
Programming G.K. Manacher
Techniques Editor

Computing Connected
Components on
Parallel Computers
D.S. Hirschberg
Rice University

A.K. Chandra
IBM Thomas J. Watson Research Center

D.V. Sarwate
University of Illinois

motivated in part by practical considerations. Among
the many areas treated in the recent literature are sorting
[2, 3, 7, 12, 15], the evaluation of arithmetic expressions,
linear recurrences and polynomials [4, 8, 10], matrix
algorithms [5, 6, 13], and graph theory [9, 14, 15]. In this
paper we present a parallel algorithm C O N N E C T which
determines the connected components of an undirected
graph with n vertices in time O(log2n) using n 2 processors.
Next, we modify the algorithm to demonstrate an obser-
vation due to F.P. Preparata and R.L. Probert, viz.,
n[n/lg n] processors 1 suffice to achieve a time bound of
O(log2n). Finally, we show that CO NNEC T can be
modified to compute the transitive closure of an nxn
symmetric Boolean matrix in time O(log2n) us ing
n[n/lg n] processors. We use the single instruction
stream-multiple data stream (SIMD) model of parallel
processors. It is assumed that the processors have access
to a common memory, and that simultaneous access to
the same location is permitted for fetch instructions but
not for store instructions.

The Algorithm Connect

We present a parallel algorithm which u s e s n 2

processors to find the connected components of an
undirected graph with n vertices in time O(log2n). An
O0og2n) time bound also can be achieved using only
n[n/[log2n]] processors. The algorithm can he used to
find the transitive closure of a symmetric Boolean
matrix. We assume that the processors have access to
a common memory. Simultaneous access to the same
location is permitted for fetch instructions but not for
store instructions.

Key Words and Phrases: graph theory, parallel
processing, algorithms, transitive closure, connected
component

CR Categories: 5.25, 5.32, 6.22

Introduction

Parallel algorithms for solving various computational
problems have received substantial attention recently,

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title o f the
publication and its dato appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

The work of D.S. Hirschberg was supported by the National
Science Foundation under Grant MCS-76-07683. The work of D.V.
Sarwate was supported by the Joint Services Electronics Program
under Contract DAAG-29-78-C-0016.

A preliminary version of this paper was presented at the 8th
Annual ACM Symposium on the Theory of Computing, 1976.

Authors' addresses: D.S. Hirschberg, Department of Electrical
Engineering, Rice University, Houston, TX 77001; A.K. Chandra,
Computer Sciences Department, IBM Thomas J. Watson Research
Center, Yorktown Heights, NY 10598; D.V. Sarwate, Coordinated
Science Laboratory, University of Illinois, Urbana, IL 61801.
© 1979 ACM 0001-0782/79/0800-0461 $00.75.

461

Let V = {0, 1, 2 n - 1), and let G = (V, E)
denote an undirected graph with vertex set V and edge
set E. We represent G by its adjacency matrix A which
is an nxn symmetric Boolean matrix where A(i,j) = 1 if
(i, j) E E and A(i, j) = 0 otherwise. A connected com-
ponent of G is a maximal subgraph of G such that there
exists a path between every pair of vertices in the
subgraph. Each vertex belongs to exactly one connected
component, and we use a vector D of length n to specify
the connected components of G as follows. If Gc --
(Vc, Ec) is any connected component, then for all i E
V,, D(/) equals the least element of V~. The parallel
algorithm C O N N E C T given below iteratively computes
the vector D from the adjacency matrix A for an undi-
rected graph on n vertices.

Algorithm CONNECT

Input: The nXn adjacency matrix .4 for an undirected graph.
Output: The vector D of length n such that D(i) equals the smallest-

numbered vertex in the connected component to which i
belongs.

Comment: Each of the following steps is executed in parallel for all
i, 0 _< i < n. The assignments in the various steps are
considered to be done simultaneously for all i.

