
References
1. Aho, A.V., Hopcroft, J.E., and Ullman, J.D. The Design and
Analysis of Computer Algorithms. Addison-Wesley, Reading,
Mass., 1974.
2. Andrews, G.R. COPS--A protection mechanism for computer
Systems. Ph.D. Th. and Tech. Rep. 74-07-12, Computer Sci.
Program, U. of Washington, Seattle, Wash., July, 1974.
3. Bell, D.E., and LaPadula, L.J. Secure Computer Systems,
Vol. I: Mathematical Foundations and Vol. II: A Mathematical
Model. MITRE Corp. Tech. Rep. MTR-2547, 1973.
4. Dennis, J.B., and Van Horn, E.C. Programming semantics for
multiprogrammed computations. Comm. ACM 9, 3 (March 1966),
143-155.
5. Graham, R.M. Protection in an information processing
utility. Comm. ACM 11, 5 (May 1968), 365-369.
6. Graham, G.S., and Denning, P.J. Protection--principles and
practice. AFIPS Conf. Proc., 1972 SJCC, Vol. 40, AFIPS Press,
Montvale, N.J., 1972, pp. 417-429.
7. Hopcroft, J.E., and Ullman, J.D. Formal Languages and
Their Relation to Automata. Addison-Wesley, Reading, Mass.
1969.
8. Jones, A.K. Protection in programmed systems. Ph.D. Th.,
Dep. of Computer Sci., Carnegie-Mellon U., Pittsburgh, Pa.,
June 1973.
9. Jones, A.K., and Wulf, W. Towards the design of secure
systems. In Protection in Operating Systems, Colloques IRIA,
Rocquencourt, France, 1974, pp. 121-136.
10. Lampson, B.W. Protection, Proc. Fifth Princeton Syrup. on
Information Sciences and Systems, Princeton University, March
1971, pp. 437-443. Reprinted in Operating Systems Rev. 8, 1
(Jan. 1974), 18-24.
11. Lampson, B.W. A note on the confinement problem. Comm.
ACM 16, 10 (Oct. 1973), 613-615.
12. Needham, R.M. Protection systems and protection imple-
mentations. AFIPS Conf. Proc., 1972 FJCC, Vol. 41, AFIPS
Press, Montvale, N.J., 1972, pp. 571-578.
13. Popek, G.J. Correctness in access control. Proc. ACM Nat.
Computer Conf., 1974, pp. 236-241.
14. Ritchie, D.M., and Thompson, K. The UNIX time sharing
system. Comm. ACM 17, 7 (July 1974), 365-375.
15. Saltzer, J.H. Protection and the control of information sharing
in MULT1CS. Comm. ACM 17, 7 (July 1974), 388-402.

471

P r o g r a m m i n g
Techniques

C. Manacher , S. L. G r a h a m
Editors

An Insertion
Technique for
One-Sided
Height-Balanced Trees
D. S. Hirschberg
Princeton University

A restriction on height-balanced binary trees is
presented. It is seen that this restriction reduces the
extra memory requirements by half (from two extra
bits per node to one) and maintains fast search capa-
bilities at a cost of increased time requirements for in-
serting new nodes.

Key Words and Phrases: balanced, binary, search,
trees

CR Categories: 3.73, 3.74, 4.34, 5.25, 5.31

Binary search trees are a data structure in c o m m o n
use. To keep search time relatively small, the method of
balancing binary trees was in t roduced by Adel ' son-
Vel'skii and Landis [1]. These height-balanced binary
trees (also called A V L trees) require two extra bits per
node and require only O(log N) operat ions to search
a n d / o r insert an item, where N is the number of nodes
in the tree. Each node in the tree has a height which is
defined to be the length o f the longest pa th f rom that
node down the tree. The heights of the two sons o f a
node may differ by at mos t one.

K n u t h [2] suggests considering the case where the
tree is further restricted so that the right son never has
smaller height than the left son. We call such a tree a
one-sided height-balanced (OSHB) tree. In this case,
only one extra bit is required per node. The saving of
one bit per node is significant if that bit would have re-

Copyright O 1976, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted, provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Research supported by an IBM fellowship. Author's present
address: Department of Electrical Engineering, Rice University,
Houston, TX. 77001.

Communications August 1976
of Volume 19
the ACM Number 8

quired the use of an extra word for each node. To search
for an item requires O(log N) time (the same as for
AVL trees) but insertion of an item is not as simple. We
present a possible solution to this problem and show that
an insertion can be made using O(log 2 N) operations.

We shall use the following notation to describe the
balance factor at a node (defined to be the difference in
height between the right and left sons). © indicates
that both sons are of equal height, ® indicates that the
height of the right son is one more than the height of the
left son. The number to the right of a node (as, ©n -F 2)
indicates the height (level) of that node. An asterisk
preceding the number (as, @ .n) indicates that the level
is consistent with all nodes in that node's subtree but
that there is an inconsistency between that node's level
and the level and /or balance factor of that node's fa-
ther. In such cases, restructuring of the tree is necessary.
The name (or label) of a node may appear to its left.

