A Polynomial-Time Algorithm for the Knapsack Problem
with Two Variables

D. 8. HIRSCHBERG AND C. K. WONG

IBM Thomas J Watson Research Center, Yorktown Heights, New York

ABsTRACT. The general knapsack problem is known to be NP-complete In this paper & very special
knapsack problem 1s studied, namely, one with only two variables. A polynomial-time algorithm is
presented and analyzed However, 1t remains an open problem that for any fixed n > 2, the knapsack
problem with n variables can be solved in polynomial time.

KEY WORDS AND PHRASES: knapsack problem, polynomial-time algorithm, integer optimization,
continued fraction approximation

CR CATEGORIES 5.25, 5.30

1. Introduction

The knapsack problem considered here is the following:

maximize 2, ¢.X,

1=1

subject to Z X, <b U
=1
and X, nonnegative integers,

where a,, ¢, , b are positive real numbers. It can be shown [6] that this problem is NP-
complete in the sense of Karp {4, 5]. Recently, polynomial-time approximate solutions to
the special case when X, is restricted to 0, 1 have been obtained [7} In fact, polynomial-
time approximate solutions to the general case when X, is not restricted can be obtained
in a similar fashion.

In this paper we follow another approach; namely, we fix the number of variables n
and look for polynomial-time optemum solutions to the knapsack problem of n variables
Although our attempt to solve this problem in general has been unsuccessful, we have
found an algorithm for the case n = 2, which runs in polynomial time of the length of
the input. More specifically, we shall solve the following problem:

maximize X, + X,
subject to @, X: + X: < b (2)
and X;, X, nonnegative integers

Note that the naive approach (test X; = 2, X» = |(b — aiz)/a.) as ¢ takes on integer
values from O to |b/a;]) takes time proportional to b/a; which is exponential in the length
of the input

Copyright © 1976, Association for Computing Machinery, Inc. General permission to republish,
but not for profit, all or part of this material is granted provided that ACM’s copyright notice 1s
given and that reference is made to the publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery.

Authors’ present addresses. D 8 Hirschberg, Department of Electrical Engineering, Rice Univer-
sity, Houston, TX 77001, C. K. Wong, Computer Sciences Department, IBM Thomas J. Watson Re-
search Center, P. O. Box 218, Yorktown Heights, NY 10598

Journal of the Association for Computing Machinery, Vol 23, No 1, Janusry 1976, pp 147-154

148 D. S. HIRSCHBERG AND C. K. WONG

It is hoped that such a modest beginning will attract more attention to this problem
and henece bring about its eventual solution.

2. Prelimunary Algorithms

We first present an algorithm (Algorithm 1) which yields approximations to a given real
number within a required accuracy with a fraction of minimal denominator. It solves a
special form of (2), namely, when ¢; = 0, = 1 and ¢; = @, , and motivates the procedures
in Algorithm 2, which will be a major part of the final algorithm. It will also be used in
the proof of Theorem 2.

ALGORITHM 1
Given g > 0
1) Imtishze m = [, n =1, M =1, N = 0.
(2) Letdr = —m + nu, 0: = M — Nu.
) Ifs >d,setme—M+mn—N+n
(i) & <b,88t M —~«M+m, N—N + n.
(3) Haltf 6 = 0, otherwise repeat (2) until required accuracy 1s satisfied

Remarks. Note that at all times except possibly the last step, 8, and &, are positive
and M/N > p > m/n. Consequently, M/N > (M + m)/(N + n) > m/n.

In (i), 8; > & implies that M/N > pu > (M + m)/ (N + n) Execution of this step
results in & « & — & . Similarly, in (i), (M + m)/(N + n) > u > m/n and after
execution, 8, ¢~ &; — 91 .

Turorem 1. M/N, m/n are the best approximations to p for that size denomanator and
the first better approximation does not occur until N + n. This can be stated formally as:

(a) forallv < N + n, u/v > M/N or u/v < m/n,

) forallv < N, u/v > M/N or u/v < m/n,

(¢) forallv < n, u/v > M/N or u/v < m/n.

Proor. By induction on the steps of the algorithm. The theorem is obviously true at
the initial step. Assume that it was true at the last step. If we last had condition (1) (i.e.
n changed), then (b) 1s still true since the condition u/v < m/n was eased, the condition
u/v > M /N was unchanged, and N did not change. (¢) is true from previous (a) and (c)
and the fact that the new m/n is larger than the old m/n. Similarly if we last had con-
dition (1i) then (b) and (¢) are now true.

