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Abstract We study group-testing algorithms for resolving broadcast conflicts on a
multiple access channel (MAC) and for identifying the dead sensors in a mobile ad
hoc wireless network. In group-testing algorithms, we are asked to identify all the
defective items in a set of items when we can test arbitrary subsets of items. In the
standard group-testing problem, the result of a test is binary—the tested subset either
contains defective items or not. In the more generalized versions we study in this
paper, the result of each test is non-binary. For example, it may indicate whether the
number of defective items contained in the tested subset is zero, one, or at least two.

We give adaptive algorithms that are provably more efficient than previous group
testing algorithms. We also show how our algorithms can be applied to solve con-
flict resolution on a MAC and dead sensor diagnosis. Dead sensor diagnosis poses
an interesting challenge compared to MAC resolution, because dead sensors are not
locally detectable, nor are they themselves active participants.

Keywords Group testing · Multiple access channels · Dead sensor diagnosis

1 Introduction

Wireless communication has renewed interest in algorithms for dealing with con-
flicts and failures among collections of communicating devices. For example, when
a collection of wireless devices compete to communicate with a particular access
point, the access point becomes a multiple access channel (MAC), which requires
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a conflict-resolution method to allow all devices to send their packets in a timely
manner. In large deployments, the need for conflict resolution among devices may
be further complicated by their physical distribution, as the devices may form an ad
hoc wireless network. The traditional way a base station communicates with devices
in an ad hoc network is via broadcast-and-respond protocols (Intanagonwiwat et al.
2002), which have a simple structure: Messages are broadcast from a base station to
the n sensors in such a network using a simple flooding algorithm (e.g., see Lynch
1996) and responses to this message are aggregated back along the spanning tree that
is formed by this broadcast. Because the flooding algorithm is topology-discovering,
the spanning tree defined by the flooding algorithm can be different with each broad-
cast. This mutability property is particularly useful for mobile sensors, since their
network adjacencies can change over time, although we assume they are not moving
so fast that the topology of the spanning tree defined by a broadcast changes before
the aggregate response from the broadcast is received back at the base station. A new
challenge arises in this context, however, when devices fail (e.g., by running down
their batteries) and we wish to efficiently determine the identities of the dead sensors.

1.1 Group testing

In this paper, we present and analyze new algorithms for group testing to solve con-
flict resolution in MACs and dead sensor diagnosis. In the group testing problem, we
are given a set of n items, d of which are defective (bounds on the value of d may
or may not be known, depending on the context). A configuration specifies which of
the items are defective. Thus, there are

(
n
d

)
configurations of d defectives among the

n items. To determine which of the n items are defective, we are allowed to sample
from the items so as to define arbitrary subsets that can be tested for contamination.
In the standard group testing problem, each test returns one of two values—either the
subset contains no defectives or it contains at least one defective. Therefore, there is
an information theoretic lower bound of lg

(
n
d

) ≈ d lg n tests, in the worst case, for
any binary-result group testing algorithm.

Motivated by the applications mentioned above, we consider generalizations of
the standard group testing problem, where there can be three or more possible results
of a contamination test. In ternary-result group testing, a result indicates whether the
subset contains no defectives, one defective, or at least two defectives (i.e., the results
are 0, 1, or 2+). Generalizing further, we may allow for counting tests that return the
exact number of defective items present in the test. In either case, a one-defective
result may either be identifying, returning a unique identifier of the defective item, or
anonymous, indicating, but not identifying, that there is one defective item in the test.
We are interested in the efficiency of generalized group testing.

1.2 Multiple access channels

In the multiple access channel problem (Capetanakis 1979; Greenberg and Ladner
1983; Greenberg and Winograd 1985; Hofri 1984) a set of n devices share a commu-
nication channel such that a subset D of d of the devices wish to use the channel to
transmit a data packet. In any time slice, some subset T of the devices may attempt
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a transmission on the channel. If there is only one device x from D in T , then it
succeeds (and all parties learn the identity of x). Alternatively, if no device attempts
to transmit, then all parties learn this as well. But if two or more devices attempt to
transmit, then all parties learn only that a conflict has occurred (and no transmission
is successful during this time slice).

Each device independently decides whether to attempt to send a message based on
what it has observed and, if an attempt is to be made, the decision to send is made by
flipping a biased coin with probability p. We can reduce MAC conflict resolution to
a group testing problem.

For large n, this scenario can be approximated by using identifying ternary tests
on a size-pn random subset of a set of n items, d of which are defective. In the MAC
situation, the probability that exactly i devices will transmit is

PMAC(i) =
(

d

i

)
pi(1 − p)d−i .

A conflict arises when two or more devices transmit.
In the testing situation, the probability that exactly i of the d defective items are

within the randomly selected subset of size pn is

Ptest(i) =
(

d

i

) i−1∏

j=0

pn − j

n − j

d−1∏

j=i

n − pn − j + i

n − j
.

The subset is impure when two or more defective items are in that subset.

