
Choosing Subsets with Maximum Weighted AverageDavid Eppstein Daniel S. HirschbergDepartment of Information and Computer ScienceUniversity of California, Irvine, CA 92717October 9, 1996AbstractGiven a set of n real values, each with a positive weight, we wish to �nd the subset ofn� k values having maximumweighted average. This is equivalent to the following formof parametric selection: given n objects with values decreasing linearly with time, �nd thetime at which the n� k maximum values add to zero. We show that these problems canbe solved in time O(n) (independent of k). A generalization in which weights are allowedto be negative is NP-complete.1 IntroductionA common policy in grading coursework allows students to drop a single homework score.The remaining scores are then combined in some kind of weighted average to determine thestudent's grade. The problem of performing such calculations automatically has an easy lineartime solution: simply try each set of n� 1 scores. The average for each set can be computedin constant time from the sums of all scores and of all weights.Consider the generalization of this problem in which not one but two scores may bedropped. More generally, of n scores, suppose k may be dropped. Now how can we maximizethe weighted average of the remaining scores, more quickly than the naive O(nk) algorithm?We formalize the problem as follows: We are given a set S of n scores hvi; wii, where videnotes the value of a score and wi is positive and denotes the weight of the score. For laterconvenience we let V and W denote the sums of the values and weights respectively. We wishto �nd a subset T � S, with jT j = n � k, maximizing the weighted averageA(T ) = Pi2T viPi2T wi : (1)In the coursework problem we started with, vi will typically be the grade received by the givenstudent on a particular assignment, while wi will denote the number of points possible on thatassignment. As we will see, this problem can also be reformulated as a form of parametric1



selection: given n objects with values decreasing linearly with time, �nd the time at whichthe n� k maximum values add to zero.Some similar problems have been studied before, but we were unable to �nd any referenceto the minimum weighted average subset problem. Algorithms for �nding a cycle or cut ina graph minimizing the mean of the edge costs [12, 13, 14, 24] have been used as part ofalgorithms for network 
ow [9, 11, 21] and cyclic sta�ng [16], but the averages used in theseproblems do not typically involve weights. More recently, Bern et al. [2] have investigatedproblems of �nding the possible weighted averages of a point set in which the weight of eachpoint may vary in a certain range. However that work does not consider averages of subsetsof the points.One intuitively appealing idea for the maximum weighted average problem is a greedyapproach: �nd i1 maximizing A(S�i1), i2 maximizing A(S�i1�i2), and so on. Unfortunatelythis does not always leads to the correct answer. However, there is a confusing assortment oftechniques that do correctly solve the problem. From a simple linear-time test for whether agiven average is feasible, one can derive algorithms based on binary search, parametric search,or Newton iteration. Our problem can also be expressed as a linear program, to which manyalgorithms can be applied.Instead we give several algorithms for the problem that are more e�cient than the oneslisted above. Our aim is to solve the problem with as good performance as possible (inpractice and in theory), but our methods are based on ideas commonly used in computationalgeometry, so our paper has a secondary point of showing how geometric ideas can be usefuleven in a problem as seemingly simple as this one.Our algorithms are based on the following approaches. First, we show that our problemfalls into the class of generalized linear programs, applied by computational geometers [1,10, 20] to problems such as the minimum enclosing circle. Generalized linear programmingalgorithms can be solved in time linear in the input size but exponential or subexponentialin the dimension of the problem. For our weighted average problem, we show that thedimension is k, so for any �xed k we can �nd in O(n) time the set of n � k scores withmaximum weighted average. A version of Seidel's algorithm [22] provides a particularlysimple randomized algorithm for the case k = 2; our