
A Polynomial-Time Algorithm for the Knapsack Problem

with Two Variables

D. S. HIRSCHBERG AND C. K. WONG

IBM Thomas J Watson Research Center, Yorktown Heights, New York

ABSTRACT. The general knapsack problem is known to be NP-complete In this paper a very special
knapsack problem is studied, namely, one with only two variables. A polynomial-time algorithm is
presented and analyzed However, ~t remains an open problem that for any fixed n > 2, the knapsack
problem with n variables can be solved in polynomial time.

KEY WORDS AND PHRASES: knapsack problem, polynomial-time algorithm, integer optimization,
continued fraction approximation

CR CATEGOR~S 5.25, 5.30

1. Introductwn

The knapsack problem considered here is the following:

maximize ~ c,X~

subject to ~ a,X, < b (1)

and X, nonnegative integers,

where a , , c , , b are positive real numbers. I t can be shown [6] that this problem is NP-
complete in the sense of Karp [4, 5]. Recently, polynomial-time appromma~e solutions to
the special case when X, is restricted to 0, 1 have been obtained [7] In fact, polynomial-
time approximate solutions to the general case when X, is not restricted can be obtained
in a similar fashion.

In this paper we follow another approach; namely, we fix the number of variables n
and look for polynomial-time optimum solutions to the knapsack problem of n variables
Although our a t tempt to solve this problem in general has been unsuccessful, ~ e have
found an algorithm for the case n = 2, which runs in polynomial time of the length of
the input. More specifically, we shall solve the following problem:

maximize clX~ ~ c~X2
subject to alX~ -}- a~X2 _< b (2)

and X1, X2 nonnegative integers

Note that the naive approach (test X1 = ~, X~ = [(b -- al~)/a2] as i takes on integer
values from 0 to [b/al]) takes time proportional to b/a~ which is exponential in the length
of the input

Copyright © 1976, Association for Computing Machinery, Inc. General permission to republish,
but not for profit, all or part of this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery.
Authors' present addresses. D S Hirschberg, Department of Electrical Engineering, Rice Univer-
sity, Houston, TX 77001, C. K. Wong, Computer Sciences Department, IBM Thomas J. Watson Re-
search Center, P. 0 . Box 218, Yorktown Heights, NY 10598

Journal of the A~ociatlon for Computing Machinery, Vol 23, No 1, ,January 1976, pp 147-154

148 D . s . HIRSCHBERG AND C. K. WONG

I t is hoped that such a modest beginning will at tract more attention to this problem
and hence bring about its eventual solution.

2. Preliminary Algorithms

We first present an algorithm (Algorithm 1) which yields approximations to a given real
number within a required accuracy with a fraction of minimal denominator. I t solves a
special form of (2), namely, when cl = al = 1 and c2 = a2, and motivates the procedures
in Algorithm 2, which will be a major part of the final algorithm. I t will also be used in
the proof of Theorem 2.

ALGORITHM 1

Given/a > 0
(1) Imtlahze m = ~], n = 1, M = 1, N = 0.
(2) Let ~ = - m + n p , 62 = M - N p .

(1) I f ~ > ~ , s e t m ~ - - M + m, n ~ - N + n
0i) I f ~ < ~ , s e t M * - - M + m, N * - - N + n.

(3) HaLt if $~ = 0, otherwise repeat (2) untd reqmred accuracy is satisfied

Remarks. Note that at all times except possibly the last step, $1 and 82 are positive
and M / N > ~ > m/n. Consequently, M / N > (M + m) / (N + n) > m/n.

In (i), 61 >_ ~i2 implies that M / N > # >_ (M + m) / (N + n) Execution of this step
results in Sa *- 61 - ~t~. Similarly, in (it), (M + m) / (N + n) > ~ > m/n and after
execution, ~2 ~-- 6~ - ~t.