We now show that (a) is true Irom (b) and (c) we have that for all v < max(n, N),
w/v > M/N or w/v < m/n The case v = max(n, N) is trivial. Thus, we need only
show that for all v, max(n, N) < v < N + n, uw/v 2 M/N or u/v < m/n. Assume it
is not true, i.e there exist u, v such that max(n, N) < v < N +n, M/N > u/v > m/n.
Letv=N4+v =n+50<¢ <n 0<d <N Letu=M+u =m+ 4 Then

M/N> M+)/ (N+9)=u/v=(m+ a)/(n+8)>m/n. (3)

From the left-hand side of (3), it follows that M/N > «'/v’. Therefore, by condition (c),
uw' /v’ < m/n, hence (m — ')/ (n — v') > m/n. Again by (¢), (m — u')/(n — V') =
M/N. On the other hand, the right-hand side of (3) implies that 4/ > m/n. Therefore
by (b), 4/9 > M/N, which can be written as {M + («' — m)}/[N + (' ~ n)] > M/N.
Combining these inequalities, we have

M/N = {IM + @ —m)] + (m— WAV + (¢ =)+ (n —)} > M/N,

a contradiction. [

SoROLLARY 1. Forallv < N + m,let §(v) = —u + vp. Then 6(v) > & 0rd(v) < 0.

Proor. From Theorem 1(a), forallv < N + n, u/v > M/N or u/v < m/n. The
former implies u/v > u, hence é(v) < 0.

For the latter case we shall first consider v > n. We have u/v < m/n < u, which imphes
@ — u/v > u— m/n > 0. We can multiply on the left by » and on the right by =, getting

A Polynomial-Time Algorithm for the Knapsack Problem with Two Variables 149

d(v) = 8; . We now consider v < n (which is a nonempty case only forn > 1). If m = 0,
then n must be one. If u = 0, then m/(n — 1) > (m/n) and hence, by Theorem 1,
m/(n—1)> p. m/(n — v) > m/(n — 1) and so m/(n — v) > u from which follows
that 8(v) > 8. The only other possibility is that 4 and m are positive. In this case,
inverting the inequality gives (v/u)u 2 (n/m)u, and multiplying by —1 and adding
1 yields 1 — (v/u) p < 1 — (n/m) p, both positive numbers since u/v < m/n < u Since
v < n, it follows that ¥ < m and we can multiply (strengthening the inequahty)
yielding 4 — vu < m — nu and thus 8(v) > &. O

Consider the problem pX < 1 (mod 1), where u is a given positive real number. X is
restricted to nonnegative integers. Then the sequence {N} generated by Algorithm 1
when applied to the number u has the property that {uN} forms a sequence of closer ap-
proximations to 1 (mod 1) from below.

We now present Algorithm 2, which will do the same for the problem uX < ¢ (mod 1),
where 0 < ¢ £ 1and X < buex , 2 given positive number. This algorithm will be a major
part of our final algorithm

ALGORITHM 2

Given i, ¢, bmax (0 < ¢ < 1).
(1) Initiahzea =0,b =0,¢c = u,,d=1,e=1,f = 0.
(2) Letdg=a—bu+gq, 6p=—c+du, br =¢— fu
Iterate testing to determine which of conditions (1), (1), or (ui) occurs and taking the action
indicated for that condition.

(i) 85> 6p- a—a+ec, b—b+d
(ii) 63(50,61)251? ce—c+e de—d+ f.
(ili) 86 < 6p < dr. e—c+e f—d+f.

(3) Halt whenever b + d > bmax .

Remarks. After execution of (i), 8z «— 6z — 6p . Simularly, after (i), dp «— 6p — d&
and after (iii), 87 ¢« 8z — 6p.

Note that the sequence of b’s (d’s, f’s) generated by the algorithm is strictly increasing
and the corresponding sequence of 8y’s {8os, 8¢’s) is strictly decreasing.

Also note that at all times 0 < dp <1, 0< 6,<1, 0< 8y <1,and that0 < —a +
bu < ¢

Forinteger B, define 65 (8) = a — Bu + ¢ where «a is the integer such that 0 < §;(8) <
1. For B in the sequence of b’s generated by the algorithm, « will be the associated a-
value.

