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Abstract

Given a set of n real values, each with a positive weight, we wish to find the subset of
n — k values having maximum weighted average. This 1s equivalent to the following form
of parametric selection: given n objects with values decreasing linearly with time, find the
time at which the n — & maximum values add to zero. We show that these problems can
be solved in time O(n) (independent of k). A generalization in which weights are allowed
to be negative is NP-complete.

1 Introduction

A common policy in grading coursework allows students to drop a single homework score.
The remaining scores are then combined in some kind of weighted average to determine the
student’s grade. The problem of performing such calculations automatically has an easy linear
time solution: simply try each set of n — 1 scores. The average for each set can be computed
in constant time from the sums of all scores and of all weights.

Consider the generalization of this problem in which not one but two scores may be
dropped. More generally, of n scores, suppose k may be dropped. Now how can we maximize
the weighted average of the remaining scores, more quickly than the naive O(n”) algorithm?

We formalize the problem as follows: We are given a set S of n scores (v;, w;), where v;
denotes the value of a score and w; is positive and denotes the weight of the score. For later
convenience we let V and W denote the sums of the values and weights respectively. We wish
to find a subset T C 5, with |T| = n — k, maximizing the weighted average

. R
A(T) = @ (1)

2ieT Wi
In the coursework problem we started with, v; will typically be the grade received by the given
student on a particular assignment, while w; will denote the number of points possible on that
assignment. As we will see, this problem can also be reformulated as a form of parametric



selection: given n objects with values decreasing linearly with time, find the time at which
the n — k maximum values add to zero.

Some similar problems have been studied before, but we were unable to find any reference
to the minimum weighted average subset problem. Algorithms for finding a cycle or cut in
a graph minimizing the mean of the edge costs [12, 13, 14, 24] have been used as part of
algorithms for network flow [9, 11, 21] and cyclic staffing [16], but the averages used in these
problems do not typically involve weights. More recently, Bern et al. [2] have investigated
problems of finding the possible weighted averages of a point set in which the weight of each
point may vary in a certain range. However that work does not consider averages of subsets
of the points.

One intuitively appealing idea for the maximum weighted average problem is a greedy
approach: find ¢; maximizing A(S —1i1), t2 maximizing A(S —i1—12), and so on. Unfortunately
this does not always leads to the correct answer. However, there is a confusing assortment of
techniques that do correctly solve the problem. From a simple linear-time test for whether a
given average is feasible, one can derive algorithms based on binary search, parametric search,
or Newton iteration. OQur problem can also be expressed as a linear program, to which many
algorithms can be applied.

Instead we give several algorithms for the problem that are more efficient than the ones
listed above. Our aim is to solve the problem with as good performance as possible (in
practice and in theory), but our methods are based on ideas commonly used in computational
geometry, so our paper has a secondary point of showing how geometric ideas can be useful
even in a problem as seemingly simple as this one.

Our algorithms are based on the following approaches. First, we show that our problem
falls into the class of generalized linear programs, applied by computational geometers [1,
10, 20] to problems such as the minimum enclosing circle. Generalized linear programming
algorithms can be solved in time linear in the input size but exponential or subexponential
in the dimension of the problem. For our weighted average problem, we show that the
dimension is k, so for any fixed k we can find in O(n) time the set of n — k scores with
maximum weighted average. A version of Seidel’s algorithm [22] provides a particularly
simple randomized algorithm for the case k& = 2; our analysis predicts this to have expected
running time approximately three times that of the algorithm for the easy case k = 1.

We believe that this generalized linear programming approach will provide the best per-
formance for the grading application we began with, in which & is likely to be only as small
as 2 or 3. For larger values of k, this method quickly becomes impractical. Instead, we give
another randomized algorithm, based on the linear time quickselect algorithm for finding the
k smallest values in a set. The idea is to solve the parametric selection problem defined above
by simulating quickselect on the values of the objects as measured at the optimal time ¢* we
are seeking. We do not have access to these values themselves but we can perform approx-
imate comparisons on them which are sufficient for the selection process. OQur method runs
in O(n) expected time for any k, and this method appears to improve on our modification of
Seidel’s algorithm for k > 4.