THEOREM 1. M / N , m/n are the best approx~matzons to # for that szze denominator and
the first better approximation does not occur until N + n. This can be stated formally as:

(a) for all v < N + n, u/v > M / N or u/v ~ m/n,
(b) for all v < N, u/v > M / N or u/v < re~n,
(c) for all v < n, u/v > M / N or u/v < m/n.
PROOF. By induction on the steps of the algorithm. The theorem is obviously true at

the initial step. Assume that it was true at the last step. If we last had condition (i) (i.e.
n changed), then (b) is still true since the condition u/v < m/n was eased, the conditmn
u/v > M / N was unchanged, and N did not change. (c) is true from previous (a) and (e)
and the fact that the new m/n is larger than the old m/n. Similarly if we last had con-
dition 0i) then (b) and (c) are now true.

We now show that (a) is true From (b) and (c) we have that for all v < max(n, N) ,
u/v >_ M / N or u/v <_ m/n ~lhe case v = max(n, N) is trivial. ~fhus, we need only
show that for all v, max(n, N) < v < N + u, u/v ~ M / N or u/v < m/n. Assume it
is not true, i.e there exist u, v such that max(n, N) < v < N + n, M / N > u/v > m/n.
Let v N 4- v' = ' = = = n + b, 0 < v' < n, 0 < b < N. L e t u M + u m + ~ . T h e n

M / N > (M + u ') / (N + v') = u/v = (m + a)/(n + ~) > m/n. (3)

From the left-hand side of (3), it follows that M / N > u'/v'. Therefore, by condition (c),
u'/v' < m/n, hence (m - u ') / (n - v') > m/n. Again by (c), (m - u ') / (n - v') >_
M / N . On the other hand, the right-hand side of (3) implies that ~/~ > m/n. ~[herefore
by (b), a/O > M / N , which can be written as [M 4- (u' - m)]/[N 4- (v' - n)] > M/N.
Combining these inequalities, we have

M / N = {[M + (u' - m)] + (m - u')}/{[N + (v' - n)] + (n - v')} > M / N ,

a contradiction. []
COROLLARY1. For ally < N 4- n, let ~(v) = - u 4- v#. Then b(v) > ~l or ~(v) < O.
PaooF. From Theorem l (a) , f o r a l l v < N + n, u/v > M / N or u/v <_ m/n. The

former implies u/v > #, hence 8(v) < 0.
For the latter ease we shall first consider v > n. We have u/v < m/n < Iz, which imphes
-- u/v >_ ~ - m/n ~ O. We can multiply on the left by v and on the right by n, getting

A Polynomial-Time Algorithm for the Knapsack Problem with Two Variables 149

6 (v) _> 62 • We now consider v ~ n (which is a n o n e m p t y case only for n > 1). If m = 0,
then n mus t be one. If u = 0, then m / (n - 1) > (m/n) and hence, by Theorem 1,
m/(n - 1) > ~. m / (n - v) > m/ (n -- 1) and so m/ (n - v) > # from which follows
tha t 5(v) > 51. The only other possibility is tha t u and m are positive. In this case,
inver t ing the inequal i ty gives (v/u)~ >_ (n/m)~, and mul t ip ly ing by - 1 and adding
1 yields 1 - (v/u) ~ < 1 - (n/m) ~, both positive numbers since u/v g m/n < ~ Since
v < n, i t follows tha t u ~ m and we can mul t ip ly (s t rengthening the i nequah ty)
y i e l d i n g u - v~ < m - n~ and thus 5(v) > 51. []

Consider the problem #X < 1 (mod 1), where ~ is a given positive real number . X is
restricted to nonnegat ive integers. Then the sequence {N I generated by Algori thm 1
when applied to the n u m b e r # has the property tha t {#NI forms a sequence of closer ap-
proximations to 1 (rood 1) from below.

We now present Algori thm 2, which will do the same for the problem #X < q (mod 1),
where 0 < q _< 1 and X < b a _given positive number . This algori thm will be a major
par t of our final algorithm

ALGORITHM 2

G l v e n ~ u , q , b ~ (0 < q_< 1).
(I) Ini t lahzea = 0, b = 0, c = [~l, d = l, e = 1, f = 0.
(2) Let 5B = a - b~ + q, 5D = --c + d/.~, 5F = e - - f / a

Iterate testing to determine which of conditmns 0), (fi), or (hi) occurs and taking the actmn
indicated for that condltmn.