analysis predicts this to have expectedrunning time approximately three times that of the algorithm for the easy case k = 1.We believe that this generalized linear programming approach will provide the best per-formance for the grading application we began with, in which k is likely to be only as smallas 2 or 3. For larger values of k, this method quickly becomes impractical. Instead, we giveanother randomized algorithm, based on the linear time quickselect algorithm for �nding thek smallest values in a set. The idea is to solve the parametric selection problem de�ned aboveby simulating quickselect on the values of the objects as measured at the optimal time t� weare seeking. We do not have access to these values themselves but we can perform approx-imate comparisons on them which are su�cient for the selection process. Our method runsin O(n) expected time for any k, and this method appears to improve on our modi�cation ofSeidel's algorithm for k � 4.This provides a practical solution for moderate to large values of k. Since our algorithm2



is randomized, there remains a theoretical question: how quickly can one solve the prob-lem deterministically? We derandomize our algorithm by applying a second technique fromcomputational geometry, �-cuttings. The resulting linear-time algorithm settles the theoret-ical question of the asymptotic complexity of the problem and demonstrates once again theusefulness of geometry in seemingly non-geometric problems.Finally, we show that if we generalize the problem to allow negative weights, it becomesNP-complete, so no polynomial time solution is likely.2 Feasibility testing and parametric selectionSuppose that some (n� k)-element set T � S has weighted average at least A. We can writethis as an inequality of the form A � A(T ) = Pi2T viPi2T wi : (2)Rearranging terms, and using the assumption that the wi are positive, we can rewrite this asXi2T(vi �Awi) � 0: (3)Similar inequalities hold if we wish to know whether some T has average strictly greater thanA. De�ne for each i the function fi(t) = vi � twi, and de�neF (t) = maxjT j=n�k Xi2T fi(t): (4)Then F (t) can be computed in linear time simply by selecting the n�k largest (or equivalentlyk smallest) values fi(t). Equation 3 can be rephrased as saying that some set has average atleast A i� F (A) � 0. We state this as a lemma:Lemma 1. For any value A, some set T with jT j = n � k has weighted average at least Ai� F (A) � 0, and some T has weighted average greater than A i� F (A) > 0. F (A) can becomputed in time O(n).F (A) is a piecewise linear decreasing function since it is the maximum of � nn�k� decreasinglinear functions. Thus our original problem, of �nding the maximum weighted average amongall n � k point sets, can be rephrased as one of searching for the root of F (A). One canthen apply various methods for �nding roots of functions, including binary search, Newtoniteration, and parametric search, to yield algorithms for our original problem. Some of thesesolutions can be expressed very simply, but we do not describe them here as they havesuboptimal performance.In subsequent sections we show how to use the feasibility testing function F (A) withrandomization and more direct forms of parametric search in order to improve the worst caseor expected time to linear. 3



3 Generalized linear programmingMatou�sek et al. [20] de�ne a class of generalized linear programming problems that can besolved by a number of algorithms linear in the input size and exponential or subexponential inthe combinatorial dimension of the problem. Their de�nition of a generalized linear programfollows.We assume we are given some f taking as its argument subsets of some domain S (in ourcase, subsets of the given set of scores), and mapping these sets to some totally ordered domainsuch as the real numbers. This function is required to satisfy the following two properties:� If Q � R � S, f(Q) � f(R).