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Abstract

An ordered minimal perfect hash table is one in which no collisions occur among a

prede�ned set of keys, no space is unused and the data are placed in the table in order.

A new method for creating ordered minimal perfect hash functions is presented. It

creates hash functions with representation space requirements closer to the theoretical

lower bound than previous methods. The method presented requires approximately

17% less space to represent generated hash functions and is easy to implement. How-

ever, a high time complexity makes it practical for small sets only (size < 1000).
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1 Introduction

A hash table is a data structure in which a number of keyed items are stored. To access

an item with a given key, a hash function is used. The hash function maps from the set of

keys, to the set of locations of the table. If more than one key maps to a given location,

a collision occurs, and some collision resolution policy must be followed. On the average,

locating an item in a hash table takes O(1) time [11]. Hash tables are used in a wide range

of applications. They are quite popular due to their low average access time.

If the set of keys is predetermined, then we may attempt to create a hash table where

no collisions occur, i.e., no two keys map to the same location. Such a hash table is called a

perfect hash table, and its associated hash function a perfect hash function (PHF). Further-

more, we could create a table with the minimal number of locations, exactly one location per

key. Such a table is called a minimal perfect hash table, and the associated minimal perfect

hash function (MPHF) is a bijection, from the set of keys onto the set of table locations. If

�
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all of the aforementioned conditions are met, and the keys are placed in some predetermined

order, then the function is called an ordered minimal perfect hash function (OMPHF).

OMPHFs are highly useful. Applications where a set of prede�ned keys need to be

recognized abound. OMPHFs allow prede�ned keys to be recognized quickly. In many

applications, it is also necessary to be able to list the keys in a particular order (i.e. alphabetic

order) and to �nd the predecessor and successor of a given key. OMPHFs allow listing, since

the table merely needs to be printed in order. Predecessor and successor operations are

easily implemented since the predecessor of a key is located immediately before it and the

successor immediately after it.

OMPHFs allow the hash table to be stored in the minimalnumber of locations, n locations

are required for n keys. However, di�erent methods require varying amounts of space to

represent the hash function. The resources (principally execution time) required to determine

an OMPHF will also vary with the method.

2 Preliminaries

The functions we propose have the form:

h(x) =

2

4

m�1

X

j=0

g

�

h

j

(x)

�

3

5

mod p (1)

where:

1. p is the least prime p � n.

2. m � 1 is some small integer.

3. k

i

is a member of the prede�ned key set K = fk

1

; k

2

; . . . ; k

n

g, and n is the number

of keys. Note that the indices imply the ordering of the keys. For example, if the keys

are character strings, then k

1

is the �rst key in lexicographic order.

4. h

i

is a pseudo-random function from K to the integral range [0 : s � 1], where s is a

user-de�ned parameter. Typically, the ratio (de�ned below) determines s to be a little

more than n.

5. g is a mapping from [0 : s� 1] to [0 : p� 1].

Majewski, Wormald, Czech and Havas [9], and Czech, Havas and Majewski [3] utilize func-

tions of this form, however, they impose additional requirements on images of the h

i

's. Fox,

Chen, Daoud, and Heath use functions of a very similar form [5] (Section 2.1.1, Method 1).

(The di�erences are not important, the main one being that they �x m = 2.)

The composition of the keys (alphabetic, numeric etc. . .) is of concern to us only insofar

that good pseudo-random functions can be found which map the keys to integers. Several
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authors have given families of pseudo-random functions which work well for character string

keys [4, 5, 6, 7, 10].

The goal of our algorithm, and that of the algorithms of Fox et al., Czech et al., and

Majewski et al., is to determine the mapping g.

The cardinality of the domain of g governs the amount of space required to represent the

OMPHF. Fox et al. have shown that the theoretical lower bound on the number of bits to

represent an OMPHF approaches n log

2

n as n gets large [4]. The number of values in the

domain of g is s, and each value in the range of g is in [0 : n � 1]. The number of possible

mappings is n

s

. Therefore, representing g requires at least log

2

(n

s

) = s log

2

n bits. So s

must be at least n. After Fox et al., we refer to the value s=n as the ratio of the OMPHF.

The use of pseudo-random functions gives our algorithm and similar algorithms [3, 6, 9]

a distinct advantage over other OMPHF methods [1, 2]. If our algorithm fails, di�erent

pseudo-random functions can be tried until hashing succeeds.

