
Technical Note
Operating Systems

R. Stockton Gaines
Editor

Decentralized Extrema-
Finding in Circular
Configurations of Processors

pass messages in either or both directions, that these
directions are distinguished, that processors can detect
from which direction a received message originated, but
that "left" may not mean the same to all processors. We
propose an algorithm that requires O(n log n) messages
in the worst case. The algorithm as given elects the
processor with the highest value.

In the algorithm given below, a processor can initiate
messages in both directions by a sendboth directive. A
processor can pass a (possibly modified) message in a
circular manner by a sen@ass directive. A processor can
send a responsive message back in the direction from
which that processor received a message by a sendecho
directive.

D.S. Hirschberg and J.B. Sinclair
Rice University

This note presents an efficient algorithm, requiring
O(n log I1) message passes, for f'mding the largest (or
smallest) of a set of n uniquely numbered processors
arranged in a circle, in which no central controller exists
and the number of processors is not known a priori.

Key Words and Phrases: decentralized algorithms,
distributed system, operating systems

CR Categories: 4.32, 4.35, 5.25, 5.32

Introduction

We are given n processors that are loosely coupled in
a circular arrangement and work asynchronously. Each
of the processors has an associated unique value (of
which it alone is aware) and none of the processors has
a priori knowledge of the number of processors in the
circle. The problem is to designate by consensus a unique
processor from the circle. The total number of data
transmissions (messages passed) among the n processors
is a measure of the complexity of a solution algorithm.

LeLann [2] presented an algorithm that requires
O(n 2) messages. Chang and Roberts [1] proposed an
improved algorithm that requires only O(n log n) mes-
sages on the average but, in the worst case, still requires
O(n 2) messages. Both of the above algorithms assume the
capability of each processor to pass a message "to the
left" in a global sense.

We consider the case in which the processors can
Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title o f the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

D.S. Hirschberg's research was supported in part by the National
Science Foundation under grant MCS80-03431; J.B. Sinclair's research
was supported in part by the National Science Foundation under grant
MCS80-04107.

Authors' present addresses: D.S. Hirschberg and J.B. Sinclair,
Department of Electrical Engineering, Rice University, Houston, TX
77001.
© 1980 ACM 0001-0782/80/1100-0627 $00.75.

The Algorithm
To run for election:

status ~-- "candidate"
maxnum ~-- 1
WHILE status = "candidate" DO

sendboth ("from", myvalue, 0, maxnum)
await both replies (but react to other messages)

IF either reply is "no" THEN status ~-- "lost"
maxnum ,,-- 2*maxnum

OD

On receiving message ("from", value, num, maxnum):
IF value < myvalue THEN sendecho ("no", value)
IF value > myvalue THEN DO

status ~-- "lost"
num ~- Rum + 1
IF n u m < maxnum THEN sen@ass ("from", value, num,
maxnum)

ELSE sendeeho ("ok", value)
OD
IF value = myvalue THEN status ~- "won"

On receiving message ("no", value) or ("ok", value)
IF value ~ myvalue THEN sen@ass the message

ELSE this is a reply the processor was awaiting

The processors initiate messages that are passed in
both directions along paths of predetermined lengths
(which are successive powers of 2). Processors on the
path read the message. If a processor determines, from
reading the message, that it cannot win the election, then
it will pass the message and it will not initiate any further
messages of its own. I f a processor determines that the
message originator cannot win the election, it echos back
a message informing the originator of this fact. The
processor at the end of the path echos back a message
informing the originator that all processors along the
path defer to the originator.

A processor receiving its own message will have won
the election since all other processors in the circle will
have deferred to it. It is then a simple matter for the
winner to send a message informing all other nodes that
the election has been satisfactorily concluded.

Not accounted for in the algorithm as written (but
easily added) is the possibility of a processor being
unaware of an election in progress. Such a processor,
upon receiving a message, would then be aware of the
election and, if not beaten by the originator of the
message it just received, would become a candidate.

I f a communication link between two nodes should
fail or if a node should fail, then unless the winner has

627 Communications November 1980
of Volume 23
the ACM Number 11

already been determined, all other nodes will eventually
enter the state in which they await a reply.