THEOREM 2. The sequence of b’s generated by Algorithm 2 1s such that b,y is the man 8
SJor which 0 < 65(B) < 85(b,). Formally:

(a) for all B < b, 83(B) > dx(b),

(b) forall B < b+ d, 85(8) = 8s(b),
where d 1s the d-value at the next occurrence of condition (2).

Proor. Since the above assertions are concerned with condition (i), we shall prove
them by induction on the initial step and occurrences of condition (i). Initially, (a) is
true. If initially (i) oceurs, then (b) is also true; otherwise assume that (b) is not true,
i.e. there exists 3 < b + dsuchthat 0 < o — Bu + ¢ = 865(B8) < 85(b) = a — bu + ¢.
We can assume 8 > b from (a) (the case 8 = b is trivial), so let 8 = b + d, where
0<d<d Then0 < d3(b) + (a — a) — du < 85(b). Consequently, —1 < —8z(b) <
(¢ — a) ~ dp < 0. On the other hand 0 < 8,(d) = —¢& + du < 1 determines the
integer ¢ uniquely; therefore ¢ = a — a. Let d be obtained in the algorithm by d =
d + f; then 85(d’) > 6p(d) and 8,(d’) > 65(b) since d is the first d-value obtained in
the algorithm with 6, (d) < 85(b). Note that as far as ¢, d, ¢, f are concerned, their genera-
tion is exactly like that of m, n, M, N in Algorithm 1; hence Corollary 1 applies and
d < d + f implies

—8p(d) = (a—a) —dp < —dp=—8®d) < =80b) or —8(d) >0,

etther of which contradicts our assumption that (b) was not true.

150 D. S. HIRSCHBERG AND C. K. WONG

As for the inductive argument, (a) follows from the previous (b) and the fact that
85(b") < 85(b) (b 15 the next b-value generated), and (b) follows from exactly the same
argument used in the initial proof. O

JOROLLARY 2. If b < bz and for all B < b, 85(B) > 0z(b), then b 1s wmn the set of
b-values generated by Algorithm 2.

ProOF Assume not, i.c. there exists b < bueyx such that for all 8 < b, 85(8) > 6:(b)
and b is not generated by Algorithm 2. If there are b-values b, and b, that have been con-
seeutively generated by Algorithm 2 (by bs = by + d) such that by < b < by, then by
Theorem 2(b) 85(b) > 85(by), which contradiets our assumption. Otherwise, b > by
(the last b generated by the algorithm) and by + d; has exceeded biax . We note that the
proof of Theorem 2(b) holds for all d oceurring before condition (i) recurs Then by <
b < bmax < bo + do and by Theorem 2(b) 65(5) > 85(bo). Again our assumption has been
contradicted 0O

3 The Knapsack Problem

We are now in a position to discuss the knapsack problem with two variables We con-
sider the following two problems first.

Problem 1. Given p, w Find nonnegative integers ¢ and j that maximize + + puj
subject to 1 + pj < w

Problem 2. Given p, # < u, w. Find nonnegative integers ¢ and 7 that maximize
1 4+ wj subject to 1 + pj < w.

Note that for both problems it suffices to find the optimal value of 7 since the opti-
mal value of 2 can be obtained by « = |w — uj).

TueorEM 3. The solution value of 7 tn Problem 1 unll be the last b-value not exceeding
bmaz that 15 generated by Algorithm 2 with mnputs g equal to the fractional part of w such that
0 <q<1andbm = o/p.

Proor. Let) be the last b-value not exceeding bumax generated by Algorithm 2 From
Theorem 2(b) (as extended in proof of Corollary 2) we have: for all 8 < bunax < 7 + 4,
85{B) > 8z(y), which can be rewritten as: forall ¢, 8, «a — Bu+¢ > a —ju+ ¢ 2 0,
ora—~ fBu-+q<0. .