3 The Algorithm

We now present our algorithm for �nding a function g, if it exists. We de�ne:

b
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In words, b
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is the number of values h
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) which are equal to j. The

image of g contains s values, [0 : s� 1]. For each of these, we must determine which value

in [0 : p � 1] it maps to. We create a variable g

i

which corresponds directly to the value of

g(i). Consider the following set of equations:
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over the �nite �eldZ

p

. (Where all arithmetic operations are performed modulo p. Note that

Z

n

is not a �eld if n is not prime, and so we choose p, the least prime greater than or equal

to n, to be our modulus. A �eld is needed for Gaussian elimination.) This system can be

rewritten as:

^

B

^

G =

^

H

where

^

H is a column vector de�ned by h

i

= i � 1,

^

B is the n � s matrix with entries b

i;j

as previously de�ned, and

^

G is the vector to be solved for. This system of equations will

have a solution if and only if a g yielding an OMPHF exists. The system is solvable overZ

p

,

if

^

B has rank n. If this is the case, the keys may be hashed in any a priori order. Gaussian

elimination, which can be performed in worst case time of O(n

3

), is one method for �nding
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a solution. Since the system is sparse, we might also use a probabilistic method, due to

Wiedemann [12], which will solve such systems in expected O(n

2

) time. We note that Gori

and Soda originated the idea of using algebraic methods to �nd OMPHFs [8].

We discuss brie
y the importance of pseudo-random functions, since their use is central

to our method. The methods of Fox et al., Czech et al., and Majewski et al. also depend on

pseudo-random functions. We limit our discussion to pseudo-random functions of character

strings. We assume that our pseudo-random functions have the following properties:

1. The values on di�ering keys, h

i

(x) and h

i

(y), are independent.

2. The values of di�ering functions on the same key, h

i

(x) and h

j

(x), are independent.

3. The functions are uniformly distributed. For any character string x, the probability

that h

i

(x) = j should equal the probability that h

i

(x) = j

0

, for all j 6= j

0

in the range

of h

i

.

Property 1 is clearly important, if two keys are not hashed independently, the left hand sides

of the corresponding equations will be identical, and no solution to the linear system can be

found. Properties 2 and 3 are of a more heuristic nature. They ensure that the resulting

matrix is truly random. Fox et al. [7] have proposed using functions of the following form:

h(x) =

2

4

jxj

X

i=1

H(x

i

; i)

3

5

mod s (2)

where H(c; i) is a mapping from each character and index to a random integer in [0 : s� 1].

This family of functions has the properties we desire. Further, it has the property that

functions in the family are easily created. To create a pseudo-random function, we merely

generate a small table of random numbers. Note that because of this, and property 2, if one

set of pseudo-random functions fh

0

; . . . ; h

m�1

g fails to provide an OMPHF, we can easily

generate a new set and try again. If a given random set of equations (of the form we use) is

solvable with probability independent of its size, we have a Las Vegas algorithm for �nding

OMPHFs. Note that for smaller key sets, functions of a simpler nature than (2) may su�ce.

The average time complexity of the method we propose is much greater than that of

the methods of Fox et al., Majewski et al., and Czech et al., all of which have linear time

complexity. However, for small sets of keys (n < 1000), implementation cost may be more

important than running time. Mathematical software libraries exist which allow for the rapid

implementation of our method. For instance, the symbolic algebra packageMathematica can

be used to solve simultaneous equations over �nite �elds.

A small example is presented in Tables 1 and 2 and Figure 1. An OMPHF is created for

the months of the year, using three pseudo-random functions (m = 3). Since n = 12 is not

prime, we let p = 13. We use a ratio of 1.10, and thus s is also 13.

For our example, the value of the pseudo-random function h

i

on a character string is the

sum of the values of h

i

for each character. A random number is assigned to each character

`a' { `z' by each h

i

. Note that such a simple pseudo-random function works for this example,
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`a' `b' `c' `d' `e' `f' `g' `h' `i' `j' `k' `l' `m'

h

0

0 6 10 6 12 2 9 5 1 8 0 7 7

h

1

12 9 7 2 0 3 7 3 1 3 12 2 12

h

2

4 7 8 10 0 11 8 8 5 4 3 9 3

`n' `o' `p' `q' `r' `s' `t' `u' `v' `w' `x' `y' `z'