1. for all i do D(i) <-- i
do steps 2 through 6 for lg n iterations

2. for all i do C(i) ~-- m)n{D(j)l.4(i,j) = 1 AND D(j) # D(i)}

if none then D(i)
3. for all i do C(i) ~ mjin { C(j)[D(j) = i AND C(j) # i}

if none then D(i)
4. for all i do D(/) <--- C(i)
5. for lg n iterations do

for all i do C(i) ~-- C(C(i))
6. for all i do D(i) ~- min{C(i), D(C(i))}

1 In this paper we denote [log2n~ by lg n.

Communications August 1979
of Volume 22
the ACM Number 8

An informal description of the actions of CONNECT
is as follows. During the first iteration, the edges con-
necting each vertex to neighboring vertices are examined
(steps 2 and 3), and sets of vertices which are known to
be connected are identified (steps 4-6). In effect, each
such set of vertices is merged into a "supervertex," which
is specified by the vector D as follows. For each i in a
supervertex, D(i) equals the smallest-numbered vertex in
the supervertex. In succeeding iterations, the edges con-
necting each supervertex to neighboring supervertices are
examined in steps 2 and 3, and sets of supervertices are
merged in steps 4-6. The process continues until all the
vertices in a connected component have been merged
into one gigantic supervertex. Further iterations have no
effect on this supervertex because there are no edges
connecting it to other supervertices. We will show later
that lg n iterations are sufficient to collapse each con-
nected component into a single supervertex.

The following definitions and lemmas are used in
proving that Algorithm C O N N E C T finds the connected
components of an undirected graph.

Definition. A k-tree-loop, k >_ O, is a directed graph in
which every vertex has outdegree 1 (i.e. exactly one edge
leaves each vertex) and in which there is exactly one
cycle, the length of the cycle being k + 1. A tree-loop is
a k-tree-loop for some k.

Notice that a k-tree-loop has at least k + 1 vertices.
The reason for the name tree-loop is that if one of the
edges in the cycle is deleted, we obtain a rooted tree, the
root being the vertex with no edge leaving it. The direc-
tion of all the edges in this tree is the reverse of that
given in the usual definition (see e.g. [1, p. 52] of rooted
trees. We are interested in the sequel in l-tree-loops,
which are defined by the vector C in the algorithm, and
in a special case of 0-tree-loops (called clubs) which are
defined by the vector D in the algorithm.

Definition. The root of a 0-tree-loop is the vertex v
such that the edge (v, v) is the cycle of length 1. A club
is a 0-tree-loop in which all the edges enter the root.

LEMMA 1. Let Gc = (Vc, Ec) denote a connected com-
ponent of G such that IV c[>- 2 and define the function C:
Vc ---~ Vc by C(i) = min(j lA[i , j] = 1 A N D j # i). The

function C defines a directed graph G~(C) = (V c, E") where
E" = {(i, C(i))[i E V~). Then G~(C) is a collection of l-
tree-loops, and the smallest-numbered vertex in each tree-
loop is in the cycle of the tree-loop.

PROOF. From the fact that C is a function, it is easy
to see that Go(C) is a collection of tree-loops. Since
C(i) # i, none of the tree-loops can be a 0-tree-loop. If a
tree-loop in G~(C) is a k-tree-loop, let Vo, vl, v2
vk, v0 denote the successive vertices in the cycle (i.e.
C(v i) -~- V/+l for i = 0, 1 k - 1 and C(vk) = Vo) where,
without loss of generality, v0 = min{vo, vl vk). How-
ever, in the graph G~, both Vo and v2 are neighbors of
vl. Hence C(v~) = v2 > Vo which contradicts the defini-
tion of C except when k = 1. In this case, the two vertices
in the loop are Vo and vl with C(vo) = v~ and C(vl) = vo.
A similar argument shows that the smallest-numbered

462

vertex in the tree-loop must be in the cycle of the tree-
loop. []

Let us make the usual definition of Ck(v) as Cl(v) =
C(v) and Ck(v) = C(Ck-l(v)) for k > 1.

LEMMA 2. Let C be defined as in Lemma 1 and let v
be any vertex in a tree-loop of Go(C). Let vo and vl denote
the two vertices in the cycle of the tree-loop. Then, for all
N >_ n - 2, one of the two numbers CN(v) and CN+I(v)
equals Vo and the other equals Vx.

PROOF. The result follows easily from the fact that
the path from v to the nearer of v0 and vl is of length at
most n - 2. []

The two lemmas above are the basis of the method
used in the algorithm to identify vertices in the same
connected component. The function C sets up tree-loops
in each connected component, the function C N is com-
puted iteratively, and then D(v) ~--min{CN(v), CN+I(v)}
sets up clubs (supervertices) with roots v0. There are, of
course, numerous bookkeeping details to be settled, and
we take up these in the proof of the following theorem.