For « specified in the defimition of 85(8), the first inequality will apply. For any other
a, one of the above two inequalities will apply. Let & = w — ¢ (and thus an integer),
then multiplying the previous set of inequalities by —1 and adding w gives:

foralle, B, (k — o) + Bu< bk —a)+ju<k+q¢= o, or
k—a)+Bu>k+qg=w 4)

Also a — ju+qg=385() <1 so (k—a)+ju> w— 1, from which we see that
k—-a>w—ju—12>— 1sinceju < w. (k — a) is an integer greater than —1, thus
greater than or equal to 0 and so by (4) we have that (k — a, 7) is a feasible solution
point for Problem 1. Also from (4), we note that for all «, 8, either (k — «) + fu <
(k — a) + juor (k — o) + Bu > w, hence (k — a,7)isoptimal. O

THEOREM 4. The solution value of 7 wn Problem 2 1s among the b-values generated by
Algorithm 2 (using as mputs q equal to the fractional part of @ and bmex = w/p) and thus
can be found by sumply testing all the b-values generated to see which yields the mazimum
value of © + .

We first need the following lemma:

LemMa 1. If 8 > b and 85(B8) > 685(b) then (p, B) 18 not the solution to Problem 2
for any p.

ProoF. We can assume that 8 < w/u, otherwise there would be no feasible p. Re-
writing the assumption of the lemma, we have

1>86B)=a—BFu+qg>a—but+gqg=2580)=20

A Polynomial-Time Algorithm for the Knapsack Problem with Two Variables 151

let k = w — ¢ (k integer), then multiplying the above inequality by —1 and adding
w will give
w—1< k—a)+Bu<(k—0a)+bu< o (5)

Note that the integer p = (F — «) cannot be increased without violating the upper
bound w.

We also have the following inequality: (¢ —~ a) + B—b)a < (k—a)+ (B— b)u <
k — a. The first part is true since 7 < u and the second part comes from (5). From this
we see that (k — a) 4+ B7 < (k — @) + b7 and thus (k — a, b) is a feasible solution
which gives a greater value of the function 2 4 77 than that of (p, 8) for the maximum p
possible (and hence for all feasible p). O

Proor oF THEOREM 4. From Lemma 1 we see that for (z,5) to be a solution to Prob-
lem 2 we must have that for every 8 < j, 6:(8) > 85(7). Also, for (¢,) to be a solution,
J £ w/u; otherwise the value of ¢ would necessarily be negative to satisfy the inequality
and hence infeasible. By Corollary 2, 7 will be among the b-values generated by Algo-
rithm 2.

4, A Faster Algorithm

We now present Algorithm 3 (the last one in this paper), which 1s Algorithfn 2 with a
few modifications that will speed up its execution performance For instance, in Algo-
rithm 2, condition (i) would cause ¢ «— a + ¢, b «— b + d and thus 3 « 8z — 8p.
Condition (i) would recur until é; was reduced below 6, . This would have occurred
after |85/0p) steps. It is now done in one step.

ALGORITHM 3

Given i, ¢, bmax 0 < g < 1)
1) Imtializea=0,b=0,c=lul,d=1e=1,f=0.
(@) Letdpg=a—bu+gq, 0p=—c+du dr=¢— fu
Iterate testing to determine which of conditions (1), (1i), or (1) occurs and taking the action
indicated for that condition.

1) 6z >46dp. a—a+ nc, b— b+ nd, where 7 = min (165/8 b, H{bmax — b)/dl).
(i) ép < 6p,6p > 0p - ¢e—c+ ve, d—d-+ vf, where ¥ = min ([5p/6p],[(5p~63)/6p])
(in) 85 < 8p < bp e—e+ 16p/bplc, f—f+ 187/ pld.

(3) Halt whenever b + d > bnax -

THEOREM 5 Algorithm 3 generates the solutions to Problems 1 and 2 wih inpuls ¢
equal to the fractional part of w, bpes = W/

LEmmA 2. Letb, = b+ kd, k =0, -+ |, K, such that 1 > 8z(bx) > 8z(brt1) 2 0.
Then eather (1) none of by, - -+, bx_y 15 a solution j-value to Problem 2 or (1) one of by or
by 18 a solution j-value to Problem 2.

Proor. Rewriting the assumed inequalities we have

1>a0—bol~4+q>" >ak—bkp.+q> - 20.

Multiplying the above set of inequalities by —1 and adding w gives
w—l<w—qg—at+bpu< - <w—qg—a+bp<- - < a (6)
From the definition of b we have
byap — b = dg. (7)

Letu = w— q— ax, 0 < k < K (which are integers since w — ¢ 1s an integer and
sois a;) and let ¢ = |dul. We have.

SUBLEMMA. 441 = % — L.