This provides a practical solution for moderate to large values of k. Since our algorithm



is randomized, there remains a theoretical question: how quickly can one solve the prob-
lem deterministically? We derandomize our algorithm by applying a second technique from
computational geometry, e-cuttings. The resulting linear-time algorithm settles the theoret-
ical question of the asymptotic complexity of the problem and demonstrates once again the
usefulness of geometry in seemingly non-geometric problems.

Finally, we show that if we generalize the problem to allow negative weights, it becomes
NP-complete, so no polynomial time solution is likely.

2 Feasibility testing and parametric selection

Suppose that some (n — k)-element set T C S has weighted average at least A. We can write
this as an inequality of the form

A< AT) = % (2)

Rearranging terms, and using the assumption that the w; are positive, we can rewrite this as

€T
Similar inequalities hold if we wish to know whether some 7" has average strictly greater than
A.
Define for each 7 the function f;(t) = v; — tw;, and define

F(t)= max 3 (1), (1)

|T|=n—Fk ieT

Then F(t) can be computed in linear time simply by selecting the n—k largest (or equivalently
k smallest) values f;(¢). Equation 3 can be rephrased as saying that some set has average at
least A iff F'(A) > 0. We state this as a lemma:

Lemma 1. For any value A, some set T" with |T| = n — k has weighted average at least A
iff F(A) > 0, and some T" has weighted average greater than A iff F'(A) > 0. F(A) can be
computed in time O(n).

F(A) is a piecewise linear decreasing function since it is the maximum of ( ", ) decreasing
linear functions. Thus our original problem, of finding the maximum weighted average among
all n — k point sets, can be rephrased as one of searching for the root of F(A). One can
then apply various methods for finding roots of functions, including binary search, Newton
iteration, and parametric search, to yield algorithms for our original problem. Some of these
solutions can be expressed very simply, but we do not describe them here as they have
suboptimal performance.

In subsequent sections we show how to use the feasibility testing function F(A) with
randomization and more direct forms of parametric search in order to improve the worst case
or expected time to linear.



3 Generalized linear programming

Matousek et al. [20] define a class of generalized linear programming problems that can be
solved by a number of algorithms linear in the input size and exponential or subexponential in
the combinatorial dimension of the problem. Their definition of a generalized linear program
follows.

We assume we are given some f taking as its argument subsets of some domain S (in our
case, subsets of the given set of scores), and mapping these sets to some totally ordered domain
such as the real numbers. This function is required to satisfy the following two properties:

e IfQCRCS, f(Q)< f(R).

e IfQ CRCS, f(Q) = f(R), and s is any element of S, then f(Q U {s}) = f(Q) iff
f(RU{s}) = [(R).

A basis of such a problem is a set B C 5 such that for any proper subset X C B,
f(X) < f(B). The dimension of a problem is the maximum cardinality of a basis. The
solution to the problem is a basis B such that f(B) = f(95).

In our problem, we let S be the set of scores we are given. We define the objective function
f(X) as follows.

f(X) = BCI?,?é:kA(S - B) (5)
In other words, we consider a constrained version of our weighted average problem, in which
the k scores we drop are required to come from set X. If | X| < k, we define f(X) to be a
special value (—oo,|X|) less than any real number. The comparison between two such values
(=00, ) and (—o0,y) is defined to give the same result as the comparison between 2 and y.

Any basis must consist of at most k£ scores, so the dimension of this problem is k. To
verify that this is a generalized linear program, we must prove that it satisfies the requirements
above.

Lemma 2. For the pair (5, f) defined as above from our weighted average problem, any

sets  C R satisty f(Q) < f(R).

Proof: For @) and R both having k or more members, this follows immediately since the
choices allowed in the maximization defining f(R) are a superset of the choices allowed for
f(Q). A simple calculation shows that it also holds for smaller subsets. O

Lemma 3. For the pair (5, f) defined as above from our weighted average problem, any
sets Q C R satisfying f(Q) = f(R), and any score s = (v;,w;), f(Q U {s}) = f(Q) iff
J(RU {s}) = f(R).