1.3 Dead sensor diagnosis

In dead sensor diagnosis, there is an ad hoc network of n sensors, which can commu-
nicate with a base station using a broadcast-and-respond protocol along a broadcast
tree that may be different with each broadcast. Furthermore, d of the sensors have
failed (e.g., d batteries may have died, but we may not know the value of d), and we
wish to identify which sensors are dead. This problem is complicated by the dynamic
nature of the mobile sensors, since there is no local way to detect dead sensors—they
simply become invisible to the sensors around them and there is no local way to dis-
tinguish this bad event from the common event of a live sensor moving out of range
of the set of its former neighbors.

Of course, the group controller could send out n broadcasts, each of which asks
an individual sensor to send a “heartbeat” acknowledgment message back as a re-
sponse. Assuming a reasonable time-out condition for non-responding sensors, this
naive solution to the dead sensor diagnosis problem could identify the dead sensors
using a total of O(n2) messages spread across n communication rounds, which is
inefficient. (It would violate the broadcast-and-respond model to have the sensors
respond individually to a single “who’s alive” broadcast, since the responses would
not be aggregated and would require an expected number of O(n1.5) messages for
a planar sensor network, would require sensors close to the base station do propor-
tionally more work (hence, running down their batteries faster), and it would still
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have a delay of O(n) communication rounds at the base station.) We are interested
in this paper in efficient solutions to the dead sensor diagnosis problem that fit the
broadcast-and-respond model.

1.4 Previous related work

For group testing, there is a tremendous amount of previous work on the standard
(binary) version of the problem (e.g., see Allemann 2003; DeBonis et al. 2003;
Du and Hwang 2000; Eppstein et al. 2007; Hwang 1972; Hwang and Sós 1987;
Kautz and Singleton 1964; Macula and Reuter 1998; Ruszinkó 1994; Schlaghoff and
Triesch 1997), and there has been some work on anonymous generalized group test-
ing algorithms (e.g., see Gargano et al. 1992; Christen 1994; Berger et al. 1984), some
of which require maintenance of large tables. The standard group testing problem has
been applied to several other problems, including testing DNA clone libraries (Farach
et al. 1997), testing blood samples for diseases, data forensics (Atallah et al. 2005),
and cryptography (1).

The best previous algorithms for the standard group testing problem are adaptive,
as are our algorithms. That is, tests are performed one at a time, with the processing of
a single step usually requiring a parallel invocation across test elements, such that the
results from previous tests allowed to be used to guide future tests. When the exact
number, d , of defective items is known, Hwang’s generalized binary splitting algo-
rithm (Hwang 1972) for the standard group testing problem exceeds the information
theoretic lower bound by at most d − 1. This algorithm is basically a set of d parallel
binary searches, which start out together and eventually are split off. When d is not
known but is an upper bound on the number of defective items, at most one additional
test is required (Hwang et al. 1981). Allemann (2003) gives a split-and-overlap algo-
rithm for the standard group testing problem that exceeds the information theoretic
lower bound on the number of tests by less than 0.255d + 1

2 lgd + 5.5 for d ≤ n/2.
The 0.255 is replaced with 0.187 when d ≤ n/38. When no constraint on the number,
d , of defectives is known in advance, Schlaghoff and Triesch (1997) give algorithms
that require 1.5 times as many tests as the information theoretic lower bound for d

defective out of n items.
Work on multiple access channels (MACs) dates back to before the invention

of the Ethernet protocol, and there has been a fair amount of theoretical work
on this problem as well (e.g., see Capetanakis 1979; Greenberg and Ladner 1983;
Greenberg and Winograd 1985; Hofri 1984). (Using our terminology, a MAC algo-
rithm is equivalent to a ternary-result group testing algorithm with identifying re-
sults in the 1-result case.) There is a simple halfway-split binary tree algorithm that
achieves an expected 2.885d number of steps (e.g., see Capetanakis 1979), which
correspond to group tests in our terminology, to send d packets. This algorithm was
improved by Hofri (1984), using a biased splitting strategy (which we review be-
low) to achieve an expected 2.623d steps. The best MAC algorithm we are familiar
with is due to Greenberg and Ladner (1983), who claim that their algorithm uses
2.32d expected number of steps, assuming d is known in advance. Interestingly, in
the lower-bound paper of Greenberg and Winograd (1985), the Greenberg–Ladner
paper (Greenberg and Ladner 1983) is referenced as achieving 2.14d expected tests
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and, indeed, our analysis confirms this better bound for their algorithm, if d is known.
Greenberg and Ladner (Greenberg and Ladner 1983) also present an algorithm for es-
timating d if it is not known in advance and, by our analysis, using this approximation
algorithm with their MAC algorithm achieves 2.25d + O(logd) expected number of
steps (which is also better than the bound claimed in Greenberg and Ladner 1983).

Normally, such concern over small improvements in the constant factor for a
leading term of a complexity bound would be of little interest. In this case, how-
ever, the reciprocal of the constant factor for this leading term corresponds to the
throughput of the MAC; hence, even small improvements can yield dramatic im-
provements in achievable bandwidth. Moreover, with the expanding deployment of
wireless access points, there is a new motivation for MAC algorithms, particularly
for environments where there are many wireless devices per access point. We are
not familiar with any MAC algorithms that achieve our degree of efficiency without
making additional probabilistic assumptions about the nature of packet traffic (e.g.,
see Capetanakis 1979; Greenberg and Ladner 1983; Greenberg and Winograd 1985;
Hofri 1984).

