearing among the numbers being sorted,
only one processor (the one with smallest index) will be
active when we place i in bucket c~.

Our implementat ion of the elimination procedure is
interesting. We shall have m areas of memory, one for
each bucket. Each area will be of size n, the number of
input numbers to be sorted. Within each area, j , the
processors (p i) having ci = j will leave marks indicating
their presence. Then, in a binary-tree fashion, they will

658

search for the presence of (the marks of) other active
processors. I f two processors discover each other's pres-
ence (such discoveries will turn out to be simultaneous),
the lower ranking one (i.e. the one with smaller index)
will continue while the higher ranking one will deacti-
vate.

There being n locations per area (numbered 0
through n - 1), each processor pi can make its mark at
location i in area ci without fear of memory conflict.
Iteratively, each processor then determines whether or
not its "buddy" is active within the same area. (Here,
"buddy" is defined analogously to the definition used in
the Buddy System for dynamic memory allocation
[10].) I f so, then the processor with higher rank (i.e.
larger index 0 will deactivate. I f the buddy is not active
or if it is active but is of higher rank, then the processor
will continue, shifting its mark to the location of the
buddy if that location is of lower index than the one
currently in use. I f the buddy was active, then, of course,
no shift will occur.

After the kth iteration, a mark will be present at each
location whose last k bits are zeros and whose other
(log n) - k bits coincide with the corresponding bits of
the address of a processor active in the same area. Thus,
each such location will be marked iff any of 2 k processors
had been active in that area originally. After log n
iterations, the first location in an area will be marked iff
any of the n processors originally were active in that
area, i.e. iff any of the n numbers to be sorted was j , the
area bucket number.

The algorithm is expressed formally below. Variables
in capitals are in common memory, variables in lower
case are in local memory (i.e. there will be one copy of
each such variable for each processor).

Algorithm l - -pa ra l l e l bucket sort
Input: 0_<i_<n- l A [j , t] = O

O < _ j < _ m - 1 B [j] = O

ci E {0, 1 m - l } , not necessarily distinct
Ou tpu t :O<i_n- 1 A [j , i] = O

O <_j <_ m - 1 B[j] = min is.t. ci = j , O if none such

Let ek -- 0 ... 0 10 ... O, all bits 0 except the kth from the
fight

for all / d o

Let i = x~og ,~ ... x2x~ be the binary representation of i
x ~ i x is the location that p~ is

.4[c, x] ~ 1
flag +- 1
for k ,--- 1 step 1 until log n do

begin
buddy +- x • ek
count ~ A[ci, buddy]
if xk = i AND count ~ 0 then

flag ~ 0

if xk = 1 AND count = 0 AND
flag = 1 then begin

Communications
of
the ACM

marking

flag = 1 iffpi is active

address of buddy
count ~ 0 if buddy is active

if buddy is active and if we are
the higher of the 2 then we'll
wait and buddy will continue

August 1978
Volume 21
Number 8

A [ci, x] . . - 0 if buddy is not active then there
x ~ buddy is no problem in using his
A [ci, x] ~ 1 space

end
end
if flag = 1 then B[ci] ~ i
A[c,, x] , . - 0

It is n o t e d tha t this bucke t - so r t a l g o r i t h m requ i r e s

space S = O (m n) , t i m e T -- O(log n), a n d the use o f n

processors .

W e n o w p resen t a n o t h e r bucke t - so r t a l go r i t hm. T h i s

a l g o r i t h m wi l l g ive the ac tua l r a n k i n g o f the i n p u t n u m -

bers, e q u a l n u m b e r s b e i n g kep t in the s a m e re l a t ive o r d e r

bu t ge t t ing d i f f e r en t ranks , a s s u m i n g tha t t he i n p u t n u m -

bers a re f r o m a p r e d e f i n e d sma l l set.