� If Q � R � S, f(Q) = f(R), and s is any element of S, then f(Q [ fsg) = f(Q) i�f(R [ fsg) = f(R).A basis of such a problem is a set B � S such that for any proper subset X � B,f(X) < f(B). The dimension of a problem is the maximum cardinality of a basis. Thesolution to the problem is a basis B such that f(B) = f(S).In our problem, we let S be the set of scores we are given. We de�ne the objective functionf(X) as follows. f(X) = maxB�X;jBj=kA(S � B) (5)In other words, we consider a constrained version of our weighted average problem, in whichthe k scores we drop are required to come from set X . If jX j < k, we de�ne f(X) to be aspecial value (�1; jX j) less than any real number. The comparison between two such values(�1; x) and (�1; y) is de�ned to give the same result as the comparison between x and y.Any basis must consist of at most k scores, so the dimension of this problem is k. Toverify that this is a generalized linear program, we must prove that it satis�es the requirementsabove.Lemma 2. For the pair (S; f) de�ned as above from our weighted average problem, anysets Q � R satisfy f(Q) � f(R).Proof: For Q and R both having k or more members, this follows immediately since thechoices allowed in the maximization de�ning f(R) are a superset of the choices allowed forf(Q). A simple calculation shows that it also holds for smaller subsets. 2Lemma 3. For the pair (S; f) de�ned as above from our weighted average problem, anysets Q � R satisfying f(Q) = f(R), and any score s = hvi; wii, f(Q [ fsg) = f(Q) i�f(R [ fsg) = f(R).Proof: If jQj < k, then the assumption that f(Q) = f(R) forces Q and R to be equal,and the lemma follows trivially. Otherwise, there must be some basis B � Q � R withf(B) = f(Q) = f(R), and jBj = k. Suppose that B is non-optimal in Q[ fsg or R[ fsg. By4



an argument similar to that in Lemma 1, there is some other k-element set P in Q [ fsg orR [ fsg such that Xi2S�P fi(A(S �B)) > 0: (6)Further, we know that Xi2S�B fi(A(S �B)) = 0 (7)by the de�nition of fi. Since the sum for S � P is greater than the sum for S � B, theremust be scores i, j with i 2 P � B, j 2 B � P , and fi(A(S � B)) < fj(A(S � B)). ThenC = B [ fig � fjg also satis�es inequality 6, showing that C is a better set to remove thanB. We assumed that B was optimal in Q and R, so it must be the case that i = s and Cshows that B is non-optimal in both Q [ fsg and R [ fsg. Thus B is optimal in Q [ fsg i�it is optimal in R [ fsg. 2Corollary 1. The pair (S; f) given above de�nes a generalized linear program, and thesolution to the program correctly gives us the set of k scores to drop in S to maximize theweighted average of the remaining points.Theorem 1. For any constant k, we can �nd the maximum weighted average among all(n � k) element subsets of S, in time O(n).For instance, using a modi�cation of Seidel's linear programming algorithm [22], we can�nd the maximum weighted average using at most 2k!n expected multiplicative operations.For k = 2, the expected number of multiplicative operations of this method is at most3n + O(logn). Thus we should expect the total time for this algorithm to be roughly threetimes that for the k = 1 algorithm. We will later see that this bound compares favorably tothe algorithms we describe below when k = 2 or k = 3, but for larger values of k the factorialterm starts to become too large for this method to be practical.4 Connection with computational geometryBefore describing more algorithms, we �rst develop some geometric intuition that will helpthem make more sense.Recall that we have de�ned n linear functions fi(A), one per score. We are trying to �ndthe maximum weighted average A�, and from that value it is easy to �nd the optimal set ofscores to drop, simply as the set giving the k minimum values of fi(A�).Consider drawing the graphs of the functions y = fi(x). This produces an arrangementof n non-vertical lines in the xy plane. The value fi(A�) we are interested in is just the y-coordinate of the point where line fi crosses the vertical line x = A�. We do not care so muchabout the exact coordinates of this crossing|we are more interested in its order relative tothe similar crossing points for other lines fj , as this relative ordering tells us which of i or jis preferable to drop from our set of scores. 5