Proof: If |Q| < k, then the assumption that f(Q)) = f(R) forces ) and R to be equal,
and the lemma follows trivially. Otherwise, there must be some basis B C ¢ C R with
f(B) = f(Q)= f(R), and | B| = k. Suppose that B is non-optimal in Q U {s} or RU {s}. By



an argument similar to that in Lemma 1, there is some other k-element set P in Q U {s} or
R U {s} such that
> fi(A(5 - B))>0. (6)

1€S—P

Further, we know that

Y. f(AS=B))=0 (7)

1€S-B

by the definition of f;. Since the sum for S — P is greater than the sum for S — B, there
must be scores ¢, j with i € P— B, j € B— P, and fi(A(S — B)) < f;(A(S — B)). Then
C = BU{i} — {j} also satisfies inequality 6, showing that C' is a better set to remove than
B. We assumed that B was optimal in ¢ and R, so it must be the case that ¢ = s and C
shows that B is non-optimal in both @ U {s} and RU{s}. Thus B is optimal in @ U {s} iff
it is optimal in RU{s}. O

Corollary 1. The pair (5, f) given above defines a generalized linear program, and the
solution to the program correctly gives us the set of k scores to drop in S to maximize the
weighted average of the remaining points.

Theorem 1. For any constant k, we can find the maximum weighted average among all
(n — k) element subsets of S, in time O(n).

For instance, using a modification of Seidel’s linear programming algorithm [22], we can
find the maximum weighted average using at most 2k!n expected multiplicative operations.
For k = 2, the expected number of multiplicative operations of this method is at most
3n + O(logn). Thus we should expect the total time for this algorithm to be roughly three
times that for the £ = 1 algorithm. We will later see that this bound compares favorably to
the algorithms we describe below when &k = 2 or & = 3, but for larger values of k the factorial
term starts to become too large for this method to be practical.

4 Connection with computational geometry

Before describing more algorithms, we first develop some geometric intuition that will help
them make more sense.

Recall that we have defined n linear functions f;(A), one per score. We are trying to find
the maximum weighted average A*, and from that value it is easy to find the optimal set of
scores to drop, simply as the set giving the & minimum values of f;(A*).

Consider drawing the graphs of the functions y = f;(«). This produces an arrangement
of n non-vertical lines in the zy plane. The value f;(A*) we are interested in is just the y-
coordinate of the point where line f; crosses the vertical line 2 = A*. We do not care so much
about the exact coordinates of this crossing—we are more interested in its order relative to
the similar crossing points for other lines f;, as this relative ordering tells us which of 7 or j
is preferable to drop from our set of scores.



By performing tests on different values of A, using Lemma 1, we can narrow the range in
which the vertical line # = A* can lie to a narrower and narrower vertical slab, having as left
and right boundaries some vertical lines x = Ay, and @ = Ar. A is the maximum value for
which we have computed that F'(Ar) > 0, and Ag is the minimum value for which we have
computed that F'(Agr) < 0. If we use the algorithm of Lemma 1 on some value Ay, < A < Ap,
we can determine the relative ordering of A* and A; this results in cutting the slab into two
smaller slabs bounded by the line 2 = A and keeping only one of the two smaller slabs. For
instance, the binary search algorithm we started with would simply select each successive
partition to be the one in which the two smaller slabs have equal widths.

Any two lines f; and f; have a crossing p;; unless they have the same slope, which happens
when w; = w;. If it happens that p;; falls outside the slab [Af, Ag], we can determine
immediately the relative ordering of f;(A*) and f;(A*), as one of the two lines must be above
the other one for the full width of the slab. If the two lines have the same slope, one is above
the other for the entire plane and a fortiori for the width of the slab. We can express this
symbolically as follows.

Lemma 4. If A, < A* < Ap, fi(Ar) > fi(Ar), and fi(Ar) > f;(AR), then f;(A*) >
fi(A7).

In this formulation, the lemma can be proven simply by unwinding the definitions and
performing some algebraic manipulation.

