
identify all the kinds of storage which the supervisor
implements. This class of channels will not be con-
sidered further.

The following simple principle is sufficient to block
all legitimate and covert channels.

Masking: A program to be confined must allow its
caller to determine all its inputs into legitimate and
covert channels. We say that the channels are masked
by the caller.

At first sight it seems absurd to allow the customer to
determine the bill, but since the service has the right
to reject the call, this scheme is an exact model of the
purchase order system used for industrial procurement.
Normally the vendor of the service will publish specifi-
cations from which the customer can compute the bill,
and this computat ion might even be done automatically
from an algorithmic specification by a trusted inter-
mediary.

In the case of the covert channels one further point
must be made.

Enforcement: The supervisor must ensure that a con-
fined program's input to covert channels conforms to
the caller's specifications.

This may require slowing the program down, generating
spurious disk references, or whatever, but it is con-
ceptually straightforward.

The cost of enforcement may be high. A cheaper
alternative (if the customer is willing to accept some
amount of leakage) is to bound the capacity of the
covert channels.

Operating C. Weissman
Systems Editor

A Class of Dynamic
Memory Allocation
Algorithms
Daniel S. Hirschberg
Princeton University

A new dynamic memory allocation algorithm, the
Fibonacci system, is introduced. This algorithm is
similar to, but seems to have certain advantages over,
the "buddy" system. A generalization is mentioned
which includes both of these systems as special cases.

Key Words and Phrases: dynamic storage
allocation, buddy system, simulation, Fibonacci,
fragmentation

CR Categories: 3.89, 4.32, 4.39

Summary

From consideration of a number of examples, we
have proposed a classification of the ways in which a
service program can transmit information to its owner
about the customer who called it. This leakage can
happen through a call on a program with memory,
through misuse of storage facilities provided by the
supervisor, or through channels intended for other uses
onto which the information is encoded. Some simple
principles, which it might be feasible to implement, can
be used to block these paths.

Acknowledgments. Examples 5 and 6 are due to
A.G. Fraser of Bell Laboratories.

Received July 1972; revised January 1973

References
1, Lampson, B.W. Dynamic protection structures. Proc. AFIPS
1969 FJCC, Vol. 35, AFIPS Press, Montvale, N.J., pp. 27-38.
2. Schroeder, M.D., and Saltzer, J.H. A Hardware Architecture
for implementing protection rings. Comm. ACM 15, 3 (Mar.
1972), 157-170.

615

Introduction

For many applications, there is a need for dy-
namically reserving (and releasing) variable-size blocks
of contiguous memory cells. Several algorithms have
been formulated and compared [3, 4]. The buddy system,
introduced by Knowlton [1, 2], is preferred to other
algorithms such as first-fit and best-fit on the basis of
simulations conducted [3, 4].

One scheme for memory allocation transforms
storage area requests (which can ask for any integral
number of memory cells up to a maximum of maxreq)
into block requests, where the number of permissible

Copyright © 1973, Association for Computing Machinery, Inc
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This work was supported in part by NSF Grants GJ-965 and
GJ-30126 and a National Science Foundation Graduate Fellowship.
Author's address: Department of Electrical Engineering, Princeton
University, Princeton, NJ 08540.

Communications October 1973
of Volume 16
the ACM Number 10

block sizes is relatively small. Memory is originally
broken into "pages" of fixed uniform size p > maxreq.
If a particular block size is not immediately available, a
bigger block (if any are available) is broken into two
smaller blocks (this is done until a block of the re-
quested size is available). If none is available, the
request will be put on a queue. Upon release, smaller
blocks will be recombined with their original buddies
(if they are available) to re-form bigger blocks. We are
concerned here with assigning one block per area re-
quest.

In any system following this general approach (the
buddy system is one such), there will be inefficiencies in
memory utilization. These are caused by two factors--
external fragmentation (the inability to service big
requests because the available memory is contained in
blocks that are of insufficient size), and internal frag-
mentation (the inaccessibility of unused memory that is
included in blocks that are bigger than the area request
that is being serviced). The inefficiency resulting from
internal fragmentation has been observed to be of
greater importance [5].