(i) 5B_> ~D" a~---a~-c, b~---b+d
(ii) 5B<SD,SD~SF c~--c-~e,d<---d+f.

(iii) 5B < 5n < ~F. e ~ c + e , f < - - d + f .
(3) Halt whenever b + d :> b

Remarks. After execution of (i), 68 ~-- 6B -- 5D. Similarly, after (fi), 6 , ~-- 6~ - 6~
and after (iii), 6r ¢ - 5F - 5 , .

Note tha t the sequence of b's (d's, f ' s) generated by the algori thm is str ict ly increasing
and the corresponding sequence of ~B's (SD'S, ~ ' S) is strictly decreasing.

Also note tha t a t all t i m e s 0 < 6 ~ < 1 , 0 g 5 D < 1 , 0 < 6 r _ < l , and t h a t 0 _ < - a +
b~ < q

For integer/5, define 6B (/5) = a - /5# T q where a is the integer such tha t 0 < ~, (/5) <
1. For /3 in the sequence of b's generated by the algorithm, o~ will be the associated a-
value.

THEOREM 2. The sequence of b's generated by Algomthm 2 is such that b,+~ is the mm
for which 0 < 6~(~) < 6,(b,). Formally:

(a) for all 15 < b, 6,(~) > 6,(b),
(b) for all [3 < b + d, 6~(~) _> 5s(b),

where d ~s the d-value at the next occurrence of conditwn (z).
PROOF. Since the above assertions are concerned with condi t ion (i), we shall prove

them by induc tmn on the ini t ial step and occurrences of condit ion (i). Ini t ia l ly , (a) is
true. If ini t ia l ly (i) occurs, then (b) is also true; otherwise assume tha t (b) is no t t rue,
i.e. there exists ~ < b + d such tha t 0 < a -- /5# + q = 6s(~) < 6s(b) = a -- b~ --~ q.
We can assume ~ > b from (a) (the case /5 = b i s t r ivial) , so let /5 = b - 4 - d , where
0 < d <: d. Then 0 _< 6~(b) T (a -- a) -- d# < 6"(b). Consequent ly , - 1 < - 6 ~ (b)
(a - a) - d# < 0. On the other h a n d 0 _< 6~(d) = - ~ + d# < l determines the
integer ~ un ique ly ; therefore ~ = a - a. Let d be obta ined in the algori thm by d =
d' + f ' ; then 6v(d ') > 6v(d) and 6,(d ') > 6"(b) since d is the first d-value obta ined in
the algori thm with 5D (d) ~ 6~ (b). Note tha t as far as c, d, e, f are concerned, their genera-
t ion is exactly like tha t of m, n, M, N in Algori thm 1; hence Corollary 1 applies and
d < d' + f ' implies

- 6 ~ (d) = (a - a) - d~ ~_ c' - d'~ = - 6 ~ (d ') (- - 6 B (b) or - - 6n (d) > 0,

ei ther of which contradicts our assumpt ion tha t (b) was no t true.

150 D . S . HIRSCHBERG AND C. K. WONG

As for the inductive argument, (a) follows from the previous (b) and the fact tha t
~B (b') < 5, (b) (b' is the next b-value generated), and (b) follows from exactly the same
argument used in the initial proof. []

COROLLARY 2. I f b < b~,~ and for all ~ < b, 6 , (~) > ~,(b), then b ,s rathe set of
b-values generated by Algorithm 2.

PROOF Assume not, i.e. there exists b ~ b such tha t for all ~ < /b, ~. (~) > ~, (/b)
and b is not generated by Algorithm 2. If there are b-values b~ and b~ that have been con-
secutively generated by Algorithm 2 (by b2 = b~ + d) such that b~ < /~ < bz, then by
Theorem 2(b) ~t.(b) > it.(b~), which contradicts our assumption. Otherwise, b > b0
(the last b generated by the algori thm) and b0 + do has exceeded b We note tha t the
proof of ' Iheorem 2 (b) holds for all d occurring before condition (i) recurs Then b0 <

_< bmax< b0 + do and by q heorem 2 (b) ~ (b) > 6, (b0). Again our assumptmn has been
contradicted []

3 The Knapsack Proble~

We are now in a position to discuss the knapsack problem with two variables We con-
sider the following two problems first.