THEOREM. Algorithm C O N N E C T computes the con-
nected components of the undirected graph G specified by
the symmetric Boolean matrix A.

PROOF. It is easy to verify that for the trivial con-
nected components consisting of isolated vertices L D(i)
is set to i at step 1 and remains unchanged throughout
the execution of the algorithm. In the remainder of this
proof, we consider connected components with two or
more vertices only.

Let G(D) = (V, ED) denote the directed graph defined
by D where Eo = {(i, D(/))Ii ~ V}. After the execution
of step 1, and just prior to the execution of step 2, G(D)
satisfies the following properties:

(i) G(D) is a set of clubs (with disjoint vertex sets).
(ii) The root of each club is the smallest-numbered

vertex in the club.
(iii) The vertex set of any club is a subset of the vertex

set of some connected component.

We show that if G(D) satisfies properties (i)-(iii) just
prior to the execution of step 2, then after executing steps
2-6, the new function D (computed at step 6) is such that
the new G(D) also has properties (i)-(iii). Furthermore,
the numbers of clubs in each connected component is
reduced by a factor of at least 2, provided that there were
at least two clubs in the connected component just prior
to step 2.

It is instructive to observe what happens during the
first iteration of steps 2-6. Since D is the identity func-
tion, the function C defined at step 2 is exactly the
function of Lemma 1, and sets up 1-tree-loops in each
connected component of G. Step 3 does not change C
because the only j satisfying D(j) = i is i itself, and
C(i) # i. In step 4, the function C is copied into D, while
in step 5, C is transformed to C N where N = 2 ~g" _> n.
Step 6 sets D(i) to min(CN(/), D(ClV(i))} which is the
same as min(C/V(i), cN+t(i)}. It follows from Lemma 2
that for all i, D(i) equals the smallest-numbered vertex in

Communications August 1979
of Volume 22
the A C M Number 8

the tree-loop that contained i. Thus the set of vertices in
each tree-loop has been merged into a club. It is easy to
see that after the first iteration, G(D) satisfies properties
(i)-(iii). Since each 1-tree-loop contained at least two
vertices, the number of clubs in each nontrivial con-
nected component is no more than half the number of
vertices (dubs) that it contained originally.

As mentioned earlier, further iterations of steps 2-6
merge supervertices, i.e. clubs. Connections between su-
pervertices may be defined as follows. Let Vr denote the
set of roots of clubs in G(D) and let Gr = (Vr, Er) denote
an undirected graph where for i ~ j, (vi, vi) E Er if and
only if there exist vertices v~ and v~ in the clubs of vi and
vj, respectively, such that (v~, v~ ~ E. In other words,
supervertices are neighbors if and only if there is an edge
connecting some pair of member vertices. The function
C is set up in steps 2 and 3. In step 2, each vertex i
examines the club memberships of its neighbors and sets
C(i) to the smallest-numbered neighboring club. In step
3, each i E Vr examines its own club members (specified
by D(j) = i) and picks the smallest-numbered of all the
smallest-numbered clubs that the members found. In
short, the function C: Vr ---) Vr is such that for all i E Vr,
C(0 equals the smallest-numbered vertex that is adjacent
to i in Gr. As in Lemma 1, C defines a collection of l-
tree-loops on Gr. Next let us consider vertices i ~ Vr. For
such vertices, there is n o j such that D(j) = i and thus at
step 3, C(/) is reset to D(/). Hence, C: V ~ V defines a
collection of 1-tree-loops on G because each nonroot is
pointing to a root and the roots are in 1-tree-loops. It
follows (as in the discussion of the first iteration of steps
2-6) that after step 6, the new function D is such that
G(D) satisfies properties (i)-(iii). Furthermore, each 1-
tree-loop involves two or more vertices in Gr, i.e. two or
more clubs, and hence in each connected component
that contained at least two clubs, the number of clubs is
decreased by a factor of at least 2.