Proor oF SuBLEMMA. Assume that for some &, 441 = % — ¢ + 1. Then adding
br1u to both sides gives

r F oepu = —t+ 1+ b+ du =%+ bep + 1+ (dp — 2).

152 D. S. HIRSCHBERG AND C. K. WONG

[du} = tand sodp — ¢ > 0. Also, from (6), @ + bipe > w — 1 and thus 4 + b + 1 >
.% Together this implies that 4.4 + bru > o, which contradicts (6). Therefore, since
w4y is an integer, 44y < 4 — L.

Assume that for some k, 41 < 4 — ¢ — 1. From (6) and (7) we have

%+ bt < %pr + beap < (e + bap) + [(du — 1) = 1L

But this implies 1 < du — t, which contradicts ¢ = |du). This leaves 1.+ = % — ¢ as the
only possible alternative.

CoNTINUING WiTH PrOOF OF LEMMA 2. If dm < ¢, then for all k, 2 + biw = 2341 +
L4 e = ey + ¢ b — A7 > 41 F beraw. Therefore (b}, & > 0, do not maximize
the objective function ¢ + jm Thus (i) is true.

If dm > ¢, then for all k, 1 + b < 1 + Oppm and (b}, & < K, do not maximize
the objective function. Thus (i) is true

If de = ¢, then for all k, w + bew = %1 + beam and bo, - -, bx all give the same
value for the objective function. So either all are solution j-values to Probiem 2, in which
case (i1) is true, or all are not solutions, in which case (i) istrue. 0

Proor oF Tueorem 5. The flows of conditions (i), (ii), and (iii) in Algorithms 2
and 3 are shown n Figure 1.

It is seen that the modifications simply skip over the self-loops and make (in one shot)
all the changes in the variables that would have occurred one at a time

The test for | (bmax — b)/d | ensures that the last b-value less than or equal to by,
that would have occurred in Algorithm 2 does occur in Algorithm 3 and is the solution
of Problem 1.

As shown in Lemma 2, the skipped b’s are not needed to ensure that the solution to
Problem 2 which is generated by Algorithm 2 (see Theorem 4) is also generated by
Algorithm 3. 0

Next we will show that the number of iterations in Algorithm 3 is O(log bumax). First,
referring to Figure 2 for the flow of conditions in Algorithm 3, we have:

LemMMma 3 Branch Zy cannot occur more than log bme, tvmes.

ProoF. Z; oceurs only if condition (iii) is followed by condition (ii). Let d and f be
values when (iii) oceurs; d’, f” after (iii); d”, f” after (ii).

Thend = d, f > f+ d (see Algorithm 3), d” > d' + ', f* = f’, and thus we have
d” > 2d.

Thus each time Z; occurs, d at least doubles d is initialized at 1. After log bumax times,
d would have value greater than bn.x and the algorithm would have halted. O

LemMa 4. Branches Z, and Z;z cannot occur more than log bme, tymes.

Proor. Z, is the only exit from (iii) and, by Lemma 3, cannot oceur more than
10g buax times. O

LEMMA 5. The chawn of branches Z, — Zs — Zy — Zg cannot occur.

Proor. Assume it can occur. This 1s equivalent to assuming that the following se-

=
(i)

=0}
(0) (b) Z,

FLOW IN ALGORITHM 2 FLOW IN ALGORITHM 3 FLOW OF CONDITIONS
IN ALGORITHM *

Fia. 1 Fie ©

A Polynomual-Tiome Algorithm for the Knapsack Problem with Two Variables 153

8
858 £
[_gs_elsr 5 .
F 8 |—m—-

Fic 3

quence of conditions ean oceur: (u) (i) (i) (1) (i). Initially 85 < 8p, 8p > 8 and
(il) occurs. As a result of (ii), 85" > &p — [(8p — 85)/6518F since (i) oceurs next (see
Algorithm 3).

Also, that (i) occurs next implies 85" < 85 . Furthermore, we have
0 — 80 = 05 — (bp — [(8p — 85)/8418r) = [(8p — 82)/0#10r — (Op — 85) < &r.

