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A restriction on height-balanced binary trees is 
presented. It is seen that this restriction reduces the 
extra memory requirements by half (from two extra 
bits per node to one) and maintains fast search capa- 
bilities at a cost of  increased time requirements for in- 
serting new nodes. 
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Binary search trees are a data structure in c o m m o n  
use. To  keep search time relatively small, the method  of  
balancing binary trees was in t roduced by Adel ' son-  
Vel'skii and Landis  [1]. These height-balanced binary 
trees (also called A V L  trees) require two extra bits per 
node  and require only O(log N) operat ions  to search 
a n d / o r  insert an item, where N is the number  of  nodes  
in the tree. Each  node  in the tree has a height which is 
defined to  be the length o f  the longest pa th  f rom that  
node  down the tree. The heights of  the two sons o f  a 
node  may  differ by at mos t  one. 

K n u t h  [2] suggests considering the case where the 
tree is further  restricted so that  the right son never has 
smaller height than the left son. We call such a tree a 
one-sided height-balanced (OSHB) tree. In  this case, 
only one extra bit is required per node. The saving of  
one bit per node  is significant if that  bit would have re- 
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quired the use of an extra word for each node. To search 
for an item requires O(log N) time (the same as for 
AVL trees) but  insertion of an item is not as simple. We 
present a possible solution to this problem and show that 
an insertion can be made using O(log 2 N) operations. 

We shall use the following notation to describe the 
balance factor  at a node (defined to be the difference in 
height between the right and left sons). © indicates 
that both sons are of equal height, ® indicates that the 
height of the right son is one more than the height of the 
left son. The number to the right of a node (as, ©n -F 2) 
indicates the height (level) of  that node. An asterisk 
preceding the number (as, @ .n) indicates that the level 
is consistent with all nodes in that node's subtree but 
that there is an inconsistency between that node's level 
and the level and /or  balance factor of  that node's fa- 
ther. In such cases, restructuring of the tree is necessary. 
The name (or label) of a node may appear to its left. 

We wish to make an insertion into an OSHB tree, 
all of  whose leaves are (by definition) at level one and 
therefore designated by ©1. We can find where this 
new item belongs in O(log N) comparisons. Let the 
new item be designated by ©,1 .  One of the following 
must occur: 

p 1 

(~) (2) (3) 

p(~j, i p I ~I 

Since (1) can be changed into (3) straightforwardly 
and since (2) can be changed into 

we need only consider (3). 
An OSHB tree having one starred node, @,n, which 

is the right son of ©n, is defined to be in normal form o f  

level n. We shall show how to restructure an OSHB 
tree in normal form of level n into an OSHB tree 
having either no starred nodes or one starred node at 
level n + 1 (i.e. ® , n  -t- 1) which is the right son of 
©n + 1 (i.e., is in normal form of level n -t- 1). Hence, 
at most O(log N) such restructurings will be required to 
result in an OSHB tree having no starred nodes. 

Before doing this, we must change (3) into normal 
form ((3) has a @,  node while the normal form has a 
@ • node). One of the following forms of (3) must occur: o& 

,3 1 a 1 a 2 

-1 -1 

(a " A "  indicates a subtreeheaded by the node whose 

and these can be changed to the following: 
label appears next to the " ~ " )  ". 

o 1 o o 2 0 

d(2)1 

aU of which are either in normal or final form. 
An OSHB tree in normal form of level n must be in 

one of the following five forms: 

(I) ~ n  d n÷2 (2) 

+(.~)* n *(..*).. n 

(3) (4) (5) ROOT 
n 

( c ) . n  *LC],, n .n 

These forms can be changed into a normal form of 
level n + 1 (requiring more changes) or  a final form 
(having no starred nodes) as follows: 

o / ~ n - l ~  ~ //~n e+(...)n 

c,~n-! eLc')*n o,/~n-1 c,,~n-] 

a/kn- I c ("t) "n a/~n-I cQ')n 

(3) a ( ~  

b ~  "n b//k,n_1 a(c)n 

'"' 5 < "  

c4n-2 ez~-1 ZA c~n-a 

The level of node z must be either n - 2 or n -- 3 
(written n - 2 /n  -- 3) because its brother (node c) has 
level n - 2; the balance factor of node b is correspond- 
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ingly either 0 or ®, and 

x/~n-2 z/~n-2/n- 3 

is the result of a restructuring of  a A n  -- 1 as shown 
(recursively) below. 

(5) ROOT ROOT 

.n aL~-I c +I,.~2n 

Restructuring aAn - 1 into xz~_ 2 z~n-2 /n-3  

If  the balance factor of node a is O then the subtree 
headed by node a is in the form we want; otherwise the 
balance factor at node a is @. We first consider the case 
where a's right son has a balance factor of  ©. This case 
is shown below to be easily restructured into the desired 
form: 

p•n-1 
/so, ,  

2 ~ a J ~ n - 2  
/ \ 

-3 2f-3 

and x is the subtree headed by node a, y is node s, z is 
the subtree headed by node t. The only other ease is 
that a's right son has balance factor (9. In this case, the 
subtree headed by a is in the following form: 

2 

-3 

From this structure we can get the following: z is the 
subtree headed by node t, y is node s ,  and x is 

/ ~ 2  

where p a n  - 3 has been restructured into 

J P ' x  

iAn-4 

in a similar manner. This is done recursively. We need 
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only show how to restructure subtree a for levels 2 and 
3: 

~J,  : 
For level 2, o/X2 x ~  z } ~ / 0  

subtree a can be in two forms: 

Q/~Z is ap~ 

& a / ~ 2  is 
p 

x is node a, y is node p, 
z is null; 

x is node p, y is node a, 
z is node r; 

For level 3, oA3  ~ Y'~, .A2 z a.2/,_: 

subtree a can be in three forms: 

oA3 is a / ~ o  ~ x i s s u b t r e e p ,  y i s  n o d e a ,  
z is subtree r; 

oA3 is ~ - - - ~  x is ~ , 

P~-- I r ~  P 
I y is node s, z is node t; 

o / \ 3  is ~ , , _ ~  x i s  P %  , 

p (=,5) 1 r ~ s 2  1 y is node. r, z is node s. 

We note that restructurings in cases 1, 2, 3, and 5 
involve a single restructuring, whereas that of case 4 can 
involve O(log N) restructurings. A restructuring of case 
4 may result in a starred node at one level higher of 
case 4. There are O(log N) levels, each of which may re- 
quire O(log N) restructurings to arrive at the next higher 
level. In the worst case, therefore, O(log 2 N) restruc- 
turings are required for an insertion. 

We leave, as an open problem, the question of how 
to efficiently delete a node from an OSHB tree, 
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