Expected Allocation

We derive easily computable expressions for ex-
pected waste due to internal fragmentation and ex-
pected allocation size as follows:

Let the input distribution of request sizes be de-
scribed by a probability density function (pdf) and its
cumulative distribution function (cdf). There are n
levels of blocks of sizes L1, L2 , L~ = p. Define
L0 = 0, de = L~ - Li_~, i = 1 . . -n . Then expected
waste for a single request

L i

= k f pdf (x) (L i - x) dx,
i = l

L i - - 1
L i L i

= - ± f x pdf (x) d x + ~ Li f pdf (x) dx,
i = 1 1

L i - 1 L i - - I

J

but

J = L~[cdf (L0 -- cdf (L;_~)] = p - ~ d; cdf(L~_l)
1 I

thus expected waste

P

= p -- f x pal (x) dx - ~ di cdf (L,:-a).
1

0

Expected number of cells allocated = avg request +
avg waste

= P - k d lcdf (Li_l).
1

Example. For k levels, equally spaced from 0 to

p(d = p /k) , pdf = constant = l /p. Expected waste

P

f = p - x /p dx - p / k ~_. (i - 1)/k,
1

0

= p - p / 2 - p (k - 1) / 2 k = p / 2 k .

The Fibonacci System

Is there another system that follows the same
general scheme as the buddy system?

If Li and L~_I are two adjacent levels, then Li --
L~_I must also be a level. This follows because it is
possible to obtain L~_I from splitting L~. The dif-
ference, therefore, must be utilized and is a level also.
Therefore the level structure in this general scheme
satisfies the difference equation:

L~ = Li-1 + Li-k , for some k.

For k = 1 we have the buddy system.
Following Knuth's suggestion [3], we introduce a

new system, the Fibonacci system, which follows the
general approach outlined above. It is similar to the
buddy system except, instead of breaking a block of
size 2 n into two blocks of size 2 n-l, it breaks a block of
size f , (the nth Fibonacci number) into blocks of sizes
f , -a and f , - 2 . In other words, the Fibonacci system
corresponds to using k = 2 in the scheme above.
Other possibilities Which are left for future research are
those where k = 3, 4

A Simulation Experiment

A simulation was conducted comparing the buddy
and Fibonacci systems. The input distribution of re-
quest sizes was similar to the buffer request distribution
of the Univac 1108 Exec 8 system at the University of
Maryland [4]. This distribution is indicated in Ap-
pendix A. As in [4], input request arrival times were
Poisson distributed with exponential hold times (defined
to be the length of time a block is in use). Output in-
cluded snapshots of the system giving number of blocks
allocated so far, presently being serviced, and on the
queue, percentage utilization of memory, size distribu-
tion of free blocks, and size distribution of block re-
quests that are on the queue. When blocks become
available, the biggest block request on the queue
(needing that size or less) is fulfilled. After a pre-
determined number of requests had been made, the
system was allowed to wind down and a final output
for the run included the following: total simulation
time, average queue length, average nonzero queue
length (the averages were taken from time t (equal to
average hold time) after start-up to avoid initial
transients until initiation of wind-down to avoid final
transients), size distribution of blocks which had been
queued, and the time spent on the queue, as well as

616 Communications October 1973
of Volume 16
the ACM Number 10

Fig. 1.

_ _ _ 1 typeK] type K-I [_ _ - I

{ L BL I BL

I type K+I] type K
1

L

Fig. 2.
Length Type

233 II

t44 10

89 9

55 8

34 7

21 6

13 5

LIST VAL
I 9

145
L

A
90

R L

56
L

35
L R

L 22 R L

L 14 R L 481L 69

R

124
L

L I11 R

L 10JR L 137

/

200
L

B
179

L R
C

166

L R L
D

L 15;: R L 192 L 212

L denotes left-handedness; R denotes right-handedness

221

145

90

56, 200

35, 124,179

22, 77, III ,
166, 221

ever, the average queue length, number of requests
queued, and to ta l t ime spent on queue were consis tent ly
h igher for b u d d y than for F ibonacc i (at t imes, a fac tor
o f 2 or more) .
2. Both systems were able to service big requests under
m o d e r a t e l oad cond i t ions (queue not growing in-
definitely) ind ica t ing tha t r e c o m b i n a t i o n s were oc-
cur r ing fair ly often. U n d e r sa tu ra t ion condi t ions , how-
ever, bo th systems de mons t r a t e d a bu i ld -up of pre-
domina n t l y big requests on the queue even though big
requests on the queue had pr ior i ty over smal ler ones
(to minimize the a fo remen t ioned bui ld-up) .
3. I t was observed that , under mode ra t e l oad con-
di t ions, b u d d y has 95 percent u t i l iza t ion of m e m o r y
while F ibonacc i has only 90 percent , bu t b u d d y ' s 95 is
servicing less reques ted space than F i b o n a c c i ' s 90 per-
cent.

Overal l , the F ibonacc i system seems preferable to
the b u d d y system.