T h e a l g o r i t h m fo l lows the s a m e bas ic pa t t e rn set by

o u r p r e v i o u s a lgo r i t hm. H o w e v e r , ins tead o f a s imp le

m a r k bit, we shal l k e e p a r u n n i n g c o u n t o f h o w m a n y

p rocessors were o r i g ina l l y ac t ive in e a c h b l o c k o f ind ices

o f size 2 k. I f a p roces so r e n c o u n t e r s an ac t ive b u d d y t h e n

o n l y the l o w e r b u d d y c o n t i n u e s to be act ive. I n a n y case,

a l l p rocessors p i (ac t ive o r not) wi l l a d d to the i r r u n n i n g

c o u n t o f the n u m b e r o f p rocessors (that were o r ig ina l l y

ac t ive) h a v i n g ind ices g rea t e r t h a n i. A c t i v e p rocessors

k e e p the i r c o u n t at the h e a d o f the la rges t b l o c k tha t t h e y

h a v e i nves t i ga t ed (w h i c h wi l l be o f size 2k). A t the e n d

the re wi l l be at m o s t o n e ac t ive p roces so r p e r a r ea a n d

A [j , 0] wi l l be the n u m b e r o f d i f f e ren t f s such tha t

ci = j . A n inac t i ve processor , p~, wi l l k e e p its c o u n t at the

h e a d o f the la rges t b lock w h i c h h a d no o t h e r p rocessors
o f i n d e x s m a l l e r t h a n i.

A l g o r i t h m 2 . 1 - - p a r a l l e l b u c k e t sort (par t 1)
Input: 0 _ < i _ < n - 1 A [j , t] = 0

Local
Output:

Output:

O<_j<_m - 1 B[J]=0
cl E {0, 1 m - 1} not necessarily distinct

r = max k s.t. ~:1 t in same 2k-block as i
with t. < i and ct = ci

y = head of 2r-block containing i
O<_i<_n - 1 A[j , t]=0exceptA[ci , y] = # o f t _ > i s . t ;

Ct = Ci

0 <_ j <-- m - 1 B[j] = rain i s.t. cl = j , 0 if none such
for all i do

flag ~-- 1
r ~ log n
x ~ - - i

y ~ - - i

A [ci. y] ~-- 1

for k ~-- 1 step 1 until log n do
begin

buddy ~- x @ eh
count ~ A [cl. buddy]
if xk = 0 then A[ci. y] ..-- A[ci. y]

+ count
else (Xk = 1)
begin

x ~-- buddy

if count ~ 0

x is the head of the largest block
that pi has counted

y is the location at which pl is
accumulating that count

A[c,, y] will hold # of t s.t.
t_> iand ct = ci

if buddy is at higher index then
accumulate count

buddy is head of the 2k-size
block

if buddy is active then we are
not lowest ranked in this 2 k-
block

659

then if f lag = 1 then [flag~--O;
r*- -k - 1]

else null
else (count=O)

if flag = 1 then
begin

Alc~. x] ~ - A[c , y]
A[ci, y] * " 0

y~- - X

end (of then block)
end (of else x~ = 1)

end (of for loop)
Blcd , . - A[c~, y]

(eliminates "dangling else")
buddy is inactive

if we are still active then our
count must be moved to head
of the block

y will be zero here

A t this p o i n t we h a v e i so la ted o n e r e p r e s e n t a t i v e o f

e a c h n u m b e r tha t appea r s a m o n g the n u m b e r s to be

so r t ed a n d we h a v e o b t a i n e d a c o u n t o f h o w m a n y t imes

e a c h n u m b e r occurs . W e n o w wi l l a c c u m u l a t e t he c o u n t s

(for e a c h n u m b e r ci) o f a l l n u m b e r s tha t a re g rea t e r t h a n

ci in o r d e r to k n o w the ac tua l r a n k i n g o f the n u m b e r s ,

a s s u m i n g tha t d u p l i c a t e n u m b e r s wi l l be kept . T h i s

a c c u m u l a t i o n wi l l be d o n e in a m a n n e r s imi la r to tha t

u sed p rev ious ly .