From the above discussion, it is clear that the number
of clubs in each connected component decreases by a
factor of at least 2 at each iteration until the connected
component consists of a single club. It is easy to verify
that further iterations do not affect such single clubs.
Since there are at most n vertices (clubs) to begin with,
lg n iterations suffice to reduce each connected compo-
nent to a single club, where club membership is defined
by D. []

We have shown that CONNECT computes the con-
nected components of the graph G specified by the
symmetric Boolean matrix A. The transitive closure of
A, denoted by A*, is given by A*(i , j) = 1 if and only if
there is a path in G from i to j , i.e. if and only if i and j
are in the same connected component. Hence we obtain
an algorithm for the transitive closure of symmetric
matrices by adding the following step to CONNECT:

7. for all i, j flo if D(0 = D(j) thenA*(i , j) ~ 1

and by changing the input-output specifications appro-
priately.

463

T i m e a n d P r o c e s s o r B o u n d s

The main loop of the program is executed lg n times,
while within the loop, the iteration at step 5 is executed
lg n times. Thus the algorithm requires ~(log2n) time
regardless of the number of processors used. Let us
suppose that n 2 processors are available. Steps 1, 4, and
6 require only O(1) time whenever ~(n) processors are
available, while step 5 requires O(log n) time with the
same processor requirements. We now show that steps 2
and 3 also can be programmed to execute in time
O(log n) to give an O(log2n) time bound using n 2 proc-
essors. The program for step 2 is

Step 2. The following steps are performed in parallel for 0 _< i, j < n.

2(a) For all i, j do
ifA(i,j) = 1 AND O(j) # D(i) then Temp(i,j) ~-- D(j)

else Temp(i, j) ~-- on
2(b) For k ~-- 0 until (lg n) - 1 do

for all i, j do Temp(i, j)
min { Temp(i, j),

Temp(i,j + 2* mod n)}
2(c) For all i do

if Temp(i, 0) = ~ then C(i) ~ D(i)
else C(i) ~ Temp(i, O)

Here on means any number exceeding n - 1. In step 2(a)
the numbers whose minimum is to be computed are
stored in the array Temp. In step 2(b), the minimum is
found as follows. At the first iteration Temp(i, 0) is
compared with Temp(i, 1) as is Temp(i, 2) with Temp(i,
3), Temp(i, 4) with Temp(i, 5) ... etc. At the second
iteration, Temp(i, 0) is compared with Temp(i, 2), Temp(i,
4) with Temp(i, 6) etc. The former comparison finds
min(Temp(i, j), 0 <_ j <-- 3}, while the latter finds
min{Temp(i, j), 4 <_j <_ 7) etc. Thus, in lg n iterations
the minimum is found. The method is simple but waste-
ful of processors in that, for example, the result of
comparing Temp(i, 1) with Temp(i, 2) is not used at all.
Obviously, for each value of i, [n/2] processors would
suffice for the first iteration, [[n/2]/2] for the second etc.
The program for step 3 is similar and will not be stated
separately. The net result is the following theorem.

THEOREM. Algorithm C O N N E C T finds the connected
components of an undirected graph with n vertices in time
O(log2n) using n 2 processors.

COROLLARY. The transitive closure of an n×n sym-
metric Boolean matrix can be found in time O(log 2n) using
n z processors.

The reduction in the number of processors that was
observed by Preparata and Probert occurs as follows.
We partition the integers {0 ___j < n) into [n/lg n] subsets
of the form (k l g n < _ j < (k + 1) l gn) w h e r e 0 _ < k <
[n/lg n]. Each such subset (except possibly the one with
k = [n/lg n] - 1) has lg n elements. The idea is to
compute the n 2 entries of the arr~iy Temp in time
O(log n) using n[n/lg n] processors. In order to compute
the minimum value of Temp(i, j) for 0 _< j < n, we
first compute the minimum values for j in the range
k lg n ___ j < (k + 1) lg n. These are found in time

Communications August 1979
of Volume 22
the ACM Number 8

O(log n) via sequential search. Then, the minimum of
the [n/lg n] candidate minima is found (as in step 2(b)
above) in time O(log n - log log n) using [n/lg n]
processors at each step. The grubby details are as follows.

Step 2. The following steps are performed in parallel for 0 _< i < n,
and 0 -- k < [n/lg n].