Complexity Analysis

A processor, x, initiates messages along paths of
length 2 i only if it is not defeated by a processor within
distance 2 i-1 (in either direction) from x. Within any
group of 2 i-1 + 1 consecutive processors, at most one can
initiate messages along paths of length 2 ~. Although
possibly all n processors will initiate paths of length 1, at
most In/2] (read ceiling of n/2) processors will initiate
paths of length 2, at most In/3] o f length 4, at most [n/
5] of length 8, etc.

A processor initiating messages along paths of length
2 i causes messages to emanate in both directions, and
return. At most 4 . 2 i messages will be passed as a result
o f that initiation. The sum total of all messages passed is
therefore at most

4 . (l * n + 2 . [n / 2] + 4 . [n / 3] + 8 . [n / 5] + . . . +
2~*[n/(2 i-1 + 1)] + . . .) .

Each of the terms within the parentheses is less than 2n.
There are no more than 1 + [log n] terms. (No processor
will pass messages along paths of length 2n or greater
since, once a processor initiates paths of at least n length
and the message is acceptable all the way around the
circle, the processor wins and stops initiating messages.)
Thus, the total number of messages passed is less than
8n + 8[n log n] = O(n log n).

I f one detrmes the time complexity to be the min imum
time required for the completion of an election assuming
as much message transmission overlap as possible, the
worst case time complexity can easily be shown to be
linear in the number of processors. The exact formula is

Time = 2 . (1 + 2 + 4 + . . . + 2 i + . . . + n) .

When n is an exact power of 2 (the best case), Time =
4n - 2; when n is one more than an exact power of 2
(the worst case), Time = 6n - 6. Thus, the savings in
worst-case message passages is paid for by an increase in
the wall time.

We conjecture that models in which message passing
is unidirectional must, in the worst case, have quadratic
behavior and that bidirectional capability is necessary in
order to achieve O(n log n) performance. Recently, Burns
has shown [3] that n log n is asymptotically optimal.

Received 6/79; revised 5/80; accepted 7/80

References
I. Chang, E., and Roberts, R. An improved algorithm for
decentralized extrema-fmding in circularly configuraiions of
processes. Comm. ACM 22, 5 (May 1979), 281-283.
2. LeLann, G. Distributed systems--Towards a formal approach.
Inform. Proc. 77, North-Holland Pub. Co., 1977, Amsterdam, pp.
155-160.
3. Bums, J.E. A formal model for message passing systems. Tech.
Rep. No. 91, Comptr. Sci. Dept., Indiana Univ., May 1980.

628

Computer Architecture
and Systems

J.P. Hayes
Editor

Design of a
LISP-Based
Microprocessor

G u y L e w i s S t e e l e J r . a n d
G e r a l d J a y S u s s m a n
M a s s a c h u s e t t s I n s t i t u t e o f T e c h n o l o g y

We present a design for a class of computers whose
"instruction sets" are based on LISP. LISP, like
traditional stored-program machine languages and
unlike most high-level languages, conceptually stores
programs and data in the same way and explicitly
allows programs to be manipulated as data, and so is a
suitable basis for a stored-program computer
architecture. LISP differs from traditional machine
languages in that the program/data storage is
conceptually an unordered set of linked record
structures of various sizes, rather than an ordered,
indexable vector of integers or bit fields of fixed size.
An instruction set can be designed for programs
expressed as trees of record structures. A processor
can interpret these program trees in a recursive fashion
and provide automatic storage management for the
record structures.

We discuss a small-scale prototype VLSI
microprocessor which has been designed and fabricated,
containing a sufficiently complete instruction
interpreter to execute small programs and a
rudimentary storage allocator.

Key Words and Phrases: microprocessors, large-
scale integration, integrated circuits, VLSI, list
structure, linked lists, garbage collection, storage
management, direct execution, high-level language
architectures, interpreters, tail recursion, LISP,
SCHEME

CR Categories: 4.13, 4.21 4.22, 4.34, 6.21, 6.22, 6.33
Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

This work was supported in part by the National Science Foun-
dation under Grant MCS77-04828, and in part by Air Force Office of
Scientific Research Grant AFOSR-78-3593.

Authors' present addresses: G.L. Steele, Jr., Computer Science
Department, Carnegie-Mellon University, Pittsburgh, PA 15213;
G.J. Sussman, Artificial Intelligence Laboratory, Massachusetts Insti-
tute of Technology, 545 Technology Square, Cambridge, MA 02139.
© 1980 ACM 0001-0782/80/1100-0628 $00.75.

Communications November 1980
of Volume 23
the ACM Number 11