Define A(4,j) to be the z-coordinate of the crossing point p;;. If f; and f; have the same
slope, A(7,7) is undefined. If we use Lemma 1 to test the relative ordering of A* and A(¢,7),
the resulting slab [Ar,, Ar] will not contain p; ; and so by the result above we can determine
the relative ordering of f;(A*) and f;(A*). Symbolically A(i,j)= (v; —v;)/(w; —w;), and we

have the following lemma.

Lemma 5. If A(i,5) < A* and w; > wy, or if A(i,j) > A* and w; < w;, then fi(A*) <
fi(A7).

Again the lemma can be proven purely algebraically.

The algorithms below can be interpreted as constructing slabs containing fewer and fewer
crossing points p;;, until we know enough of the relative orderings of the values f;(A*) to
select the smallest k£ such values. This will then in turn give us the optimal set of scores to
drop, from which we can compute the desired maximum weighted average as the weighted
average of the remaining scores.

For instance, one method of solving our problem would be to use binary search or a
selection algorithm among the different values of A(¢,j). Once we know the two such values
between which A* lies, all relative orderings among the f;(A*) are completely determined
and we can apply any linear time selection algorithm that uses only binary comparisons.
(Each such comparison can be replaced with an application of Lemma 5.) However there
are more values A(7,j) than we wish to spend the time to examine. Instead we use more
careful approaches that can eliminate some scores as belonging either to the set of k dropped



scores or the remaining set of n — k scores, without first having to know their relative order
compared to all other scores.

We note that similar methods have been applied before, to the geometric problem of
selecting from a collection of n points the pair giving the line with the median slope [3, 4, 6,
7, 17, 18, 23]. A geometric duality transformation can be used to transform that problem to
the one of selecting the median z-coordinate among the intersection points of n lines, which
can then be solved by similar techniques to those above, of finding narrower and narrower
vertical slabs until no points are left in the slab. The algorithm is dominated by the time to
test whether a given z-coordinate is to the right or left of the goal, which can be done in time
O(nlogn). In our weighted average problem, the faster testing procedure of Lemma 1 and
the ability to eliminate some scores before all pairwise relations are determined allow us to
solve the overall problem in linear time.

5 Randomized linear time

We now describe a randomized algorithm which finds the subset with maximum weighted
average in linear time, independent of k. The algorithm is more complicated than the ones
we have described so far but should improve on e.g. our modification to Seidel’s algorithm
for k > 3.

The idea behind the algorithm is as follows. If we choose a random member ¢ of our set
of scores, and let A* denote the optimal average we are seeking, the position of f;(A*) will be
uniformly distributed relative to the positions of the other f;(A*). For instance ¢ would have
a k/n chance of being in the optimal subset of scores to be removed. If we know that it is in
this optimal subset, we could remove from our input those j with f;(A*) < f;(A*) and update
k accordingly. Conversely, if we know that score ¢ has to be included in the set giving the
maximum weighted average, we would know the same about all j with f;(A*) > f;(4*) and
we could collapse all such scores to their sum. In expectation we could thus reduce the input
size by a constant fraction—the worst case would be when k = n/2, for which the expected
size of the remaining input would be 3n/4.

To compute the position of f;(A*), and to find the scores to be removed or collapsed as
described above, would require knowing the relative ordering of f;( A*) with respect to all other
values f;(A*). For any j we could test this ordering in time O(n) by computing F(A(%,j))
as described in Lemma 5. We could compute all such comparisons by binary searching for
A* among the values A(¢,7) in time O(nlogn), but this is more time than we wish to take.
The solution is to only carry out this binary search for a limited number of steps, giving
the position of f;(A*) relative to most but not all values f;(A*). Then with reasonably high
probability we can still determine whether or not score 7 is to be included in the optimal
set, and if this determination is possible we will still expect to eliminate a reasonably large
fraction of the input.