Together this means that after (1) and before (i), 8, was reduced below 8§z but just
below 85 (see Figure 3). After (i) occurs, 85 < 65 and also 85 < 8rsince 85 — 85 < 8.
Since (1) occurs next, 8, > 8¢ . Thus, at this point, 8" > 8, > 85 . After (i), we have
8p" < 65 and thus (i) will occur next with 85" < 8" < 6. After (i), 85 < 85" and
thus 85" < 85 < 8¢ . But this means (i1i) and not (ii) occurs next. [J

LEMMA 6. Branches Zy and Zg cannot occur more than 6 1og bm.s times

Proor. At least one of branches Z1, Z; , or Z; must occur for each two occurrences of
branches Z, or Z; since there are no self-loops and we cannot loop Z, and Z; for more
than two occurrences of Z; . Since the sum of the number of occurrences of Z, , Z, , and
Zj is less than 3 log bn.x (Lemmas 6 and 7), Z; and Z; cannot occur more than 6 log
bmax times, [

TaEOREM 6. The number of werations wn Algorithm 3 is O (log bumaz).

Proor. It follows from Lemmas 3,4, and 6. O

CoroLLARY 3. Algorithm 3 can be used to solve Problem 1 or Problem 2 O (| log w | +
{log p|) derations

Proor. For Problem 1, the last b-value generated is the solution j-value. To get this
it will take O (log bumax) < O] log w | + { log p |) iterations. The solution 2-value is simply
1= {w—nj)

For Problem 2, we need simply look at the b-values generated (less than or equal to
O(log bumax) of them) and test for maximizing ¢ + nj withj = b, 1 = | — »j]. O

Finally, we can address the original problem:

Problem 3. Given ¢, ¢;, a1, a2, b. Find integers X;, X, > 0 so that ;X; + X, is
maximized and ¢, X; + a:Xs < b.

CoroLLARY 4. Algorithm 3 can be used to solve Problem 3 in O (] log ¢1 | + | log ¢2 | +
llog ar| + |log @z | + | log b|) iterations.

Proor. Without loss of generality, we can assume that ¢;/a; 2 c»/a, .

If ci/ay > ¢y/as , then Problem 3 is equivalent to Problem 2 with = ¢;/c1, u = ax/ar
w = b/ ay .

If ¢i/ay = co/as then Problem 3 is equivalent to Problem 1 with u and w as above.

In either ease the algorithm will terminate in O(] log w| + |log u|) iterations and
[logw| < [logh| -+ [loga|, [logu| < [loga |+ [loga:|.

Since the number m = c/c, is used, the term O(|log ¢; | + |[log ¢;|) is also needed.
The corollary thus follows. O

Since in each iteration multiplication of O(n) precision numbers is being performed
and such a multiplication takes time O(n log n log log n), it follows that the asymptotie
time complexity of our algorithms is O (n® log n log log n).

154 D. S. HIRSCHBERG AND C. K. WONG

5. Concluding Remarks

In this paper we propose an algonthm to solve the knapsack problem with two variables.
This algorithm originates from a well-known continued fraction method and runs in
polynomial time of the input length. We conjecture that for any fixed n > 2, the knapsack
problem with n vanables may be solved in polynomial time The proof seems very
difficult and generalization of the method used in this paper does not seem to work. It is
hoped that the modest beginning presented in this paper will draw the attention of more
rescarchers and will bring about the eventual solution of this problem

REFERENCES
(Note. References [1-3] are not cited in the text.)

1. Haroy, G. H, axo Wricat, E M An Iniroduction to the Theory of Numbers, 3rd ed Oxford U.
Press, London, 1956, pp. 129-153

2 Horowitz, E, anp Sanni, S. Computing partitions with applications to the knapsack prob-
lem J ACM 21,2 (Apri 1974), 277-292.

3 Hvu, T C. Integer Programming and Nelwork Flows Addison-Wesley, Reading, Mass , 1969,
pp. 311-316

4 Karpe, R M Reducibility among combinatorial problems In Complexity of Computer Computa-
frons, R. E. Miller and J. W. Thateher, Eds., Plenum Press, New York, 1972, pp 85-103.

5 Knurha, D, E. A termmological proposal. SIGACT News 6, 1 (Jan. 1974), 12-18

6 Lueger, G S Two polynomial complete problems in nonnegative integer programming.
Computer Science TR-178, Princeton U , Princeton, N J., March 1975.

7 Sauni, S. Approximnate algorithms for the 0/1 knapsack problem. J ACM 22, 1 (Jan. 1975),
115-124

RECEIVED AUGUST 1974; REVISED MARCH 1975

Journal of the Associstion for Computing Machinery, Vol 23, No 1, January 1976