2(a) For I ,,- 0 until (lg n) - 1 do
for all i, k do

if A(i, l + k lg n) = 1 AND D(i) ~ D(I + k lg n)
then Temp(i, 1 + k lg n) *-- D(I + k lg n)
e l se Temp(i, l + k lg n) ~

2(b) F o r l ~ l un t i l (l gn) - 1 do
for all i, k do

Temp(i, k Ig n) ~ min{ Temp(i, k lg n),
Temp(i, l + k lg n)}

2(c) For 1 ~-- 0 until (lgrn/lg n'D - 1 do
for all i, k do

Temp(L k lg n) ~ min{ Temp(i, k lg n),
Temp(i, (k + 2t)lg n mod n)}

2(d) For all i do
if Temp(i, 0) = oo then C(i) *-- D(i)

e l se C(i) ~ Temp(i, O)

In the above program, we have ignored the fact that one
of the [n/lg n] subsets may contain fewer than lg n
elements. One way around this is to pad the arrays ,4, C,
and D approximately. Another possibility is to replace
l + k lg n by (l + k lg n)mod n. The program for step 3
is similar and we have the following theorem.

THEOREM. Algorithm CONNECT finds the connected
components of an undirected graph with n vertices in time
O(log2n) using nrn/lg n] processors.

COROLLARY. The transitive closure of an nXn sym-
metric Boolean matrix can be found in time O(log 2n) using
n[n/lg n] processors.

Remark. In [5], it is shown that the transitive closure
of an arbitrary nxn Boolean matrix can be found in time
O(log2n) using O(nl°g27/log n) processors. Although the
exponent of n may be reduced slightly by using some
recent results of Pan [11], it is clear that symmetry
reduces processor requirements significantly for the tran-
sitive closure problem.

7. Hirschberg, D.S. Fast parallel sorting algorithms. Comm. A C M
21, 8 (Aug. 1978), 657-661.
8. Hyafil, L., and Kung, H.T. The complexity of parallel evaluation
of linear recurrences. J. A C M 24, (July 1977), 513-521.
9. Levitt, K.N., and Kautz, W.H. Cellular arrays for the solution of
graph problems. Comm. A C M 15, (Sept. 1972), 789-801.
10. Munro, I.,]nd Paterson, M. Optimal algorithms for parallel
polynomial evaluation. J. Comp. Syst. Sci. 7 (1973), 183-198.
11. Pan, V.Y. Strassen's algorithm is not optimal. Proc. 19th Annu.
Symp. on Foundations of Comptr. Sci., 1978, pp. 166-176.
12. Preparata, F.P. New parallel-sorting schemes. I E E E Trans.
Comptrs. C-27 (July 1978), 669-673.
13. Preparata, F.P., and Sarwate, D.V. An improved parallel
processor bound in fast matrix inversion. Inf. Proc. Letters 7 (April
1978), 148-150.
14. Reghbati, E., and Corneil, D.C. Parallel computations in graph
theory. S l A M J. Comping. 7 (May 1978), 230-237.
15. Savage, C.D. Parallel algorithms for graph theoretic problems.
Ph.D. Th., U. of Illinois, Urbana, I11., Aug. 1977.
16. Thompson, C.D., and Kung, H.T. Sorting on a mesh-connected
parallel computer. Comm. A C M 20, 4 (April 1977), 263-271.

Received October 1975; revised October 1978

R e f e r e n c e s
1. Aho, AN., Hopcroft, J.E., and Ullman, J.D. The Design and
Analysis o f Computer Algorithms, Addison-Wesley, Reading, Mass.,
1974.
2. Batcher, K.E. Sorting networks and their applications. Proc.
AFIPS 1968 SJCC, Vol. 32, AFIPS Press, Montvale, N.J., pp. 307-
314.
3. Baudet, G., and Stevenson, D. Optimal sorting algorithms for
parallel computers. 1EEE Trans. Comptrs. C-27 (Jan. 1978), 84-87.
4. Brent, R.P. The parallel evaluation of general arithmetic
expressions. J. A C M 21, (April 1974), 201-206.
5. Chandra, A.K. Maximal parallelism in matrix multiplication.
~BM Tech. Rep. RC6193, Sept. 1976.
6. Csanky, L. Fast parallel matrix inversion algorithms, S l A M J.
Comping. 5 (Dec. 1976), 618-623.

464 Communications August 1979
of Volume 22
the ACM Number 8