We believe the dead sensor diagnosis problem is new, but there is considerable
previous work on device fault diagnosis for the case in which devices can test each
other and label the other device as “good” or “faulty,” if the group controller can dic-
tate the network’s topology. For example, Yuan et al. (2004) describe an aggregation
protocol that assumes that sensors can detect when neighbors are faulty.

1.5 Our results

In this paper, we present algorithms for generalized group testing when the result of
each test may be non-binary.

Ternary-result group testing can be applied to multiple access channels. We pro-
vide new MAC conflict-resolution algorithms that achieve an expected 2.054d steps
if d is known and 2.08d + O(logd) tests if d is not known. Both of these bounds
improve the previous constant factors for MAC algorithms and are based on the use
of a new deferral technique that demonstrates the power of procrastination in the con-
text of MAC algorithms. We also show that our MAC algorithm uses O(d) steps with
high probability, even if we reduce the randomness used, and we provide an improved
algorithm for estimating the value of d if it is not known in advance.

Our group testing algorithms can be applied to dead sensor diagnosis, where the
items are sensors and the defective items are the dead sensors. Our algorithms also are
concise, which implies that each test can be formulated as a constant-size broadcast
query from the base station such that the aggregated response to such a query can
provide the possible results needed for ternary-result and counting group testing. This
immediately implies efficient algorithms for the dead sensor diagnosis problem based
on our ternary-result group testing algorithms. We also provide a novel counting-
based group testing algorithm that uses an expected 1.89d tests to identify the d

defective items. In addition, we give new deterministic ternary-result group-testing
algorithms using O(d lgn) broadcast rounds (which would use a total of O(dn logn)

messages for dead sensor diagnosis), with constant factors below the lower bound for
binary-result group testing.
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2 Motivation and definitions

We have already discussed how collision resolution for a multiple access channel
corresponds to ternary-result (0/1/2+) group testing, with identifying tests in the 1-
result case. In this section, we discuss further motivation for our other generalizations
of group testing and we give some needed definitions as well.

2.1 Some definitions for group testing

Recall that in the group testing problem we are given a set S of n items, d of which
are defective. We are allowed to form an arbitrary subset, T ⊆ S, and perform a group
test on T which, in the case of ternary-result group testing, has a ternary outcome.
We say that T is pure if T contains no defective items, tainted if it contains exactly
one defective item, and impure if it contains at least two defective items.

Furthermore, as mentioned above, in the case when T is tainted, we distinguish
two possible variations in the way the test result is conveyed to us. We say that the
result is identifying if it reveals the specific item, x ∈ T , that is defective. Otherwise,
we say that the result is anonymous if it states that T is tainted but does not identify
the specific item x in T that is defective.

Finally, we say that a testing scheme is concise if each test subset T ⊆ S that might
be formed by this scheme can be defined with an O(1)-sized expression E that allows
us to determine, for any item x ∈ S, whether x is in T in O(1) time using informa-
tion only contained in E and x (that is, we allow for a limited amount of memory
to be associated with x itself). For example, a test T might be defined by a sim-
ple regular expression, 101*10**011, for the binary representation of the name of
each x in T (we assume that item names are unique). The applications of MAC con-
flict resolution and dead sensor diagnosis both require that the corresponding testing
scheme be concise. Incidentally, most MAC algorithms (e.g., see Capetanakis 1979;
Greenberg and Ladner 1983; Greenberg and Winograd 1985; Hofri 1984) also re-
quire that all devices have access to independent random bits, but we show that this
requirement is not strictly necessary.

2.2 Group testing for dead sensor diagnosis

In this subsection, we present some simple reductions of the dead sensor diagnosis
problem to generalized group testing. Our reductions fit the broadcast-and-respond
paradigm of sensor communication, where the base station issues a broadcast and
receives back an aggregated response, which is the result of an associative function
applied to the sensor responses, and which is computed by the sensors routing the
combined response back to the base station.

Although the sensors may be mobile, we assume that they are stable enough to
support the broadcast-and-respond paradigm in a coarse-grain synchronous fashion,
so that a message can be broadcast to all the active sensors and an aggregated re-
sponse can come back in the same broadcast tree. From the standpoint of an individ-
ual sensor, this implies that it can receive a message from a neighbor, acknowledge
that receipt, and rebroadcast to its neighbors (with similar receipts) as a coarse-grain
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atomic action. This assumption allows us pragmatically to be able to implement the
broadcast-and-respond protocol. That is, by a simple induction it implies that a sensor
at height h in the broadcast tree need only wait for h coarse-grain steps before it will
have received all the aggregated responses from its children, which allows it to then
send its aggregated response to its parent.