A l g o r i t h m 2 . 2 - - p a r a l l e l b u c k e t sort (par t 2)
Input: from Algorithm 2.1
Output: 0 <_ i _< n - 1 D[i] = sorted position of c~ only for the first

instance of each c~
larger values of cl will have smaller values of D = (CA of k

s.t. ck>ci) + 1
for all i do

o[0 , - 0
if f lag = 1 then
begin Let ci = Wlog w2w~ be the binary representation of c~

flag2 ~-- 1
W<---Ci

Z ~"'Ci

for k ,-- 1 step 1 until log m do
begin

buddy ~- w • ek
count ~ B[buddy]
if Wk = 0 then

BIzl ,-- BIz] + count
else (wk = 1)

begin w ~-- buddy
if count # 0 then

flag2 ,.- 0
else if flag 2= 1 then

begin
B[w] *-- B[z]
B[z] , . - 0
g ~ - - w

end (of then block)
end (of else Wk=I)

end (of for loop)
Dlt] ,-- BIz] - .4[c,, y] + l
A[c , y] ,-- B[z]
B[z] ,--- 0

end (of if flag= 1)

w is head of the largest block
that pi has counted

z is the location at which pl is
accumulating that count

B[z] now = # of k s.t. ck = z

B[z] will = # of k s.t. ck -> z

A t this point , the r e p r e s e n t a t i v e o f e a c h n u m b e r tha t

a p p e a r s a m o n g the (ci} has a c o u n t o f the to ta l n u m b e r
o f c / s t ha t a re g rea t e r t h a n it p lus the n u m b e r o f c t ' s t h a t

Communications August 1978
of Volume 2 l
the ACM Number 8

are equal to it. Each of the duplicates has a count of the
number of ct's that are equal to it but of higher index.
The D-value, i.e. rank, is just the difference of these two
quantities plus one.

The D-value of the representatives was calculated at
the end of Algorithm 2.2 and so the D-values of the
dupl:icates can be calculated by:

for all i do
if f lag ffi 0 t h e n D[z] ..--A[ci, 0] -A[c i , y] + 1

If we insist that not more than one processor may
simultaneously access a location, not even for fetches,
then the D-values of duplicates can be evaluated using
the reverse of the procedure of Algorithm 2.1. This is
done below in Algorithm 2.3.

Algorithm 2.3--paraUel bucket sort (part 3)
Input: from Algori thm 2.2
Output: 0 _ < i _ < n - 1 A [j , i 1 = 0

0 _< j _< m - l D[ll = sorted position o f c~
= # o f k s . t . c k > c ~

+ # o f k - - < is. t . Ck = ci

larger values of ci will have smaller values of D
equal values o f c~ will keep relative order

for all i d o
for k *-- (log n) - 1 step - 1 until 0 do
if r = k then
begin get value ofA [ci, 0] from buddy
x ~ y ~9 e,. location
D[i] ~ Alci. x] - A l c l . y] + 1
A[ci, y] *'-" A[ci, x]
end
else if r > k then

begin
x ~--y OR (/ A N D ek)
i f x ~ y then begin

A[ci, x] *-- A[ci, y]

.4[c, yl ,---0
end (of then block)

end (of if r > k)

(end o f for loop)
a lc , y] ~ - 0

It is noted that Algorithm 2 (the sequence of Algo-
rithms 2.1, 2.2, 2.3) requires space S = O (m n) , time
T = O(log n + log m), and the use of n processors.

The algorithms given above assume that an area (,4)
of memory has been initialized to zero. This is not
unreasonable. Many instances of this algorithm can be
executed one after another. The memory will be clear
upon the termination of each program.

However, there are methods which make it unnec-
essary to initialize the area. For serial programs, one can
include at each location a pointer to a backpointer on a
stack. Each time an entry is accessed, verification can be
made that the contents are not random by checking that
the pointer in that entry points to the active region on
the stack and that the backpointer points to the entry
Ill •

This method is also valid for parallel programs unless
we add the restriction that simultaneous multiple access

660

to the same location is prohibited even for memory-fetch
instructions. It is possible that several entries that are
accessed in parallel may have random contents, more
than one of which points to the same location. A memory
fetch conflict would ensue.