By performing tests on di�erent values of A, using Lemma 1, we can narrow the range inwhich the vertical line x = A� can lie to a narrower and narrower vertical slab, having as leftand right boundaries some vertical lines x = AL and x = AR. AL is the maximum value forwhich we have computed that F (AL) > 0, and AR is the minimum value for which we havecomputed that F (AR) < 0. If we use the algorithm of Lemma 1 on some value AL < A < AR,we can determine the relative ordering of A� and A; this results in cutting the slab into twosmaller slabs bounded by the line x = A and keeping only one of the two smaller slabs. Forinstance, the binary search algorithm we started with would simply select each successivepartition to be the one in which the two smaller slabs have equal widths.Any two lines fi and fj have a crossing pij unless they have the same slope, which happenswhen wi = wj . If it happens that pij falls outside the slab [AL; AR], we can determineimmediately the relative ordering of fi(A�) and fj(A�), as one of the two lines must be abovethe other one for the full width of the slab. If the two lines have the same slope, one is abovethe other for the entire plane and a fortiori for the width of the slab. We can express thissymbolically as follows.Lemma 4. If AL � A� � AR, fi(AL) � fj(AL), and fi(AR) � fj(AR), then fi(A�) �fj(A�).In this formulation, the lemma can be proven simply by unwinding the de�nitions andperforming some algebraic manipulation.De�ne A(i; j) to be the x-coordinate of the crossing point pij . If fi and fj have the sameslope, A(i; j) is unde�ned. If we use Lemma 1 to test the relative ordering of A� and A(i; j),the resulting slab [AL; AR] will not contain pi;j and so by the result above we can determinethe relative ordering of fi(A�) and fj(A�). Symbolically A(i; j) = (vi� vj)=(wi�wj), and wehave the following lemma.Lemma 5. If A(i; j) � A� and wi � wj , or if A(i; j) � A� and wi � wj , then fi(A�) �fj(A�).Again the lemma can be proven purely algebraically.The algorithms below can be interpreted as constructing slabs containing fewer and fewercrossing points pij , until we know enough of the relative orderings of the values fi(A�) toselect the smallest k such values. This will then in turn give us the optimal set of scores todrop, from which we can compute the desired maximum weighted average as the weightedaverage of the remaining scores.For instance, one method of solving our problem would be to use binary search or aselection algorithm among the di�erent values of A(i; j). Once we know the two such valuesbetween which A� lies, all relative orderings among the fi(A�) are completely determinedand we can apply any linear time selection algorithm that uses only binary comparisons.(Each such comparison can be replaced with an application of Lemma 5.) However thereare more values A(i; j) than we wish to spend the time to examine. Instead we use morecareful approaches that can eliminate some scores as belonging either to the set of k dropped6



scores or the remaining set of n � k scores, without �rst having to know their relative ordercompared to all other scores.We note that similar methods have been applied before, to the geometric problem ofselecting from a collection of n points the pair giving the line with the median slope [3, 4, 6,7, 17, 18, 23]. A geometric duality transformation can be used to transform that problem tothe one of selecting the median x-coordinate among the intersection points of n lines, whichcan then be solved by similar techniques to those above, of �nding narrower and narrowervertical slabs until no points are left in the slab. The algorithm is dominated by the time totest whether a given x-coordinate is to the right or left of the goal, which can be done in timeO(n logn). In our weighted average problem, the faster testing procedure of Lemma 1 andthe ability to eliminate some scores before all pairwise relations are determined allow us tosolve the overall problem in linear time.5 Randomized linear timeWe now describe a randomized algorithm which �nds the subset with maximum weightedaverage in linear time, independent of k. The algorithm is more complicated than the oneswe have described so far but should improve on e.g. our modi�cation to Seidel's algorithmfor k > 3.The idea behind the algorithm is as follows. If we choose a random member i of our setof scores, and let A� denote the optimal average we are seeking, the position of fi(A�) will beuniformly distributed relative to the positions of the other fj(A�). For instance i would havea k=n chance of being in the optimal subset of scores to be removed. If we know that it is inthis optimal subset, we could remove from our input those j with fj(A�) < fi(A�) and updatek accordingly. Conversely, if we know that score i has to be included in the set giving themaximum weighted average, we would know the same about all j with fj(A�) > fi(A�) andwe could collapse all such scores to their