h

0

4 12 6 7 11 12 11 6 6 9 2 6 10

h

1

12 12 12 3 1 6 7 9 7 0 6 1 8

h

2

12 4 4 12 1 7 2 10 10 8 5 7 11

i 0 1 2 3 4 5 6 7 8 9 10 11 12

g(i) 3 1 11 2 7 1 0 4 5 3 5 8 0

Table 1: Values of h

0

, h

1

, h

2

and g

i k

i

h

0

(k

i

) h

1

(k

i

) h

2

(k

i

) h(k

i

) = �g(h

j

(k

i

)) mod p

1 `january' 9 11 3 0 = (3 + 8 + 2) mod 13

2 `february' 2 10 2 1 = (11 + 5 + 11) mod 13

3 `march' 7 9 11 2 = (4 + 3 + 8) mod 13

4 `april' 12 2 10 3 = (0 + 11 + 5) mod 13

5 `may' 0 12 1 4 = (3 + 0 + 1) mod 13

6 `june' 4 11 0 5 = (7 + 8 + 3) mod 13

7 `july' 1 2 4 6 = (1 + 11 + 7) mod 13

8 `august' 5 11 2 7 = (1 + 8 + 11) mod 13

9 `september' 11 8 11 8 = (8 + 5 + 8) mod 13

10 `october' 9 9 0 9 = (3 + 3 + 3) mod 13

11 `november' 5 1 11 10 = (1 + 1 + 8) mod 13

12 `december' 11 5 3 11 = (8 + 1 + 2) mod 13

Table 2: Values of h

0

; h

1

; h

2

and h, for the set of months

but might not work for larger examples. For instance, if the key set contained anagrams,

then a more complicated pseudo-random scheme would be required. The values of h

0

; h

1

; h

2

are displayed in Table 2. Also note that if this particular set of pseudo-random functions

were not to work, we could easily produce new pseudo-random functions, by simply assigning

di�erent random values in Table 2.

The matrix

^

B augmented by

^

H is displayed in Figure 1. By using Gaussian elimination on

this matrix, we solve for g. Note that if g was not found, we could simply choose new numbers

for Table 2, and try again. Since p 6= n, the ratio is 13dlog

2

13e=(12dlog

2

12e) = 1:083.
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0 0 0 1 0 0 0 0 0 1 0 1 0 0

0 0 2 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 1 0 1 0 1 0 2

0 0 1 0 0 0 0 0 0 0 1 0 1 3

1 1 0 0 0 0 0 0 0 0 0 0 1 4

1 0 0 0 1 0 0 0 0 0 0 1 0 5

0 1 1 0 1 0 0 0 0 0 0 0 0 6

0 0 1 0 0 1 0 0 0 0 0 1 0 7

0 0 0 0 0 0 0 0 1 0 0 2 0 8

1 0 0 0 0 0 0 0 0 2 0 0 0 9

0 1 0 0 0 1 0 0 0 0 0 1 0 10

0 0 0 1 0 1 0 0 0 0 0 1 0 11

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Figure 1: The matrix (

^

Bj

^

H) for the set of month names (over Z

13

)

4 Analysis

Theoretical analysis of solvability of random equations (of our particular form) would seem

to be di�cult, and so we test our method empirically.

We implemented our method in C, and used Monte Carlo methods to test it. We tested

our method on sets of keys chosen randomly from the Unix online dictionary, /usr/dict/words.

Keys with length less than 3 or greater than 16 were not considered as candidates. For these

OMPHFs, we use pseudo-random functions as described in [7].

The results of our Monte Carlo study appear in Table 3. The parameters n, m and the

ratio value were varied. For n � 500, 100 cases were tried, while for n > 500, 20 cases

were tried. We �nd that larger values of m result in a higher incidence of solvability. By

increasing m, it is possible to �nd OMPHFs with ratios approaching 1. However, it appears

that the ratio must be selected carefully. If the ratio is too low, then the rate of solvability

decreases with increasing n. On the other hand, if the ratio is too large, then the rate of

solvability will go to 1 as n increases, but space will be wasted. For �xed n, the probability

of �nding a hashing increases with s=n. In order to demonstrate this, for each choice of

m = 3; 4; 5, we try three di�erent ratios: one which results in a solvability rate approaching

0 for large n, one which results in a solvability rate of � :80, and one which results in a

solvability rate approaching 1 for large n, The case of m = 2 has been studied by Fox et al.,

and is not of primary concern to us, since hash functions with m = 2 are space wasteful (they

require more than 10% above the theoretical lower bound). For m = 2, with a ratio of 2:40,

about 78% of the cases are solved. This con�rms the results of Fox et al. [4]. For m = 3,

with a ratio of 1:10, an OMPHF is found about 73% of the time. Further, for m = 4, a ratio

of 1:03 su�ces to �nd an OMPHF in 84% of the cases and, for m = 5, a ratio of 1:01 is

su�cient in 86% of the cases.