For situations similar to that in Algorithm 2, the
following is a possible solution. At each step of the
process, each active processor can initialize the location
its buddy is working on (to zero), then reinitialize the
contents of the location it is working on (to its latest
value). A location will thus be initialized if either of the
two processes to which it might be relevant is active.

We now present algorithms that will sort n arbitrary
numbers in time O(log n). They are based on an exten-
sion of an algorithm due to Gavril [8] that merges two
linearly-ordered sets in time O(log n). Our first algorithm
to do this, Algorithm 3, will require the use of n 3/2

processors.

Algorithm 3--paraUel sort using n a/2 processors
Input: 0 <_ i _< n - 1 ci E integers
Output: {ci} will be stably sorted, smallest first

1. Partition the n input numbers into n ~/2 groups, each having n ~/2

elements.
2. Within each group do

For each element, j , determine count[j] = (# of i such that c,<cj) +

(# o f i<_j such that ci=cj) . This can be done in time O(log n) using
n ~/2 processors per element (a total o f n processors per group or n 3/2

processors in toto). The n ~/2 processors for element j will be assigned,
one to each element i in j ' s group, to compare c~ with cj. Summing
the results o f these comparisons can be done in time O(log n).

3. Within each group do
Bucket sort the elements, using count[j] as the key for the j t h
element in the group. This is done by: Ccoun~jl ",-- ci, where j and
count[j] are offsets (of value at most n ~/2) from the beginning o f
each group. There will be no memory conflicts since the count[j] ' s
within a group are all distinct. Steps 2 and 3 have effectively sorted
the elements within each group using an "Enumerat ion Sort" [1 I].

4. All elements do a binary search o f the n ~/2 groups. That is, each
element(cj) in group g, has n ~/2 processors which are assigned, one to
each group, to do a binary search on the elements in a group (which
are sorted) so as to determine, for all groups k, the value of

count[j , k] = if k < g, # o f elements i such that cl <-- cj

i l k = g , j

if k > g, # o f elements i such that c~ < c i

where ci refers to the ith element in group k and cj is fLxed.
5. For all elements, j , evaluate count[j] = sum (over k) of count-
[j , k]. This can be done in time O(log n) and requires n ~/2 processors
per element for a total of n 3/2 processors.
6. Do a bucket sort on all n elements using count[j] as the key for the
j t h element. Again, there will be no memory conflicts since count[j]
will be the rank o f t h e j t h element.
7. END of Algori thm 3.

We note that Algorithm 3 requires time O(log n) and
the use of n 3/2 processors. We now show a simple modi-
fication of Algorithm 3 which will use the same order of
magnitude of time and require only n 4/3 processors.

Algorithm 4---parallel sort using n 4/3 processors
1. Partition the n input numbers into n 2/3 groups each having n ~/3

elements.
2. Within each group do

For each element, j , determine count[j] = # of i such that c~ < cj)
+ (# o f i _< j such that cl = ci).

Communicat ions August 1978
of Volume 2 l
the ACM Number S

3. Within each group do
Bucket sort the count[j]'s obtained in step 2. This will rearrange the
elements in rank order within each group.

4. Divide the n 2/3 groups into n '/3 sectors, each sector consisting o f n '/3
groups.
5. Within each sector do

For each element (j) in group g, do a binary search of each of the
n '/a groups i n j ' s sector to determine, for all k, the value of

count[j, k] = if k < g, # of i in group k such that ci <- c i
i l k = g , j
if k > g, # of i in group k such that ci < cj.

Then, for each element j, evaluate count[j] = (# of i in j ' s sector
such that ci < cj) + (# of i <_ j in j ' s sector such that ci = cy). This
number is simply the sum (over k) of count[j, k].

6. Within each sector, do a bucket sort of the elements within the
sector using count[j] as they key for element./'. This will rearrange the
elements in rank order within each sector.
7. For all elements (j) in sector t, do a binary search of each of the n '/3
sectors to determine, for all k, the value of

count[j, k] = i l k < t, # of i in sector k such that cz <- c i
i l k = t , j
if k > t, # of i in sector k such that ci < cj.