sum. In expectation we could thus reduce the inputsize by a constant fraction|the worst case would be when k = n=2, for which the expectedsize of the remaining input would be 3n=4.To compute the position of fi(A�), and to �nd the scores to be removed or collapsed asdescribed above, would require knowing the relative ordering of fi(A�) with respect to all othervalues fj(A�). For any j we could test this ordering in time O(n) by computing F (A(i; j))as described in Lemma 5. We could compute all such comparisons by binary searching forA� among the values A(i; j) in time O(n logn), but this is more time than we wish to take.The solution is to only carry out this binary search for a limited number of steps, givingthe position of fi(A�) relative to most but not all values fj(A�). Then with reasonably highprobability we can still determine whether or not score i is to be included in the optimalset, and if this determination is possible we will still expect to eliminate a reasonably largefraction of the input.We make these ideas more precise in the algorithm depicted in Figure 1. Much of thecomplication in this algorithm is due to the need to deal with special cases, and to theexpansion of previously de�ned values such as F (A) into the pseudo-code needed to compute7



Random(S ; k):AL  V =WAR  +1while jS j > 1 dochoose i randomly from Sfor hvj ;wj i 2 S doif wi = wj then�(i ; j ) vj � viA(i ; j ) �1else �(i ; j ) wi � wjA(i ; j ) (vi � vj )=(wi � wj )E  fhvj ;wj i j �(i ; j ) = 0gX  fhvj ;wj i j A(i ; j )� AL and �(i ; j )> 0g[fhvj ;wj i j A(i ; j )� AR and �(i ; j )< 0gY  fhvj ;wj i j A(i ; j )� AL and �(i ; j )< 0g[fhvj ;wj i j A(i ; j )� AR and �(i ; j )> 0gZ  S � X �Y � ErepeatA medianfA(i ; j ) j hvj ;wj i 2 Z gfor hvj ;wj i 2 S do fj (A) vj �AwjF (A) P(the largest jS j � k values of fj (A))if F (A) = 0 then return Aelse if F (A) > 0 then AL = Aelse AR = Arecompute X , Y , and Zif jX j+ jE j � jS j � k thenremove min(jE j; jX j+ jE j+ k � jS j)members of E from Sremove Y from Sk  k � (number of removed scores)else if jY j+ jE j � k thencollapse min(jE j; jY j+ jE j � k) members of Eand all of X into a single scoreuntil jZ j � n=32return v1=w1Figure 1. Randomized algorithm for the maximumweighted average.8



them.Let us brie
y explain some of the notation used in our algorithm. F (A) and fj(A) werede�ned earlier. Let A� denote the optimal average we seek; then as noted earlier the optimalsubset is found by choosing the scores with the n � k largest values of fj(A�). A(i; j) isde�ned as the \crossover point" for which fi(A(i; j)) = fj(A(i; j)). We initially let [AL; AR]give bounds on the range in which A� can lie. (It would be equally correct to set AL = �1but the given choice AL = V=W allows some savings in that some crossover points A(i; j) areeliminated from the range.) Note that AL � A� since removing scores can only increase theweighted average.In order to compare fi and fj at other values of A, we de�ne �(i; j) as a real value thatis positive or negative if for A > A(i; j), fi(A) < fj(A) or fi(A) > fj(A) respectively. Weusually compute �(i; j) by comparing wi and wj , but we use a di�erent de�nition if the weightsare equal (corresponding to the geometric situation in which lines y = fi(x) and y = fj(x)are parallel).Then set E consists exactly of those scores that have the same value and weight as therandom selection hvi; wii. Set X consists of those scores for which fj(AL) � fi(AL) andfj(AR) � fi(AR), with one inequality strict. In other words these are the scores for whichfj(A�) is known by Lemma 4 to be greater than fi(A�). Similarly Y consists of those scoresfor which we know that fj(A�) < fi(A�). Set Z consists of those scores for which the relationbetween fi(A�) and fj(A�) is unknown.If Z were empty, we would know whether score i itself should be included or excludedfrom the optimal subset, so we could simplify the problem by also removing all of either Xor Y . The purpose of the inner loop of the algorithm is to split the range [AL; AR] in a waythat shrinks Z by a factor of two, so that this simpli�cation becomes more likely.In order to compare this algorithm to others including our modi�cation of Seidel's algo-rithm, we analyze the time in terms of the number of multiplicative operations. It should beclear that the time spent on other operations is proportional to this.In what follows, we make the simplifying