Problem 1. Given #, co Find nonnegative integers i and j tha t maximize , + ~3
subject to ~ + ~j < co

Problem 2. Given g, ~- < g, co. Find nonnegative integers , and 3 tha t maximize
i + ~'j subject to ~ + ~ j < co.

Note that for both problems it suffices to find the optimal value of .7 since the opti-
mal value o f , can be obtained by ~ = [w - ~3].

THEOREM 3. The solution value of 3 in Problem 1 wzll be the last b-value not exceeding
b~ , that zs generated by Algorithm 2 with inputs q equal to the fractzonal part of co such that
0 < q < I and b,~** = co/g.

PROOF. Let 3 be the last b-value not exceeding bm~, generated by Algorithm 2 From
Theorem 2(b) (as extended in proof of Corollary 2) we have: for all ~ < bmax < 3 + d,

fiB(fl) > 6B(3), which can be rewritten as: for all a,/3, a -- ~g + q > a -- j # + q > 0,
o r a - - / 3 g + q < 0.

For a specified in the defimtion of ~B (/3), the first inequali ty will apply. For any other
a, one of the above two inequalities will apply. Let k = co - q (and thus an integer),
then mult iplying the previous set of inequalities by -- 1 and adding co gives:

for a l l a , ~ , (/c-- a) + /3g < (k - - a) + j g < k + q = o~, or
(k -- a) -4- /3g > /k -4- q = co. (4)

Also a - - j g + q = ~ s (3) < 1 so (k - - a) + j g > c o - - 1 , from whmh we see tha t
k - - a > co - j g - 1 ~ - 1 since j g < co. (k - a) is an integer greater than --1, thus
greater than or equal to 0 and so by (4) we have tha t (k -- a, .7) is a feasible solution
point for Problem 1. Also from (4), we note that for all o~, /3, either (k -- a) + ~3g <
(k - a) + j g or (k -- a) + f~g > w, hence (k -- a, 3) i s optimal. []

THEOREM 4. The solution value of 3 ,n Problem 2 ,s among the b-values generated by
Algorithm 2 (using as inputs q equal to the fractwnal part of co and b~ , = co~g) and thus
can be fQund b~ s,mply testing all the b-values generated to see which y~eIds the maximum
value of i + rr3.

We first need the following lemma:
LEMMA 1. I f 13 > b and 8,(f3) _> ~s(b) then (p, f3) ~s not the solution to Problem 2

for any p.
PRoof. We can assume tha t /3 < co/g, otherwise there would be no feasible p. Re-

writing the assumption of the lemma, we have

1 > 6.(/3) = or- - / 3 g + q > a - - bg-{- q = $. (b) > 0.

A Polynomial-Time Algorithm for the Knapsack Problem wzth Two Variables 151

Le t k = oo -- q (k in teger) , then mul t ip ly ing the above inequa l i ty by --1 and adding
oo will give

- 1 < (k - a) + ~ _ < (k - a) + b ~ _ < ~. (5)

N o t e tha t the integer p = (k - a) cannot be increased wi thou t v io la t ing the upper
bound w.

We also have the fo l lowingmequa l i ty : (k - a) + (~ - b)~- < (/~ - o~) d- (/ ~ - b)tt <
k - a. The first pa r t is t rue since ~- < ~ and the second par t comes from (5). F r o m this
we see tha t (k - a) + ~ r < (k - a) + b~- and thus (k - a, b) is a feasible solution
which gives a greater va lue of the f u n c t i o n , -Jr v j t han tha t of (p, ~) for the m a x i m u m p
possible (and hence for all feasible p).