We wish to make an insertion into an OSHB tree,
all of whose leaves are (by definition) at level one and
therefore designated by ©1. We can find where this
new item belongs in O(log N) comparisons. Let the
new item be designated by ©,1 . One of the following
must occur:

p 1

(~) (2) (3)

p(~j, i p I ~I

Since (1) can be changed into (3) straightforwardly
and since (2) can be changed into

we need only consider (3).
An OSHB tree having one starred node, @,n, which

is the right son of ©n, is defined to be in normal form o f

level n. We shall show how to restructure an OSHB
tree in normal form of level n into an OSHB tree
having either no starred nodes or one starred node at
level n + 1 (i.e. ® , n -t- 1) which is the right son of
©n + 1 (i.e., is in normal form of level n -t- 1). Hence,
at most O(log N) such restructurings will be required to
result in an OSHB tree having no starred nodes.

Before doing this, we must change (3) into normal
form ((3) has a @, node while the normal form has a
@ • node). One of the following forms of (3) must occur: o&

,3 1 a 1 a 2

-1 -1

(a " A " indicates a subtreeheaded by the node whose

and these can be changed to the following:
label appears next to the " ~ ") ".

o 1 o o 2 0

d(2)1

aU of which are either in normal or final form.
An OSHB tree in normal form of level n must be in

one of the following five forms:

(I) ~ n d n÷2 (2)

+(.~)* n *(..*).. n

(3) (4) (5) ROOT
n

(c) . n *LC],, n .n

These forms can be changed into a normal form of
level n + 1 (requiring more changes) or a final form
(having no starred nodes) as follows:

o / ~ n - l ~ ~ //~n e+(...)n

c,~n-! eLc')*n o,/~n-1 c,,~n-]

a/kn- I c ("t) "n a/~n-I cQ')n

(3) a (~

b ~ "n b//k,n_1 a(c)n

'"' 5 < "

c4n-2 ez~-1 ZA c~n-a

The level of node z must be either n - 2 or n -- 3
(written n - 2 /n -- 3) because its brother (node c) has
level n - 2; the balance factor of node b is correspond-

4"/2 Communications August 1976
of Volume 19
the ACM Number 8

ingly either 0 or ®, and

x/~n-2 z/~n-2/n- 3

is the result of a restructuring of a A n -- 1 as shown
(recursively) below.

(5) ROOT ROOT

.n aL~-I c +I,.~2n

Restructuring aAn - 1 into xz~_ 2 z~n-2 /n-3

If the balance factor of node a is O then the subtree
headed by node a is in the form we want; otherwise the
balance factor at node a is @. We first consider the case
where a's right son has a balance factor of ©. This case
is shown below to be easily restructured into the desired
form:

p•n-1
/so, ,

2 ~ a J ~ n - 2
/ \

-3 2f-3

and x is the subtree headed by node a, y is node s, z is
the subtree headed by node t. The only other ease is
that a's right son has balance factor (9. In this case, the
subtree headed by a is in the following form:

2

-3

From this structure we can get the following: z is the
subtree headed by node t, y is node s , and x is

/ ~ 2

where p a n - 3 has been restructured into

J P ' x

iAn-4

in a similar manner. This is done recursively. We need

473

only show how to restructure subtree a for levels 2 and
3:

~J, :
For level 2, o/X2 x ~ z } ~ / 0

subtree a can be in two forms:

Q/~Z is ap~

& a / ~ 2 is
p

x is node a, y is node p,
z is null;

x is node p, y is node a,
z is node r;

For level 3, oA3 ~ Y'~, .A2 z a.2/,_:

subtree a can be in three forms:

oA3 is a / ~ o ~ x i s s u b t r e e p , y i s n o d e a ,
z is subtree r;

oA3 is ~ - - - ~ x is ~ ,

P~-- I r ~ P
I y is node s, z is node t;

o / \ 3 is ~ , , _ ~ x i s P % ,

p (=,5) 1 r ~ s 2 1 y is node. r, z is node s.

We note that restructurings in cases 1, 2, 3, and 5
involve a single restructuring, whereas that of case 4 can
involve O(log N) restructurings. A restructuring of case
4 may result in a starred node at one level higher of
case 4. There are O(log N) levels, each of which may re-
quire O(log N) restructurings to arrive at the next higher
level. In the worst case, therefore, O(log 2 N) restruc-
turings are required for an insertion.

We leave, as an open problem, the question of how
to efficiently delete a node from an OSHB tree,

Received June 1975; revised October 1975

References
[References 3 and 4 are not cited in the text.]
1. Adel'son-Vel'skii, G.M., and Landis, E.M. Doklady Akademia
Nauk SSSR 146 (1962), 263-266; English translation in Soy.
Math. 6 (1963), 1259-1263.
2. Knuth, D.E. The Art of Computer Programming, Volume Ill:
Sorting and Searching• Addison-Wesley, Reading, Mass., 1973,
pp. 451-457, 471.
3. Nievergelt, J. Binary Search Trees and File Organization.
Computing Surveys 6, 3 (Sept. 1974), 195-207.
4. Karlton, P.L., Fuller, S.H., Scroggs, R.E., and Kaehler, E.B.
Performance of height-balanced trees• Comm. ACM 19, 1 (Jan.
1976), 23-28.

Communications August 1976
of Volume 19
tile ACM Number 8