Then evaluate count[j] = the sum (over k) of count[j, k].
8. Do a bucket sort of all n elements.
9. END of Algorithm 4.

In a like manner, we can exhibit an algorithm to sort
n numbers in O(k log n) time that uses n 1+1/k processors.
Interestingly, by setting k -- log n (initially splitting the
n elements into n/2 groups of 2 each), we obtain an
algorithm to sort n numbers in O(log 2 n) time using O(n)
processors, the same resources used by Batcher's algo-
rithms.

We note that these algorithms, although avoiding
memory-store conflicts, do have memory-fetch conflicts.
That is, we allow more than one processor to simulta-
neously access the same memory location. As an open
problem, we pose the question: Can n numbers be sorted
in time O(log n) if memory-fetch conflicts are not per-
mitted?

10. Knuth, D.E. The Art o f Computer Programming, Vol. 1:
Fundamental Algorithms. Addison-Wesley, Reading, Mass., Sec. Ed.,
1973.
11. Knuth, D.E. The Art o f Computer Programming, Vol. 3: Sorting
and Searching. Addison-Wesley, Reading, Mass., 1973.
12. Levitt, K.N., and Kautz, W.H. Cellular arrays for the solution of
graph problems. Comm. A C M 15, 9 (Sept. 1972), 789-801.
13. Muller, D.E., and Preparata, F.P. Bounds to complexities of
networks for sorting and for switching. J. A C M 22, 2 (April 1975),
195-201.
14. Munro, I., and Paterson, M. Optimal algorithms for parallel
polynomial evaluation, J. Comptr. Syst. Sci. 7 (1973), 189-198.
15. Muraoka, Y., and Kuck, D.J. On the time required for a
sequence of matrix products. Comm. A C M 16, 1 (Jan. 1973), 22-26.
16. Stone, H.S. Parallel processing with the perfect shuffle. IEEE
Trans. Comptrs. C-20 (1971), 153-161.
17. Thompson, C.D., and Kung, H.T. Sorting on a mesh-connected
parallel computer. Proc. 8th Annual ACM Symp. on Theory of
Comptng. Hershey, Pa., May 1976, pp. 58-64.
18. Valiant, L.G. Parallelism in comparison problems. S I A M J.
Comping. 4, 3 (Sept. 1975), 348-355.

Received December 1976; revised September 1977

References
!. Aho, A.V., Hopcroft, J.E., and Ullman, J.D. The Design and
Analysis o f Computer Algorithms. Addison-Wesley, Reading, Mass.,
1973, p. 71.
2. Arjomandi, E. A study of parallelism in graph theory. Ph.D. Th.,
Dept. of Comptr. Sci., U. of Toronto, Toronto, Ont., Dec. 1975.
3. Batcher, K.E. Sorting networks and their applications. Proc.
AFIPS 1968 SJCC, Vol. 32, AFIPS Press, Montvale, N.J., pp.
307-314.
4. Brent, R.P. The parallel evaluation of general arithmetic
expressions. J. A C M 21, 2 (April 1974), 201-206.
5. Csansky, L. Fast parallel matrix inversion algorithms. Proc. 16th
Annual Symp. on Foundations of Comptr. Sci., IEEE, Berkeley,
Calif., Oct. 1975, pp. 11-12.
6. Even, S. Parallelism in tape-sorting. Comm. A C M 17, 4 (April
1974), 202-204.
7. Flynn, M.J. Very high-speed computing systems, Proc. IEEE 54
(Dec. 1966), 1901-1909.
8. Gavril, F. Merging with parallel processors. Comm. A C M 18, 10
(Oct. 1975), 588-591.
9. Hirschberg, D.S. Parallel algorithms for the transitive closure and
the connected component problems. Proc. 8th Annual ACM Syrup.
on Theory of Comptng. Hershey, Pa., May 1976, pp. 55-57.

661 Communications August 1978
of Volume 21
the ACM Number 8