Given a concise ternary-result group testing algorithm, A, we can use A to per-
form dead sensor diagnosis by simulating each step of A with a broadcast and re-
sponse. Because A is concise, each test in A can be defined by a constant-sized
expression E that is then broadcast to each live sensor. Moreover, each live sensor x

can determine in O(1) time whether it belongs to the set T defined by E and can par-
ticipate in an aggregate response back to the base station. Thus, the remaining detail
is to define possible aggregate responses that support useful responses, with either
identifying or anonymous results in the tainted cases:

– Count. We aggregate a simple count of the live sensors in T . Each live sensor x

can determine if it belongs to T in O(1) time, since the broadcast is concise. Like-
wise, each sensor y routing an answer back to the base station need only sum the
counts it receives from downstream routers (plus 1 if y is in T ). This aggregation
function supports ternary responses, since the base station knows |T | and can com-
pare this value with the count performed by the live sensors. The count function is
associative, but it does not allow for identifying the dead sensor in the tainted case.

– Large-ID summation. Suppose that the n sensors are assigned ID numbers that are
guaranteed to all be greater than 2n such that no ID number can be formed as the
sum of two or more other ID numbers. Then a summation of the ID numbers of
the live sensors in T can be used to perform a ternary-result test, which will be
an identifying test in the case of a result indicating that T is tainted. Specifically,
the difference between

∑
x∈T x and the returned value will either be 0, the ID of a

single sensor, or a value that is the sum of two or more sensor IDs. Of course, this
function requires that sensors can add integers as large as

∑
x∈S x.

Thus, we can use dead sensor diagnosis to motivate identifying ternary-result
(0/1/2+) group testing as well as anonymous counting group testing. Of course,
if we combine these two functions to operated on paired responses, we can imple-
ment an identifying counting group testing algorithm. These aggregation functions
are not meant to be exhaustive.

3 The binary tree algorithm for ternary-result group testing

Since it provides a starting point for our more sophisticated algorithms, we review
in this section the binary tree algorithm for ternary-result group testing with iden-
tifying results for tainted tests, which was originally presented in the context of
MACs (Capetanakis 1979). That is, we consider the problem of identifying the defec-
tive items in a set of items when we can adaptively test arbitrary subsets and each test
result indicates whether the number of defective items contained in the tested subset
is zero, one, or at least two. We also provide a simplified analysis of its expected
performance.
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The main idea of the binary tree algorithm (parameterized by p) is to partition a
set known to be impure into two unequal-sized subsets, of sizes p and q = 1 − p of
the set’s size, and to recursively test each of these subsets. However, the algorithm
takes advantage of one simple optimization—if the first subset in a recursive call
turns out to be pure (i.e., having 0 defectives), we avoid the top level testing of the
second subset and go immediately to splitting it in two and testing the two parts.

The original algorithm used p = 0.5 and it has been shown (Hofri 1984) that
p ≈ 0.4175 minimizes the expected number of tests. We make use of the smaller root

of the equation p2 = (1 − p2)
2, which is solved by p2 = 3−√

5
2 ≈ 0.38197, and of

q2 = (1 − p2) ≈ 0.61803.
The binary tree algorithm begins by testing the set, S, of items. If the test indicates

that S is pure or tainted, in which case the one defective item will have been identified,
then the algorithm is done. Otherwise, initialize the set L of identified defective items
to empty and proceed with subroutine Identify(S) as follows:

1. Partition S into two subsets, A and B , where |A| = p|S|.
2. Test subset A.

(a) If A is impure, then recursively invoke Identify(A).
(b) If A is tainted with item z, then add z to list L.

3. If A is pure then we know that subset B is impure, and so there is no need to test
B . In this case, recursively invoke Identify(B). Otherwise, test subset B .
(a) If B is impure, then recursively invoke Identify(B).
(b) If B is tainted with item z, then add z to list L.

When partitioning S into A and B , we can select A as consisting of those items
whose ID values are ranked contiguously, 1 through p|S|. The items in A, or B , can
be specified by giving lower and upper limits on ID values. Thus, the binary tree
algorithm is concise.

Theorem 1 w2d lgn + o(lgn) ternary tests under the identifying model suffice, in
the worst case, to identify all defectives in a set containing n items of which d are
defective, where w2 = −(1/ lgp2) ≈ 0.720210.

Proof We analyze the performance of the binary tree algorithm with p = p2. Let
Xd(n) be the worst case number of tests required by algorithm Identify(S) when S is
a set of n items of which d turn out to be defective.

For d = 2 and d = 3, we have the following recurrence. (Note that sets with 0 or 1
defective items require no further testing, thus Xd(1) = 1, and that it is assumed that
X3(n) ≥ X2(n).)

Xd(n) = max

{
2 + Xd(p2n),

1 + Xd(q2n).
(1)

If the first term of the recurrence were to be the maximum term, then Xd(n) =
2 + Xd(p2n) = −(2/ lgp2) lgn. If the second term of the recurrence were to be the
maximum term, then Xd(n) = 1 + Xd(q2n) = −(1/ lgq2) lgn.

We see that X2(n) = X3(n) = −(1/ lgq2) lgn = 2w2d lgn ≈ 1.4404 lgn.
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For d ≥ 4, we have the following recurrence. (It is assumed that Xd(n) ≥
Xd−1(n).)

Xd(n) = max

⎧
⎨

⎩

2 + Xi(p2n) + Xd−i (q2n), for 1 ≤ i ≤ d − 2,

2 + Xd(p2n),

1 + Xd(q2n).