assumption that E contains only score i. Thisis without loss of generality, as the expected time can only decrease if E has other scores init, for two reasons. First, Z can initially have size at most jS � Ej. Second, the fact thatscores in E are equivalent to score i lets us treat them either as part of X or as part of Y ,whichever possibility allows us to remove more scores from our problem.Lemma 6. Let n denote the size of S at the start of an iteration of the outer loop of thealgorithm. The expected number of scores removed or collapsed in that iteration is at least49n=256.Proof: Let p be the position of fi(A�) = vi � A�wi in the sorted sequence of such values.Then p is uniformly distributed from 1 to n, so with probability at least 7=8, p di�ers by atleast n=32 from 1, k, and n. Consider the case that p � k � n=32. Then by the end of theinner loop, we will have at least k scores in Y and can collapse anything placed in X duringthe loop, removing at least n�p�n=32 scores. Similarly if k�p � n=32 we will have at leastn � k scores in X and can remove at least p � n=32 scores. The worst case happens when9



k = n=2, when the expected size of X (in the �rst case) or Y (in the second case) is 7n=32.Thus we get a total expectation of 49n=256. 2Lemma 7. In a single iteration of the outer loop above, the expected number of multiplica-tive operations performed is at most 371n=64.Proof: Let n denote the size of S at the start of the outer loop. Note that the onlymultiplicative operations are n divisions in the computation of A(i; j) in the outer loop, andjSj multiplications in the computation of F (A) in the inner loop. The inner loop is executedat most �ve times per outer loop, so the worst case number of operations per iteration of theouter loop is 6n.To reduce this bound we consider the size of S in each iteration of the inner loop. Theanalysis of the expected size of S in each iteration is very similar to that in Lemma 6, withthe n=32 bound on Z replaced by the values n, n=2, n=4, n=8, and n=16. For the �rst three ofthese, we can prove no bound better than n on the expected value of jSj. For the iteration inwhich jZj � n=8, we have probability 1=2 that p has distance n=8 from 1, k, and n, and whenp is in this range we can expect to remove n=8 values, so the expected size of S in the nextiteration is 15n=16. And for the iteration in which jZj � n=16, we have probability 3=4 thatp has distance n=16 from 1, k, and n, and when p is in this range we can expect to remove3n=16 values in iterations up through this one, so the expected size of S in the last iterationis 55n=64. Adding these expectations gives the overall bound. 2Theorem 2. The total expected number of multiplicative operations performed in the al-gorithm above is at most 1484n=49+ O(1) � 30:3n, and the total expected time is O(n).Proof: The time can be expressed as a random variable which satis�es a probabilisticrecurrence T (S) � 371jSj=64+ T (R) (8)where R is a random variable with expected size (1�49=256)jSj. By the theory of probabilisticrecurrences [15], the expected value of T (S) can be found using the deterministic recurrenceT (n) = 371n=64 + T ((1� 49=256)n) (9)which solves to the formula given in the theorem. 2Although the constant factor in the analysis of this algorithm is disappointingly large,we believe this algorithm should be reasonable in practice for several reasons. First, thebulk of the time is spent in the computations of F (A), since other operations in the innerloop depend only on the size of Z, which is rapidly shrinking. Thus there is little overheadbeyond the multiplicative operations counted above. Second, Lemma 7 assumes that initiallyZ = S, however due to bounds on [AL; AR] from previous iterations of the outer loop, Z mayactually be much smaller than S. Third, the analysis in Lemma 6 assumed a pathologicallybad distribution of the positions of fj(A�) for j 2 Z: it assumed that for p close to k these10