Received September 1972; revised February 1973

Appendix A. Evaluation of Expected Allocation/Request
Ratio

S i

2

to ta l m e m o r y requested, a l located, and a l l o c a t i o n / 8
request rat io. The a l l oca t i on / r eques t ra t io indicates the 10

15
percentage of unused m e m o r y that is tied up in blocks 25
and hence inaccessible. Thus, this ra t io is a measure of 3O
internal f ragmenta t ion . 35 5

Several runs were made with each of several average 40 5
hold t imes (which var ied the load ing factor) . Each 50 10

70 20
run using the F ibonacc i system was also run with 100 30
identical inputs using the buddy system. 2oo lOO

Results of Simulation

The results closely agreed with predic t ions for inter-
nal f ragmenta t ion for bo th systems:

Allocat ions~reques ts buddy Fibonacci
expected ratio 1.381 1.250 (see App. A)
actual ratio max 1.388 1.252

avg 1.381 1.248
min 1.365 1.236

The expected ra t ios are der ived (assuming the p d f
in [4]) in A p p e n d i x A. Note tha t 1.250 means tha t
one- four th more space is a l loca ted than requested. The
ac tua l ra t io figures are the results of the s imula t ions
conducted . The average ac tua l ra t io closely agrees with
the expected rat io. The variance is not excessively large.

Several o ther i tems were no ted (compar i sons of
request sizes and t imes were made for the same inputs) .
1. To ta l s imula t ion t imes were roughly the same; how-

617

contr to
del cdf (%) pdf (%) avg req

0
6 36 6 1.98
2 44 4 .76
5 54 2 1.30

10 84 3 6.15
5 94 2 2.8

96.5 .5 .825
97.5 .2 .38
98.5 .1 .455
99.3 .04 .484
99.6 .01 .2565

100 .004 .602

Average request = 15.9925
del = Si - Si_~.
pdfl applies to range [Si_t , S~J.
cdfl = cdfi_t + del X pdfi .

li contr to avg req = ~-~4=z~_~+lj'pdfi.
The pdf corresponds to that in [4].

Buddy F~o l lacc i

Lz = di . t cdfi (%) d,+l X cdf, Li di+l cdl'~ (9~) X
4 12 48 3 2 6 12
8 36 288 5 3 18 54

16 57 912 8 5 36 180
32 95 3040 13 8 50 400
64 99.06 6340 21 13 72 936

128 99.712 12762 34 21 96 2016
55 34 98.7 3356

sum = 23390 89 55 99.49 5472
144 89 99.776 8880

sum = 21306

Avg alloc = p -- di cdf (Li_~).
Avg alloc: 256 -- 233.9 = 22.1
Alloc/req ratio: 22.1/16 = 1.381

233 -- 213 = 20
20/16 = 1.250

Communications
of
the ACM

October 1973
Volume t6
Number 10

Appendix B. Algorithm A and Algorithm R Appendix C. Buddy Finding in the Fibonacci System

Blocks are available in ten sizes. They are referred to (from the
smallest through largest) as types 2 through 11 (sizes 3 through 233).
Algorithm A. Block Allocation for the Fibonacci System
INPUT: K = type wanted
O U T P U T : L = starting location, K = type allocated; if not

allocatable at present, L = 0
Address space starts at location 1
A VAIL(i) = location of a free block of type i

= 0 if none available
L I N K (L) = location of next free block of same type as block

starting at location L
= 0 if no more available

T Y P E (L) = type of block (2 through I 1) that starts at location L
F I B S I Z (i) = size of block of type i
I. Find mini > K such that A VAIL(i) ~ 0 (if none, L : = 0 return)
2. Remove block from list: L: = A V A I L (i) ;

A VAIL (i) : = L I N K (L)

3. if i = K t h e n return
4. Split block: i f i = 3 t h e n [K = i; return]; i = i - - 2;

P := L + F I B S I Z (i + I) ; T Y P E (P) := i; T Y P E (L) := i + 1
5. i f i + 1 = Kthen goto7
6. Put bigger buddy on available list:

L I N K (L) := A V A 1 L (i + I) ; A V A I L (i + I) := L ; L := P; goto 3
7. Put smaller buddy on available list and return:

L I N K (P) : = A VAIL(i) ; A VAIL (i) : - P; return
Algorithm R. Block Release for the Fibonacci System
INPUT: block starts at location L and is of type K

(T Y P E (L) : K)
1. i f K = M A X T Y P then goto 8 [M A X T Y P = l lJ
2. Is buddy smaller or bigger? [See Appendix C]