We make these ideas more precise in the algorithm depicted in Figure 1. Much of the
complication in this algorithm is due to the need to deal with special cases, and to the
expansion of previously defined values such as F'(A) into the pseudo-code needed to compute



Random(S, k):
Ap— VW
Ap «— +
while |S| > 1 do
choose ¢ randomly from S
for (v;,w;) € S do
if w; = w; then

o(i,j)— v — v

A(i,j) — —o0
else
o(i,j)— w; — wj
A(i,7) = (vi — o) /(wi — wy)
E —{(vj, wj) | o(1, ])— 0}
X — {(vj,w;) | A(7,j) < Ap and o(7,7) > 0}
U{(vj, w;) | A(i,j)> Ap and o(i,j) < 0}
Y — {(vj,w;) | A(i,j) < Ap and o(i,j) < 0}
U{(vj, w;) | A(i,j)> Ap and o(i,j) > 0}
J—S-X-Y-F
repeat

A — median{A(7,7) | (vj,w;) € Z}
for (v;,w;) € S do fi(A) — v; — Aw;
F(A) < Y (the largest |5| — k values of f;(A))
if (A) =0 then return A
else if F'(A) > 0 then A; = A
else Ap = A
recompute X, Y, and Z
if | X| 4 |E| > |S| -k then
remove min(|E|, | X|+ |F|+ k — |S])
members of £ from
remove Y from §
k — k — (number of removed scores)
else if | Y|+ |F| > k then
collapse min(|E|,|Y]| + | F| — k) members of £
and all of X into a single score
until |7]| < n/32
return v /w;

Figure 1. Randomized algorithm for the maximum weighted average.



them.

Let us briefly explain some of the notation used in our algorithm. F(A) and f;(A) were
defined earlier. Let A* denote the optimal average we seek; then as noted earlier the optimal
subset is found by choosing the scores with the n — k largest values of f;(A*). A(7,j) is
defined as the “crossover point” for which f;(A(7, 7)) = f;(A(%,7)). We initially let [Af, AR]
give bounds on the range in which A* can lie. (It would be equally correct to set A;, = —oc0
but the given choice A;, = V/W allows some savings in that some crossover points A(%, j) are
eliminated from the range.) Note that A7, < A* since removing scores can only increase the
weighted average.

In order to compare f; and f; at other values of A, we define o(7, j) as a real value that
is positive or negative if for A > A(¢,7), fi(A) < f;(A) or f;(A) > f;(A) respectively. We
usually compute o(1, j) by comparing w; and w;, but we use a different definition if the weights
are equal (corresponding to the geometric situation in which lines y = f;(z) and y = f;(z)
are parallel).

Then set F consists exactly of those scores that have the same value and weight as the
random selection (v;,w;). Set X consists of those scores for which f;(Ar) > fi(Ar) and
[i(ARr) > fi(Ag), with one inequality strict. In other words these are the scores for which
f;(A*) is known by Lemma 4 to be greater than f;(A*). Similarly ¥ consists of those scores
for which we know that f;(A*) < fi(A*). Set Z consists of those scores for which the relation
between f;(A*) and f;(A*) is unknown.

If Z were empty, we would know whether score ¢ itself should be included or excluded
from the optimal subset, so we could simplify the problem by also removing all of either X
or Y. The purpose of the inner loop of the algorithm is to split the range [Af, Ag] in a way
that shrinks Z by a factor of two, so that this simplification becomes more likely.

In order to compare this algorithm to others including our modification of Seidel’s algo-
rithm, we analyze the time in terms of the number of multiplicative operations. It should be
clear that the time spent on other operations is proportional to this.

In what follows, we make the simplifying assumption that I contains only score i. This
is without loss of generality, as the expected time can only decrease if I has other scores in
it, for two reasons. First, Z can initially have size at most |5 — F|. Second, the fact that
scores in F are equivalent to score ¢ lets us treat them either as part of X or as part of Y,
whichever possibility allows us to remove more scores from our problem.

Lemma 6. Let n denote the size of S at the start of an iteration of the outer loop of the

algorithm. The expected number of scores removed or collapsed in that iteration is at least
491 /256.