positions would always be between p and k, while for p far from k these positions would alwaysbe on the far side of p from k. In practice the distribution of positions in Z is likely to be muchmore balanced, and the number of scores removed will be correspondingly greater. Fourth, forthe application to grading, many weights are likely to be equal, which helps us in that thereare correspondingly fewer values of A(i; j) in the range [AL; AR] and fewer multiplicationsspent computing A(i; j). Fifth, the worst case for the algorithm occurs for k = n=2, but inthe case of interest to us k is a constant. For small k the number of operations can be greatlyreduced, as follows.Theorem 3. Let k be a �xed constant, and consider the variant of the algorithm abovethat stops when jZj < n=16. Then expected number of multiplicative operations used by thisvariant is at most 580n=49 +O(k) � 11:8n.Proof: We mimic the analysis above. With probability 7=8, n=16 � p � 15n=16. For suchp, the expected number of scores removed is 7n=16. Therefore the expected number of scoresleft after an iteration of the outer loop is (1 � (7=8)(7=16))n = (1 � 49=128)n = 79n=128.The same sort of formula also tells us how many scores are expected to be left after eachiteration of the inner loop. As long as jZj � n=2 we can't expect to have removed anyscores, so the �rst two iterations have n expected operations each. In the third iteration,jZj � n=4, and with probability 1=2 n=4 � p � 3n=4. For p in that range, we wouldexpect to have removed n=4 of the scores. Therefore in the third iteration we expect tohave (1� (1=2)(1=4))n= (1� 1=8)n = 7n=8 operations. Similarly in the fourth iteration weexpect to have (1�(3=4)(3=8))n= 21n=32 operations. We can therefore express our expectednumber of operations as a recurrenceT (n) = 145n=32 + T (79n=128) (10)with the base case that if n = O(k) the time is O(k). The solution to the recurrence is givenby the formula in the theorem. 2This method is already better than our modi�cation of Seidel's algorithm when k = 4,and continues to get better for larger k, since the only dependence on k is an additive O(k)term in place of the multiplicative O(k!) factor in our modi�cation of Seidel's algorithm.6 Deterministic linear timeMuch recent work in theoretical computer science has focused on the di�erence betweenrandomized and deterministic computation. From this work, we know many methods ofderandomization, that can be used to transform an e�cient randomized algorithm (such asour linear time algorithm described above) into a deterministic algorithm (sometimes withsome loss of e�ciency).In our case, we have an algorithm that selects a random sample (a score hvi; wii) fromour input, and eliminates some other scores by using the fact that the position of fi(A�) inthe list of all n such values is likely to be reasonably well separated from 1, k, and n. We11



would like to �nd a similar algorithm that chooses this sample deterministically, so that ithas similar properties and can be found quickly. Since the randomized algorithm is alreadyquite satisfactory from a practical point of view, this derandomization process mainly hassigni�cance as a purely theoretical exercise, so we will not worry about the exact dependenceon n (e.g. as measured previously in terms of the number of multiplicative operations); insteadwe will be satis�ed with any algorithm that solves our problem in time O(n).We return to the geometric viewpoint: graph the linear functions y = fi(x) to form a linearrangement in the xy-plane, which is cut into slabs (represented as intervals of x-coordinates)by our choices of values to test against A�. We are trying to reduce the problem to a slab[AL; AR] containing few crossings of the lines; this corresponds to having many pairs of scoresfor which we know the preferable ones to drop.Many similar problems of derandomization in computational geometry have been solvedby the technique of �-cuttings, and we use the same approach here. Since the technique isprimarily of theoretical interest, we merely sketch it, omitting detailed proofs in favor ofsaving space.A cutting is just a partition of the plane into triangles. If we are given a set of n linesy = fi(x) in the xy-plane, an �-cutting for those lines is a cutting for which the interior ofeach triangle is crossed by a small number of the lines, at most �n of them. Matou�sek [19]showed that an �-cutting involving O(1=�2) triangles can be computed deterministically intime O(n=�), as long as 1=� < n1�� for a certain �. We will be choosing � to be some �xedconstant, so the resulting cutting has O(1) triangles and can be computed in linear time.The idea of our algorithm is as follows. We �rst compute an �-cutting for the set of linesy = fi(x) (that is, a certain triangulation of the xy-plane). By binary search, we can