PROOF OF THEOREM 4. F r o m L e m m a 1 we see tha t for (~, j) to be a solution to Prob-
lem 2 we must have tha t for every ~ < j , ~ (/3) > 8~ (3). Also, for (L J) to be a solution,
j < ~0/~; otherwise the value of i would necessarily be nega t ive to satisfy the inequa l i ty
and hence infeasible. By Corol lary 2, .7 will be among the b-values genera ted by Algo-
r i thm 2.

4. A Faster Algorithm

We now present Algor i thm 3 (the last one in this paper) , which is Algor i thm 2 wi th a
few modificat ions tha t will speed up its execution performance For instance, in Algo-
r i thm 2, condit ion (i) would c a u s e a ~ a + c, b ~ - - b + d and t h u s 6 n e - - 6 n - SD.
Condi t ion (i) would recur unt i l 6B was reduced below 6D. ' [h is would have occurred
af ter [6B/6DJ steps. I t is now done in one step.

ALGORITHM 3

Given ~, q, b ~ (0 < q < 1)
(1) Imtia l izea = 0, b = 0, c = [ttl, d = 1, e = 1, f = 0.
(2) Let 8~ = a - - b t t + q, 6D = --c + d/t, t~r = e - - f # .

Iterate testing to determine which of conditions 0), 0i), or (hi) occurs and taking the action
Indicated for that condition.

(1) 6B _> t~D • a ~-- a + yc, b ~- b + ~d, where ~/ = m m ([t~B/t~Dl,[(bm.~ -- b)/dl).
(li) ~B < 8~ , 5D _> ~e " c~---c +'/e, d~----d + Tf, where "y = min ([~D/~FI,[(SD-- t~)/Sp]).

(in) ~B < ~D < ~" e* -e + [~e/~DlC, f~'--f+ [SF/i~D]d.
(3) HMt whenever b + d > b

THEOREM 5 Algorithm 3 generates the solutwns to Problems 1 and 2 with inputs q
equal to the fractwnal part of w, bm,~ = w /#

LEMMA 2. Let bk = b ~ kd, k = O, . . , K , such that 1 > 5B(bk) > ~B(bk+l) _> O.
Then either (~) none of bl , "." , bk-1 ~s a solutwn 3-value to Problem 2 or (i~) one of bo or
bk ~s a solution 3-value to Problem 2.

PROOF, Rewri t ing the assumed iucquali t ies we have

t > no- - bott ~ q > " > a k - b k # + q> • >0.

Mult ip ly ing the above set of inequaht ies by - l and adding o~ gives

¢~-- 1 < ¢o-- q - - n o + bo/z < . - . < o~-- q - a~ ~ butt < - . . < ~. (6)

F r o m the definition of b~ we have

b ~ + l ~ - b~tt = dtt. (7)

Le t ~k = W -- q -- a~, 0 < k _< K (which are integers since oo -- q ~s an in teger and
so is a~) and let t = [d#]. We have .

SUBLEMMA. ~k+l "~- i k - - [.

PROOF OF SUBLEMMA. Assume tha t for some k, z~+~ > ~, -- t + 1. T h e n adding
bk+~u to both sides gives

1 5 2 D. S. HIRSCHBERG AND C. K. WONG

[d~J = ~ and so d~ - t > 0. Also, from (6), ik + b~/.t > ~ -- 1 and thus i~ + b~/.t + 1 >
.i~ Together this implies that i ~ + b~+lg > ~, which contradicts (6). Therefore, since
o~+~ is an integer, ~ _< i~ - t.

Assume tha t for some k, Z~+l < ,~ - t - 1. From (6) and (7) we have

zk + bk~ < zk+~ -F bk+l~ _< (z~ + b~/~) "F [(d~ -- t) -- 1].

But this implies 1 < d# - t, which contradicts t = Idol. This leaves ~+~ = ~k - t as the
only possible al ternative.

CONTINUING WITH PROOF OF LEMMA '2. If d x < t, then for all k, ~k + b~" = ~k+~ +
t + bk~r = ~k+l + t + bk+l~- -- d~- > ~k+l "t- bk+l~'. Therefore {bk}, k > 0, do not maximize
the objective function ~ -F j~r Thus (i) is true.