Proof: Let p be the position of f;(A*) = v; — A*w; in the sorted sequence of such values.
Then p is uniformly distributed from 1 to n, so with probability at least 7/8, p differs by at
least n/32 from 1, k, and n. Consider the case that p — k& > n/32. Then by the end of the
inner loop, we will have at least £ scores in Y and can collapse anything placed in X during
the loop, removing at least n — p —n/32 scores. Similarly if &k —p > n/32 we will have at least
n — k scores in X and can remove at least p — n/32 scores. The worst case happens when



k = n/2, when the expected size of X (in the first case) or Y (in the second case) is 7n/32.
Thus we get a total expectation of 49n/256. O

Lemma 7. In a single iteration of the outer loop above, the expected number of multiplica-
tive operations performed is at most 371n/64.

Proof: Let n denote the size of § at the start of the outer loop. Note that the only
multiplicative operations are n divisions in the computation of A(¢,7)in the outer loop, and
|.5] multiplications in the computation of F'(A) in the inner loop. The inner loop is executed
at most five times per outer loop, so the worst case number of operations per iteration of the
outer loop is 6n.

To reduce this bound we consider the size of .5 in each iteration of the inner loop. The
analysis of the expected size of 5" in each iteration is very similar to that in Lemma 6, with
the n/32 bound on Z replaced by the values n, n/2, n/4, n/8, and n/16. For the first three of
these, we can prove no bound better than n on the expected value of |.S]. For the iteration in
which |Z] < n/8, we have probability 1/2 that p has distance n/8 from 1, k, and n, and when
p is in this range we can expect to remove n/8 values, so the expected size of 5 in the next
iteration is 15n/16. And for the iteration in which |Z| < n/16, we have probability 3/4 that
p has distance n/16 from 1, k, and n, and when p is in this range we can expect to remove
3n/16 values in iterations up through this one, so the expected size of S in the last iteration
is 55n/64. Adding these expectations gives the overall bound. O

Theorem 2. The total expected number of multiplicative operations performed in the al-
gorithm above is at most 1484n /49 + O(1) ~ 30.3 n, and the total expected time is O(n).

Proof: The time can be expressed as a random variable which satisfies a probabilistic
recurrence

T(S) < 371|5]/64 + T(R) (8)

where R is a random variable with expected size (1—-49/256)|.5|. By the theory of probabilistic
recurrences [15], the expected value of T'(\9) can be found using the deterministic recurrence

T(n) = 371n/64 + T((1 — 49/256)n) (9)

which solves to the formula given in the theorem. O

Although the constant factor in the analysis of this algorithm is disappointingly large,
we believe this algorithm should be reasonable in practice for several reasons. First, the
bulk of the time is spent in the computations of F(A), since other operations in the inner
loop depend only on the size of Z, which is rapidly shrinking. Thus there is little overhead
beyond the multiplicative operations counted above. Second, Lemma 7 assumes that initially
Z = 5, however due to bounds on [Ar,, Ar] from previous iterations of the outer loop, Z may
actually be much smaller than 5. Third, the analysis in Lemma 6 assumed a pathologically
bad distribution of the positions of f;(A*) for j € Z: it assumed that for p close to k these
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positions would always be between p and k, while for p far from £ these positions would always
be on the far side of p from k. In practice the distribution of positions in Z is likely to be much
more balanced, and the number of scores removed will be correspondingly greater. Fourth, for
the application to grading, many weights are likely to be equal, which helps us in that there
are correspondingly fewer values of A(7,7) in the range [Ar, Ar] and fewer multiplications
spent computing A(¢, 7). Fifth, the worst case for the algorithm occurs for k = n/2, but in
the case of interest to us k is a constant. For small k& the number of operations can be greatly
reduced, as follows.

Theorem 3. Let k be a fixed constant, and consider the variant of the algorithm above
that stops when |Z| < n/16. Then expected number of multiplicative operations used by this
variant is at most 580n/49 4+ O(k) ~ 11.8n.