(2)

Consider Xd(n) = x lgn + o(lgn), and we shall solve for x.
Assume that, for even 1 < i < d , Xi(n) = w2i lgn + o(lgn), and that, for odd

1 < i < d , Xi(n) = w2(i − 1) lgn + o(lgn).
Consider any d ≥ 4. If the first term of the recurrence were to be the maximum

term, then x ≥ (d − 1)w2 > 2.16, since d ≥ 4. If the second term were to be the
maximum term, then x = −2/ lgp2 ≈ 1.44. If the third term were to be the maximum
term, then x = −1/ lgq2 ≈ 1.44.

Thus, the first term is the maximum term and Xd(n) ≈ dX2(n)/2 = w2d lgn, for
even d , and Xd(n) ≈ (d − 1)X2(n)/2 = w2(d − 1) lgn, for odd d . �

Thus, the binary tree algorithm has good worst-case performance. It also has good
average-case performance, as the following theorem shows.1

Theorem 2 On average, when p = p2, Identify requires fewer than 2.64d −2 ternary
tests to identify all defectives in a set containing n items of which d are defective, for
n � d . Thus, the binary tree algorithm requires fewer than 2.64d − 1 ternary tests.

Proof Let Ed be the average number of tests required by algorithm Identify(S) when
S is a set of n items of which d turn out to be defective and where n >> d .

A set having d defectives will be split into two subsets having i and d − i de-
fectives, with both subsets being subsequently tested and processed, except when a
subset’s test reveals that it has at most one defective, in which case that subset will
not be subsequently processed. Also, when the first subset has no defectives the sec-
ond subset is processed but not tested. The probability that the first subset has no
defectives is qd . The probability that the first subset has one defective is dpqd−1.
The probability that the second subset has no defectives is pd . The probability that
the second subset has one defective is dpd−1q .

For d = 2, we have the following recurrence.

E2 = 2 − q2 + E2(p
2 + q2). (3)

This simplifies to

E2 = 2 − q2

1 − p2 − q2
= 2 − q2

2pq
≈ 3.42705. (4)

Thus, the binary tree algorithm with p = p2 requires approximately 4.427 tests when
d = 2.

1This theorem simplifies a result of (Hofri 1984) and it implies a randomized algorithm with the same
performance if we preface the binary tree algorithm with an initial random permutation of the items.



J Comb Optim

Table 1 Expected number of tests used by Identify

E2 3.427051 E9 21.678383 E100 261.087360

E3 5.917763 E10 24.309752 E200 524.174671

E4 8.520000 E20 50.617127 E300 787.262001

E5 11.147797 E30 76.926328 E400 1050.349326

E6 13.780589 E40 103.234985 E500 1313.436665

E7 16.413785 E50 129.543603 E800 2102.698664

E8 19.046426 E1000 2628.873328

For d = 3, we have the following recurrence.

E3 = 2 + q3(E3 − 1) + 3pq2E2 + 3p2qE2 + p3E3. (5)

This simplifies to

E3 = 2 − q3 + 3pq2E2 + 3p2qE2

1 − q3 − p3
= 2 − q3 + 3pqE2

1 − q3 − p3
≈ 5.91776. (6)

Thus, the binary tree algorithm with p = p2 requires approximately 6.91776 tests
when d = 3.

For d > 3, we have the following recurrence, where i denotes the number of de-
fectives in the first subset.

Ed = 2 + qd(Ed − 1) + dpqd−1Ed−1

+
d−2∑

i=2

{(
d

i

)
piqd−i (Ei + Ed−i )

}
+ dpd−1qEd−1 + pdEd.

Using the value of E1 = 0, this simplifies to

Ed = 2 − qd + ∑d−1
i=1 {(d

i

)
piqd−i (Ei + Ed−i )}

1 − qd − pd
. (7)

Starting with E0 = E1 = 0 and iterating, this yields results as shown in Table 1.
It is observed that for large d , 1−qd −pd ≈ 1, and (Ei +Ed−i ) ≈ 2Ed/2. Together

with particular values of Ed for d < 1000 suggests that, for p = p2, Ed < 2.631d .
We prove here a slightly weaker result.

It is seen that, for all 3 ≤ d ≤ 330, Ed < 2.64d −2. We show by induction that this
is true for all larger d . The numerator of (7) contains a weighted sum of Ei + Ed−i .
By the inductive hypothesis, that weighted sum will total at most (2.64d − 4)(1 −
(pd + qd)), and the entire numerator will total at most 2 − qd more. We focus on the
contributions of the small pieces Ej , for j = 1,2,3. Ej contributes

(
d
j

)
(pjqd−j +

pd−j qj )Ej , which we bounded using Ed < 2.64d − 2 to be at most

X = 0.64d(pqd−1 + pd−1q) + 3.28

(
d

2

)
(p2qd−2 + pd−2q2)
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+ 5.92

(
d

3

)
(p3qd−3 + pd−3q3).