restrictthe optimal value A� we are seeking to lie in a range [AL; AR] that does not contain thex-coordinate of any triangle vertex. Therefore if we consider the vertical slab AL � x � AR,the edges of triangles in the cutting either cross the slab or are disjoint from it. If a trianglecrosses the slab, at most two of its three sides do so, and the top and bottom boundary linesof the triangle are well de�ned.For each edge that crosses the slab, we consider the line y = ax+ b formed by extendingthat edge, and pretend that it is of the form y = fi(x) for some pair (which must be the pairhb;�ai). We then use this pair to eliminate scores from S similarly to the way the previousrandomized algorithm used the pair hvi; wii. It turns out not to be important that hb;�aimight not be in S. (If it is absent from S we have fewer special cases to deal with. Howeverif the input includes many copies of the same score, it may be necessary for hb;�ai to be inS.) Thus for each pair hb;�ai found in this way we compute sets X , Y , and Z as beforeand eliminate either X or Y if the other of the two is large enough. Unlike the previousrandomized algorithm, we do not need an inner loop to reduce the size of Z. Instead we usethe de�nition of our �-cutting to prove that jZj � �n. Further, for two edges bounding thetop and bottom of the same triangle, the corresponding sizes of X and Y di�er from one edgeto the other by at most �n. Therefore at least one of the edges from the �-cutting, when usedas a sample in this way, allows us to eliminate a constant fraction of the input.12



Theorem 4. The algorithm sketched above returns the maximum weighted average amongall (n� k) element subsets of S, in time O(n).Further details and pseudocode of this deterministic algorithm can be found in the tech-nical report version of this paper [8].7 Negative weightsThe methods we have described do not make any assumption about the values vi, howeverthe non-negativity of the weights wi was used in Lemma 1 and therefore in all our algorithms.It is natural to consider a slight generalization of the problem, in which we allow theweights wi to be negative. The weighted average V=W of a set S is still well de�ned (as longas we make some consistent choice of what to do when W = 0) so it makes sense to seekthe (n � k) element subset maximizing this quantity. We can de�ne F (A) as before, and asbefore we get a convex piecewise linear function. Unlike the previous situation, there mightbe either zero or two values of A for which F (A) = 0. In the situation in which F (A) hastwo roots, it turns out that our problem can be solved by �nding the larger of these two, byminor modi�cations of the algorithms we showed before. However it is not so obvious whatto do when F (A) has no roots.Unfortunately, this problem turns out to be NP-complete, as we now show. We use areduction from the subset sum problem, which asks whether, given a collection S of positiveintegers si, and a value t, there is a subset of S with sum exactly t.Theorem 5. It is NP-complete to �nd the (n � k) element subset of a collection of scoreshvi; wii maximizing the weighted average P vi=Pwi, if one or more of the weights can benegative.Proof: Given an instance (S; t) of the subset sum problem, we transform S to the setof scores h1; 2sii. We also include n additional \dummy" scores h1; 0i and one �nal scoreh1; 1� 2ti. We then ask for the set of n + 1 scores maximizing the weighted average. Weclaim that the maximum possible average is n + 1 exactly when the subset sum problem issolvable.Note that for any set containing h1; 1� 2ti, Pwi is odd (so nonzero). For any other setof n + 1 values there must be at least one score h1; sii, and the sum is positive (so nonzero).Therefore we need not worry about what to do when Pwi is zero. Also note that any sumof weights must be an integer, so all weighted averages of subsets of the input are of the form(n + 1)=x for some integer x.Since all values vi are equal, this weighted average is maximized by �nding a set for whichPwi is positive and as small as possible. If some set A � S has sum exactly t, we constructa set of scores by including all pairs h1; sii for si in A, together with h1; 1� 2ti and enoughdummy scores to make the set have n + 1 scores total. This set of scores then has Pwi = 1and weighted average n + 1. 13
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