I f dTr > t, then for all k, ~k -t- bk~" < ~+l -F bk+l~- and {bkl, k < K, do not maximize
the objective function. Thus (i) is true

IfdTr = t, then for all k, ~k + bk~" = i k + l + bk+l~ 'andb0, " , b e a l l give the same
value for the objective function. So either all are solution j -values to Problem 2, in which
case (il) is true, or all are not solutions, in which case (i) is true.

I)ROOF OF THEOREM 5. The flows of conditions (i), (it), and (iii) in Algorithms 2
and 3 are shown m Figure 1.

I t is seen tha t the modifications simply skip over the self-loops and make (in one shot)
all the changes in the variables tha t would have occurred one at a t ime

']'he test for |(b - b) / d] ensures tha t the last b-value less than or equal to b
tha t would have occurred in Algorithm 2 does occur in Algorithm 3 and is the solution
of Problem 1.

As shown in Lemma 2, the skipped b's are not needed to ensure that the solutmn to
Problem 2 which is generated by Algorithm 2 (see Theorem 4) is also generated by
Algori thm 3. []

Next we will show tha t the number of i terations in Algori thm 3 is O(log b). First ,
reh~rring to Figure 2 for the flow of conditions in Algorithm 3, we have:

LEMMA 3 Branch Z1 cannot occur more than log b,,~ t~mes.

PROOF. Z~ occurs only if condition (iii) is followed by condition (it). Let d and f be
values when (fit) occu r s ;d , f~ after (i i i) ;d" , f " after (it).

Then d' = d, f ' > f + d (see Algorithm 3), d '~ >_ d ~ --t- f , f" = f ' , and thus we have
d" > 2d.

Thus each time Z~ occurs, d at least doubles d is initialized at 1. After log b times,
d would have value greater than b and the algorithm would have halted. []

LEMMA 4. Branches Z2 and Z3 cannot occur more than log b ~ t~mes.

PROOF. Z1 is the only exit from (iii) and, by Lemma 3, cannot occur more than
log bm~ times. []

LEMMA 5. The chain of branches Z4 - Z6 - Z4 - Z6 cannot occur.
PROOF. Assume it can occur. This ts equivalent to assuming that the following se-

(o) (b) Z I

FLOW IN ALGORITHM 2 FLOW IN ALGORITHM 3 FLOW OF CONDITIONS
IN ALGORITHM =

Fie. 1 FI~ ~

A Polynomial-Time Algorithm for the Knapsacl~ Problem with Two Variables 153

8 o
8¢
8F 8B
8 F.

8 o

FIG

quence of conditions can o c c u r : (ll) (i) (ii) 0) (li). Initially 58 < liD, 6D > 5F and
(ii) occurs. As a result of (ii), 50' > 5D -- [(lid -- 6B)/lir]liF since (i) occurs next (see
Algorithm 3).

Also, that (i) occurs next implies 5o' < 5, . Furthermore, we haw;

8 8 - 50' = 8 8 - (8 0 - [(l i o - 88)/li~]8~) = r (l i o - 8,)/ l i~ll i~- (l i ~ - liB) < lip.

Together this means that after (ii) and before (i), lid was reduced below lib but just
below 58 (see Figure 3). After (i)occurs, gin' < 8~ ~ and also 88' < liF since l i b - liD' < lie.
Since (li) occurs next, 5D' >__ 8F. Thus, at this point, liD' > ~F > 58'. After (ii), we have
5o" _~ 5n' and thus (i) will occur next with 8D" < 58' < 5F. After (i), liB" < liD" and
thus 8n" < lio" < lie. But this means (ill) and not (ii) occurs next. E3

LEMMA 6. Branches Z4 and Z5 cannot occur more than 6 log b,,~ tzmes
PROOF. At least one of branches Z1, Z~, or Z3 must occur for each two occurrences of

branches Z4 or Z5 since there are no self-loops and wo cannot loop Za and Z~ for more
than two occurrences of Z4. Since the sum of the number of occurrences of Z1, Z~, and
Z,~ is less than 3 log b (Lemmas 6 and 7), Z4 and Z5 cannot occur more than 6 log
bm~ times. []