But we actually get a contribution of

Y = 3.42705

(
d

2

)
(p2qd−2 + pd−2q2) + 5.91776

(
d

3

)
(p3qd−3 + pd−3q3). (8)

Adding Y − X and reordering the terms, we can bound the numerator as being at
most

Z = (2.64d − 2)(1 − (pd + qd)) + W, (9)

where

W < 2pd + qd − 0.64dpd−1q − 0.64dpqd−1 + 0.1471

(
d

2

)
(p2qd−2 + pd−2q2)

−0.0022

(
d

3

)
(p3qd−3 + pd−3q3).

Observing that W < 0 for all 3 ≤ d ≤ 330, we show that W < 0 for all d > 330
by demonstrating that each positive term is more than offset by a different negative
term. Compare the positive term P = 0.1471

(
d
2

)
p2qd−2 to the negative term N =

−0.0022
(
d
3

)
p3qd−3. Their absolute ratio, |P/N | = 0.1471q

0.0022p(d−2)/3 < 1, for d ≥ 327.

The positive term 0.1471
(
d
2

)
pd−2q2 is smaller than the absolute value of the negative

term −0.0022
(
d
3

)
pd−3q3 for d ≥ 126. The remaining positive terms, 2pd and qd ,

are neutralized by −0.64dpd−1q and −0.64dpqd−1 when, respectively, d ≥ 2 and
d ≥ 3. We conclude that, for p = p2, Ed < 2.64d − 2. �

Using different values of p yields different results. To minimize E2, a value of
p = √

2 − 1 ≈ 0.4142 is best (Hofri 1984), requiring 3.414 tests. To minimize E3,
p ≈ 0.4226 is best and requires 5.884 tests. To minimize E4, p ≈ 0.4197 is best and
requires 8.482 tests. p = p∗ ≈ 0.41750778 is asymptotically optimal for large d . The
curves are fairly flat, so, although one could tune p depending on the expected dis-
tribution of the values of d , choosing p = p∗ is a good choice for most distributions
and, as noted by (Hofri 1984), is optimal for the naturally arising distribution, when
the defective items are i.i.d., requiring ≈2.6229d tests.

4 The deferral algorithm

In this section, we describe how to substantially improve on the average case of the
binary tree algorithm under the assumption that we have a good approximation on
the number, d , of defective items. This algorithm is especially useful for the Multiple
Access Channel problem.

The main idea of our algorithm, which we call Deferral, begins by using an ap-
proach used by Greenberg and Ladner (1983) where we use knowledge of the ap-
proximate number of defective items to randomly partition the set of items into a
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set, L, of buckets such that the expected number of defective items in each bucket is
a constant. This process is called a spreading action and, for |L| = sd , the parameter
s is called the spread factor. Greenberg and Ladner’s algorithm performs a spreading
action using an appropriate spread factor (they recommend s = 0.8), performs a test
on each bucket, and then applies the binary tree algorithm to each bucket that has a
2+ result.

Our approach does something similar, but augments it with a new deferral tech-
nique that may at first seem counter-intuitive. We also perform a spreading action,
perform a test for each bucket, and apply the binary tree algorithm recursively to any
bucket with a 2+ result, except that we cut recursive calls short in certain cases and
defer to the future all items whose status remains unclear from all such calls. We
then recursively apply the entire algorithm on these deferred items. As we show in
our analysis, this is a case when procrastination provides asymptotic improvements,
for this deferral algorithm has a better average-case performance than does the direct
do-it-now approach of Greenberg and Ladner.

Deferral proceeds as follows.

1. Initialize a deferral bucket to empty.
2. For each bucket K in set L, identify some of the defective items in K (and defer

others) as follows.

Test K . If the test shows that K is pure or tainted, all defective items of K will
have been identified. Otherwise, use algorithm BucketSearch on bucket K .

3. Finally, if the deferral bucket is non-empty then recursively apply Deferral to the
set of items in the deferral bucket.

Algorithm BucketSearch proceeds as follows.

1. Partition K into a first portion A having fraction p of the items in K , and a second
portion B having the remainder fraction q = 1 − p of K’s items.

2. Test A. One of three results will occur:
(a) If A is pure, then recursively invoke BucketSearch(B).
(b) If A is tainted, then the lone defective item in A will have been identi-

fied. In this case, test B and, only when B is impure, recursively invoke
BucketSearch(B).

(c) If A is impure, recursively invoke BucketSearch(A). Finally, merge B with the
deferral bucket.

It might not be immediately obvious, but this algorithm can be made concise, using
O(1) words of memory per test element (one of which, for example, can keep the
state of whether an item is being deferred or not).

4.1 Analysis of the deferral algorithm

Let Ps(k) be the probability of a bucket containing exactly k defective items, given
that we are using |L| = sd buckets, i.e., we have a spread factor of s. Then

Ps(k) =
(

d

k

)(
1

sd

)k(
1 − 1

sd

)d−k

≈ 1

k!ske1/s
.
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For example, if we use a spread factor of s = .75, then Ps(0) < 0.2636, Ps(1) <

0.3515, Ps(2) < 0.2344, . . . , Ps(6) < 0.0021, and Ps(7) < 0.0004. We observe that
we expect that 99.9% of all buckets contain fewer than seven defective items in this
case (and this is true for all spread factors greater than 0.5). Furthermore, Ps(i) is
monotonic decreasing for i > 2. Therefore, in analyzing the expected behavior of
algorithms that use a spreading step with a reasonable spread factor, the expected
number of tests is dominated by the expected number of tests performed on buckets
with fewer than seven defective items.