Proof: We mimic the analysis above. With probability 7/8, n/16 < p < 15n/16. For such
p, the expected number of scores removed is 7n/16. Therefore the expected number of scores
left after an iteration of the outer loop is (1 — (7/8)(7/16))n = (1 —49/128)n = 79n/128.
The same sort of formula also tells us how many scores are expected to be left after each
iteration of the inner loop. As long as |Z| > n/2 we can’t expect to have removed any
scores, so the first two iterations have n expected operations each. In the third iteration,
|Z] < n/4, and with probability 1/2 n/4 < p < 3n/4. For p in that range, we would
expect to have removed n/4 of the scores. Therefore in the third iteration we expect to
have (1 —(1/2)(1/4))n = (1 — 1/8)n = Tn/8 operations. Similarly in the fourth iteration we
expect to have (1—(3/4)(3/8))n = 21n/32 operations. We can therefore express our expected
number of operations as a recurrence

T(n) = 145n/32 4+ T(79n/128) (10)

with the base case that if n = O(k) the time is O(k). The solution to the recurrence is given
by the formula in the theorem. O

This method is already better than our modification of Seidel’s algorithm when k& = 4,
and continues to get better for larger k, since the only dependence on k is an additive O(k)
term in place of the multiplicative O(k!) factor in our modification of Seidel’s algorithm.

6 Deterministic linear time

Much recent work in theoretical computer science has focused on the difference between
randomized and deterministic computation. From this work, we know many methods of
derandomization, that can be used to transform an efficient randomized algorithm (such as
our linear time algorithm described above) into a deterministic algorithm (sometimes with
some loss of efficiency).

In our case, we have an algorithm that selects a random sample (a score (v;, w;)) from
our input, and eliminates some other scores by using the fact that the position of f;(A*) in
the list of all » such values is likely to be reasonably well separated from 1, k, and n. We
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would like to find a similar algorithm that chooses this sample deterministically, so that it
has similar properties and can be found quickly. Since the randomized algorithm is already
quite satisfactory from a practical point of view, this derandomization process mainly has
significance as a purely theoretical exercise, so we will not worry about the exact dependence
on n (e.g. as measured previously in terms of the number of multiplicative operations); instead
we will be satisfied with any algorithm that solves our problem in time O(n).

We return to the geometric viewpoint: graph the linear functions y = f;(z) to form a line
arrangement in the zy-plane, which is cut into slabs (represented as intervals of z-coordinates)
by our choices of values to test against A*. We are trying to reduce the problem to a slab
[Af, AR] containing few crossings of the lines; this corresponds to having many pairs of scores
for which we know the preferable ones to drop.

Many similar problems of derandomization in computational geometry have been solved
by the technique of e-cuttings, and we use the same approach here. Since the technique is
primarily of theoretical interest, we merely sketch it, omitting detailed proofs in favor of
saving space.

A cutting is just a partition of the plane into triangles. If we are given a set of n lines
y = fi(z) in the zy-plane, an e-cutting for those lines is a cutting for which the interior of
each triangle is crossed by a small number of the lines, at most en of them. Matousek [19]
showed that an e-cutting involving O(1/€?) triangles can be computed deterministically in
time O(n/e), as long as 1/e¢ < n'~° for a certain §. We will be choosing ¢ to be some fixed
constant, so the resulting cutting has O(1) triangles and can be computed in linear time.

The idea of our algorithm is as follows. We first compute an e-cutting for the set of lines
y = fi(z) (that is, a certain triangulation of the zy-plane). By binary search, we can restrict
the optimal value A* we are seeking to lie in a range [Ar, Ar| that does not contain the
xz-coordinate of any triangle vertex. Therefore if we consider the vertical slab Ay <z < Ap,
the edges of triangles in the cutting either cross the slab or are disjoint from it. If a triangle
crosses the slab, at most two of its three sides do so, and the top and bottom boundary lines
of the triangle are well defined.

For each edge that crosses the slab, we consider the line y = az + b formed by extending
that edge, and pretend that it is of the form y = fi(2) for some pair (which must be the pair
(b, —a)). We then use this pair to eliminate scores from S similarly to the way the previous
randomized algorithm used the pair (v;, w;). It turns out not to be important that (b, —a)
might not be in 5. (If it is absent from S we have fewer special cases to deal with. However
if the input includes many copies of the same score, it may be necessary for (b, —a) to be in
S.)