N := (L rood233) -- F 1 B S I Z (K + I) ;

if K = 2 then goto 4;
f o r i : = l t o 13do

[if L I S T (i) > N then goto 3;
if L I S T (i) = N then

[if K ~ VAL(i) then goto 4 else goto 3]]
3. Smaller buddy at higher location number

(BL = buddy loc.; B K = buddy type):
B L := L + F I B S 1 Z (K + I) ; B K := K -- 1; goto 5

4. Bigger buddy at lower location number:
B L := L -- F I B S I Z (K + I) ; B K := K + 1

5. if block at buddy location is wrong size or not available
then goto 8;

Remove buddy from list and combine:
if A V A I L (B K) = B L then [A V A I L (B K) : = L I N K (B L) ; goto 7];
J J : = A V A I L (B K)

6. j := J J; J J := L I N K (j) ;

if JJ ~ BL then goto 6;
L I N K (j) := L I N K (B L)

7. if BL < L then L := BL;

K := m a x (K , B K) + 1;
goto 1

8. Put block on list K:
L I N K (L) := A V A I L (K) ; A V A I L (K) := L; T Y P E (L) := K;

return
F I B S I Z (2 : M A X T Y P) :

3, 5, 8, 13, 21, 34, 55, 89, 144, 233
L I S T (1 : 1 3) :

1 22 35 56 77 90 111 124 145 166 179 200 221

VAL(1 :13) :
9 3 4 5 3 6 3 4 7 3 4 5 3

We are given a block of type K starting at location L'. Since
memory is broken into pages of size 233, we find the location rela-
tive to the beginning of the page L = (L' rood 233). We wish to
find the type B K and location B L of the original buddy of this block.
In splitting blocks we always put the bigger buddy at the lower
location number. Therefore, if B K = K + 1, then B L = L --
F I B S I Z (K + I) ; if B K = K -- 1, then B L = L q- F I B S I Z (K) (see
Figure 1).

M e t h o d I (used in Algori thm R). We first determine the
Fibonacci storage layout (see Figure 2). F rom this we construct
L I S T , which is simply an ordered sequence of locations (rood 233)
at which a block of type 5 or higher can start. V A L is constructed to
correspond to L I S T such that blocks of type V A L i + 2 or lower
start at location L I S T i .

We wish to see if it is possible to have a bigger buddy (at lower
location number). That is, can a block of type B K = K -f- 1 start
at location B L = L -- F I B S 1 Z (K + I) and be " lef t -handed"? We
note that left-handedness of a block of type T at location L occurs
if and only if a block of type T q- I can start at location L. There-
fore we test to see if a block of type B K + I [= K + 2] can start at
location B L [= L - - F I B S 1 Z (K + I)] which happens if and only if
B L is on L I S T and the corresponding V A L is at most (B K + I) - - 2
[=K].

M e t h o d 2. If L = 1, then the block must be left-handed, and
therefore the buddy is smaller at a higher location, and B K = K -- 1,

B L - L A- F I B S I Z (K) .
If L > 1, then build up to L by successively adding the biggest

F I B S I Z possible without exceeding L.
Then L - 1 = F I B S I Z (i l) -4- " " + F IBSIZ (i , ,) , where

i l > " '" > i,,, > K.
If i,, > K + 1, then buddy is right-handed, B K = K -- 1.

Otherwise L,, = K q- 1, and buddy is left-handed, B K = K + 1 .
As an example (see Figure 2) we add sizes A and B to get C

or D. T Y P E (A) = 10, T Y P E (B) = 8, T Y P E (C) = 7, T Y P E (D)

= 6. Therefore C's buddy must be left-handed (8 = 7 q- 1); D's
buddy must be r ight-handed (8 = 6 -t- 2).

References
1. Knowlton, K.C. A fast storage allocator, Comm. A C M 8, 10
(Oct. 1965), 623-625.
2. Knowlton, K.C. A programmer ' s description of L6. Comm.
A C M D , 8 (Aug. 1966), 616-625.
3. Knuth, D.E. The A r t o f C o m p u t e r Programmhtg , Vol. 1 (2nd
printing). Addison-Wesley, Reading, Mass., 1968, pp. 435-455.
4. Minker, J., et al. Analysis of data processing systems. Tech.
Rept. 69-99, U. of Maryland, College Park, Md., 1969.
5. Purdom, P., and Stigler, S. Statistical properties of the buddy
system. J. A C M 17, 4 (Oct. 1970), 683-697.

618 Communicat ions October 1973
of Volume 16
the A C M Number 10