Analyzing the expected number of tests per bucket We begin by evaluating the ex-
pected number, Ed , of tests performed in a bucket containing d defectives (not count-
ing the global test for the bucket or future deferred tests for items currently in the
bucket). We determine Ed for small values of d . By construction, E0 = E1 = 0. For
d > 1, we consider the cases x-y that arise when partitioning a set containing d de-
fective items into two subsets that turn out to contain, respectively, x and y defective
items. If d = 2, then the 2-0 case entails 1 test and a recursive call (and a deferral of
a pure set), the 1-1 case entails 2 tests, and the 0-2 case entails 1 test and a recursive
call. Thus, letting q = 1 − p,

E2 = p2(E2 + 1) + 2pq(2) + q2(E2 + 1)

= p2E2 + (p2 + 2pq + q2) + 2pq + q2E2

= 1 + 2pq

1 − p2 − q2
= 1 + 2pq

2pq
.

Likewise, if d = 3, the 3-0 case entails 1 test and a recursive call (and a deferral of
a pure set), the 2-1 case entails 1 test and a recursive call on a 2-defective set (and
a deferral of a 1-defective set), the 1-2 case entails 2 tests and a recursive call on a
2-defective set, and the 0-3 case entails 1 test and a recursive call. Thus,

E3 = p3(E3 + 1) + 3p2q(E2 + 1) + 3pq2(E2 + 2) + q3(E3 + 1)

= 1 + 3pq2 + (3p2q + 3pq2)E2

1 − p3 − q3
.

Similarly,

E4 = 1 + 4pq3 + (4p3q + 4pq3)E3 + 6p2q2E2

1 − p4 − q4
.

Likewise,

E5 = 1 + 5pq4 + (5p4q + 5pq4)E4 + 10p3q2E3 + 10p2q3E2

1 − p5 − q5
.

Moreover,

E6 = 1 + 6pq5 + (6p5q + 6pq5)E5 + 15p4q2E4 + 20p3q3E3 + 15p2q4E2

1 − p6 − q6
.
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Finally (which will be sufficient for our analysis),

E7 = 1 + 7pq6 + (7p6q + 7pq6)E6 + 21p5q2E5 + 35p4q3E4 + 35p3q4E3 + 21p2q5E2

1 − p7 − q7 .

But this is only for the first round. We still need to account for the expected number
of defective items deferred from this round to future rounds.

Analyzing the expected number of deferred defective items Let Dd denote the ex-
pected number of defective items deferred in a bucket with d defective items. Cer-
tainly, since we are guaranteed to find at least 2 defective items for any bucket
with d ≥ 2, we can bound Dd ≤ d − 2 for d ≥ 2. Moreover, we trivially have that
D0 = D1 = 0. We evaluate Dd for some small values of d , beginning with D3.

When d = 3, the 3-0, 1-2, and 0-3 cases all entail recursive calls, but only the 2-1
case causes a defective item to be deferred. Thus,

D3 = p3D3 + 3p2q + q3D3 = 3p2q

1 − p3 − q3
= p.

For d = 4, the 4-0 and 0-4 cases both entail recursive calls, the 3-1 case entails a
3-defective recursive call and 1 deferral, the 2-2 case entails 2 deferrals, and the 1-3
case entails a 3-defective recursive call. Thus,

D4 = p4D4 + 4p3q + (4p3q + 4pq3)D3 + 12p2q2 + q4D4

= 4p3q + 12p2q2 + (4p3q + 4pq3)D3

1 − p4 − q4
.

Likewise,

D5 = 5p4q + 20p3q2 + 30p2q3 + (5p4q + 5pq4)D4 + 10p3q2D3

1 − p5 − q5
.

Finally (which will be sufficient for our analysis),

D6 = 6p5q + 30p4q2 + 60p3q3 + 60p2q3 + (6p5q + 6pq5)D5 + 15p4q2D4 + 20p3q3D3

1 − p6 − q6
.

It does not result in elegant equations, but we can nevertheless combine this analy-
sis with the previous bounds on Ed and Ps(k) to derive the expected number of tests
performed by our algorithm. For example, with a spread factor of s = 0.8 and a split
parameter of p = 0.479, we obtain that the expected number of tests is less than
2.054d .

4.2 Estimating the number of defectives

Greenberg and Ladner (1983) give a simple repeated doubling algorithm for estimat-
ing the number of transmitting devices, d , in a set. In their algorithm, each transmit-
ting device repeatedly transmits with probability 2−i , for i = 1,2, . . . , until there is
a non-collision. It then sets its estimate of the number of defectives as d̂ = 2i .
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For combinatorial testing to determine the number of defective items, d , in a large
set of items, this is equivalent to repeatedly testing a random set of size n2−i , for i =
1,2, . . . , until a test obtains a 0- or 1-result. Unfortunately, this simple approximation
is not sufficiently accurate for our purposes, so we provide in this section a simple
improvement of the doubling algorithm, which increases the accuracy of the estimate
while only increasing the number of tests by a small additive factor.