Our method does not provide a success rate of 100%. However, using the family of
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pseudo-random functions described by Fox et al. [7], we are able to quickly generate new

pseudo-random functions if hashing fails. From the probabilities determined by our empirical

data we calculate, for m = 2 with ratio 2:40, the expected number of tries to �nd a hash

function for a given set of keys is � 1:3. For m = 3 with ratio 1:10 the expected number of

tries is � 1:4. For m = 4 and m = 5 with ratios 1:03 and 1:01 the expected number of tries

to �nd a hashing is � 1:2.

We compare the space requirements of our method with that of others. For m = 2,

our results con�rm those of Fox et al., a ratio of 2:40 is su�cient [4] (analysis of method 1,

Section 3.2.2.). Fox et al. also give a method for �nding OMPHFs which uses functions quite

di�erent from (1) [4] (Method 3, Section 2.1.3). This method achieves ratios around 1:20.

(In one case they �nd a ratio of 1:13.) Majewski et al. found that their method achieved

a minimal ratio of 1:23 with m = 3. The method of Majewski et al. requires ratios of 1.29

and 1.41 for m = 4 and m = 5, respectively. Our method requires less space than any other

for m > 2.

The tradeo� is that our method requires much more time to �nd a hashing. The other

cited methods all achieve an expected linear time complexity. They can be used for very

large key sets, Our method can only be used for key sets of small size. For several case sizes,

m = 3, and a ratio of 1.10, the average times to �nd hash functions (using an O(n

3

) Gaussian

elimination algorithm) are displayed in Table 4. Timings were made on a SPARC station

IPC. In comparison, the method of Fox et al. needs only 3 seconds to �nd an OMPHF for

16,384 keys, on a DECsystem 5000 model 200 [4].

5 Conclusion

The method we present has a higher time complexity than the algorithms of Fox et al.,

Majewski et al., and Czech et al.. However, it has several advantages:

1. It is conceptually simple.

2. For small sets, implementation costs may be more signi�cant than time complexity.

Our method may be implemented using pre-existing mathematical library routines.

3. By using higher values of m, OMPHFs may be found with ratios approaching 1, the

theoretical lower bound.

An open problem is calculating the theoretical probability of �nding an OMPHF, as a

function of (primarily) m and the ratio. Czech et al. and Majewski et al. have performed

such analysis for the case of m = 2 and ratios greater than two [3, 9]. However, for m > 2

analysis seems much more di�cult. This work and that of Czech et al. and Majewski et al.

rely on empirical analysis for m > 2.
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m

n p 2 3 4 5

s=n

2:40 1:05 1:10 1:20 1:01 1:03 1:05 1:005 1:01 1:03

50 53 0.81 0.36 0.61 0.94 0.66 0.85 0.99 0.75 0.94 0.99

100 101 0.74 0.15 0.67 0.95 0.34 0.78 1.00 0.79 0.79 0.99

150 151 0.73 0.15 0.74 0.98 0.38 0.86 1.00 0.72 0.96 1.00

200 211 0.74 0.06 0.75 0.97 0.16 0.73 1.00 0.51 0.80 1.00

250 251 0.77 0.06 0.70 0.99 0.17 0.86 1.00 0.36 0.86 1.00

300 307 0.72 0.03 0.71 0.98 0.10 0.84 1.00 0.62 0.75 1.00

350 353 0.78 0.00 0.71 1.00 0.10 0.85 1.00 0.46 0.84 1.00

400 401 0.79 0.02 0.69 0.98 0.06 0.82 1.00 0.34 0.74 1.00

450 457 0.79 0.01 0.71 1.00 0.06 0.85 1.00 0.34 0.83 1.00

500 503 0.77 0.00 0.71 1.00 0.04 0.81 1.00 0.41 0.88 0.98

600 601 0.70 0.00 0.65 1.00 0.00 0.95 1.00 0.40 0.80 1.00

700 701 0.85 0.00 0.85 1.00 0.00 0.65 1.00 0.40 0.75 1.00

800 809 0.90 0.00 0.80 0.95 0.00 1.00 1.00 0.40 0.90 1.00

900 907 0.80 0.00 0.85 1.00 0.00 0.85 1.00 0.50 1.00 1.00

average :78 :06 :73 :98 :15 :84 1:00 :50 :86 1:00

Table 3: Rates of solvability for various n, m and s=n.

n 50 100 150 200 250 300 350

time 0.05 0.25 0.72 1.69 2.96 5.12 8.52

n 400 450 500 600 700 800 900

time 11.8 17.1 24.1 38.0 72.7 108 164

Table 4: Average times for various n (in seconds).
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