THEOnEM 6. The number of sterations in A lqorzthm 3 is 0 (log b~:) .
PROOF. I t follows from Lemmas 3, 4, and 6. []
COROLLARY 3. Algorithm 3 can be used to solve Problem 1 or Problem 2 in 0 ({ log ¢o [+

{ log ~ I) ~terations
PROOF. For Problem 1, the last b-value generated is the solutmn j-value. To get this

it will take 0 (log bm~) _< 0 (] log w I +] log ~ I) iterations. The solution ~-value is simply
= [oo--~3J-
For Problem 2, we need simply look at the b-values generated (less than or equal to

O(log b) of them) and test for maximizing ~ -k r j with j = b, ~ = [w -- #jJ. []
Finally, we can address the original problem:
Problem 3. Given cl , c2, a~, a2, b. Find integers X1, X2 _> 0 so that clX1 + c2X~ is

maximized and a~X1 -k a~X~ < b.
COROLLARY 4. Algorithm 3 can be used to solve Problem 3 in 0(I log c~ I + I log c~ I +

I log all -F I log a2 I + I log b I) iteratwns.
PROOF. Without loss of generality, we can assume that cx/a~ > c2/a2.
If c~/a~ > cJa2, then Problem 3 is equivalent to Problem 2 with ~r = c2/c~, 1~ = a~/al,
= b/a~.

If cz/a~ = c2/a~ then Problem 3 is equivalent to Problem 1 with # and w as above.
In either case the algorithm will terminate in 0 (I log w [-t- I log I~ I) iterations and

Ilog¢°[< II°gb[+ Iloga, I, [l o g # l -< I logal l + [loga21-
Since the number ~r = c~/c~ is used, the term 0 (I log c~ I + [log c~ [) is also needed.

The corollary thus follows. []
Since in each iteratmn multiplication of 0 (n) precision numbers is being performed

and such a multiplication takes time 0 (n log n log log n), it follows that the asymptotic
time complexity of our algorithms is 0 (n 2 log n log log n).

1 5 4 D, s . HIRSCHBERG A N D C. K. WONG

5. Concluding Remarks

In this paper we propose an algonthm to solve the knapsack problem with two variables.
This algorithm originates from a well-known continued fraction method and runs in
polynomial time of the input length. We conjecture that for any fixed n > 2, the knapsack
problem with n vanables may be solved in polynomial time The proof seems very
difficult and generalization of the method used in this paper does not seem to work. I t is
hoped that the modest beginning presented in this paper will draw the at tention of more
re~,arche~ and will bring about the eventual solution of this problem

REFERENCES

(Note. References [1-3] are not cited m the text.)

1. HARDY, G. H, AND WRICHT, E M An Introduction to the Theory of Numbers, 3rd ed Oxford U.
Press, London, 1956, pp. 129-153

2 HOROWITZ, E , AND S^HNI, S. Computing partitions with applications to the knapsack prob-
lem J ACM 21, 2 (April 1974), 277-'292.

3 Hu, T C. Integer Programming and Network Flows Addmon-Wesley, Reading, Mass , 1969,
pp. 311-316

4 KARP, R M Reducibility among combinatorial problems In Complexity of Computer Computa-
hons, R. E. Mdler and J. W. Thatcher, Eds., Plenum Press, New York, 1972, pp 85-103.

5 KN~JTn, D.E. A terminological proposal. SIGACT News 6, 1 (Jan. 1974), 12-18
6 LUEK~R, G S Two polynomml complete problems m nonnegative integer programming.

Computer Science TR-178, Princeton U, Princeton, N J., March 1975.
7 SAHm, S. Approximate algorithms for the 0/1 knapsack problem. J ACM 22, 1 (Jan. 1975),

115--124

RECEIVED AUGUST 1974; REVISED MARCH 1975

Journal of the Assacmtion for Computing Machinery, Vol 23, No 1, January 1976