Thus for each pair (b, —a) found in this way we compute sets X, Y, and Z as before
and eliminate either X or Y if the other of the two is large enough. Unlike the previous
randomized algorithm, we do not need an inner loop to reduce the size of Z. Instead we use
the definition of our e-cutting to prove that |Z| < en. Further, for two edges bounding the
top and bottom of the same triangle, the corresponding sizes of X and Y differ from one edge
to the other by at most en. Therefore at least one of the edges from the e-cutting, when used
as a sample in this way, allows us to eliminate a constant fraction of the input.
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Theorem 4. The algorithm sketched above returns the maximum weighted average among
all (n — k) element subsets of 9, in time O(n).

Further details and pseudocode of this deterministic algorithm can be found in the tech-
nical report version of this paper [8].

7 Negative weights

The methods we have described do not make any assumption about the values v;, however
the non-negativity of the weights w; was used in Lemma 1 and therefore in all our algorithms.

It is natural to consider a slight generalization of the problem, in which we allow the
weights w; to be negative. The weighted average V//W of a set 9 is still well defined (as long
as we make some consistent choice of what to do when W = 0) so it makes sense to seek
the (n — k) element subset maximizing this quantity. We can define F(A) as before, and as
before we get a convex piecewise linear function. Unlike the previous situation, there might
be either zero or two values of A for which F(A) = 0. In the situation in which F(A) has
two roots, it turns out that our problem can be solved by finding the larger of these two, by
minor modifications of the algorithms we showed before. However it is not so obvious what
to do when F(A) has no roots.

Unfortunately, this problem turns out to be NP-complete, as we now show. We use a
reduction from the subset sum problem, which asks whether, given a collection 5 of positive
integers s;, and a value ¢, there is a subset of 5 with sum exactly t.

Theorem 5. [t is NP-complete to find the (n — k) element subset of a collection of scores
(v;, w;) maximizing the weighted average > v;/ > w;, if one or more of the weights can be
negative.

Proof:  Given an instance (9,t) of the subset sum problem, we transform S to the set
of scores (1,2s;). We also include n additional “dummy” scores (1,0) and one final score
(1,1 —2t). We then ask for the set of n 4+ 1 scores maximizing the weighted average. We
claim that the maximum possible average is n + 1 exactly when the subset sum problem is
solvable.

Note that for any set containing (1,1 — 2¢), > w; is odd (so nonzero). For any other set
of n + 1 values there must be at least one score (1,s;), and the sum is positive (so nonzero).
Therefore we need not worry about what to do when > w; is zero. Also note that any sum
of weights must be an integer, so all weighted averages of subsets of the input are of the form
(n + 1)/x for some integer z.

Since all values v; are equal, this weighted average is maximized by finding a set for which
> aw; is positive and as small as possible. If some set A C 5 has sum exactly ¢, we construct
a set of scores by including all pairs (1,s;) for s; in A, together with (1,1 — 2¢) and enough
dummy scores to make the set have n + 1 scores total. This set of scores then has >" w; =1
and weighted average n + 1.

13



Conversely, suppose some set of scores has weighted average n+ 1 and therefore >~ w; = 1.
Since this sum is odd, it must include the pair (1,1 — 2¢). Then the remaining weights must
sum to 2t, and the non-dummy scores from this set can be used to construct a set A C 5
with sum exactly t. O

If weights of zero are not allowed, the dummy scores can be replaced by (1,¢) for any
sufficiently small e.

Finally, we note that our original maximum weighted average problem can, like subset
sum, be solved in pseudo-polynomial time. Suppose all the v; and w; are integers. Let Wi,
and Winax denote the largest and smallest possible sum of weights in any subset of our scores.
We use a dynamic program to determine, for each possible sum of weights w in the range
[(Wiin, Winax), the minimum and maximum sum of values Viin(w) and Vipax(w) among all
sets having that sum of weights. The maximum weighted average can then be found by
comparing Viin(w)/w for negative w with Vipax(w)/w for positive w. The algorithm takes

time O(n(Wmax - Wmin))'
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