We begin by applying the simple doubling algorithm. This algorithm is 99.9%
likely to use O(logd) tests and produce an estimate, d̂ , such that d/32 ≤ d̂ ≤ 32d .
However, the estimate is within a factor of 2 of d only about 75% of the time. (It
varies, approximately 65% to 90%, depending on how close d is to a power of 2.)
While this is insufficient to produce a useful estimate of d for the sake of computing
a spread factor, it is sufficient as a first step for coming up with a better approximation
for d .

Let us, therefore, assume we have computed the estimate d̂ . We next perform a
sequence of experiments, for i = j, j + 1, . . . , where experiment i involves choosing
a constant number, c, of random subsets of size n2−i/a and performing a test for
each one, where j = max{1, a(lg d̂ − 5)} with a a small integer such as 2 or 4. We
stop the sequence of experiments as soon as one of the c tests returns a result of 0
or 1. We then use the value of i to produce a refined estimate, d̂ ′, for d . We use
d̂ ′ = f (a, c) · 2i/a , where f is a normalizing function so that E[d̂ ′] = d .

The probability that all c subsets for experiment i contain collisions quickly ap-
proaches 1 − (

1 − (t + 1)e−t
)c

, where t = d/2i/a . This fact can then be used to find
a good estimate of d , based on the values of a and c. When a = 4 and c = 8, using
f (a, c) = 4.3 results in the estimate being within a factor of 2 of d about 99.3% of
the time (varying about 98% to 100%, depending on d). Moreover, combining this
estimate algorithm with our deferred binary tree algorithm results in a testing algo-
rithm that uses an expected 2.08d +O(logd) tests, and which does not need to know
the value of d in advance.

4.3 Reducing the randomness of the deferral algorithm

In this subsection, we show how to reduce the randomness needed for the deferral
algorithm, while keeping it concise. In particular, we do not need O(logn) random
bits associated with each defective item; we can use an expected O(logn) random
bits associated with a group controller instead. Moreover, even with this reduced
randomness, we show that we will make only O(d) tests, with high probability, 1 −
O(1/d).

The main idea of our modified algorithm is to apply the Deferral algorithm, as
described above, but use a random hash function to define the top-level partitioning
to be performed. Indeed, the top-level distribution of our algorithm is closely related
to the hashing of d out of n elements into a table of size O(d), in that mapping items
to cells without collisions is quite helpful (corresponding to identifying tests in our
case). The main difference between our problem and the hashing problem is that, in
the case of a collision (corresponding to an impure test set in our case), we do not
know which items or even how many items have collided.

Our algorithm is the same as the deferral algorithm, except that instead of using
random bits associated with the items, we define the top-level buckets as follows:
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1. Assign m two times the value of d , the number of remaining defective items.
2. Choose a prime number r > m and choose a random set of integers, {a1, a2, a3},

from the interval [1, r − 1], and a random integer, b, from the interval [0, r − 1].
Define h as

h(x) = (a3x
3 + a2x

2 + a1x + b mod r) mod m.

Comment: It is well known (e.g., see Motwani and Raghavan 1995) that such
a hash function, h, comes from a 4-universal family of hash func-
tions, which implies that the probability that h maps four different
items x1, x2, x3, x4 to four specific (but not necessarily distinct) values
y1, y2, y3, y4 is 1/m4. That is, the assignment of items to hash values
is four-wise independent. Note further that a function like h is defined
using O(1) parameters and can be evaluated in O(1) time; hence, such
functions can be used in a concise testing algorithm.

3. Choose parameters a3, a2, a1, and b to define a random hash function h, as defined
above. Apply the deferral algorithm to each bucket, where each y ∈ [0,m − 1]
defines a bucket that contains every item x from the set of items, S such that
h(x) = y.

Comment: We assume that there is enough state information associated with each
of the items for an item to “know” that it is no longer in S, so that we
can express the test sets for each iteration using O(1)-sized expres-
sions.

4. Remove from S each item x that is in a tainted set Ty , taking note of the item z

identified as defective by the test for Ty (recall that we assume the test for such a
Ty is an identifying test), and decrement d by the number of tainted sets.

5. If S = ∅ after removing all such items, then the algorithm has succeeded and is
done. Otherwise, repeat the above steps for the remaining items in S.

Let T (d) denote the expected number of tests performed by the above algorithm,
and let X be the number of defective items that are not detected in the first iteration
of our algorithm (i.e., they belong to impure test sets). Since there are d defective
items and 2d possible tests, E(X) ≤ d/2. Thus, by the linearity of expectation, T (d)

satisfies the following recurrence equation:

T (d) ≤ T (d/2) + 2d,

which implies that T (d) is at most 4d . In fact, we can prove that the number of tests
used by the above algorithm is O(d) with high probability.

Let us begin our justification of this fact by analyzing a single iteration of our algo-
rithm. Let d̂ denote the number of defectives present at the beginning of an iteration
i, and say that iteration i is good if the number of defective items detected in iteration
i is at least d̂/4. Otherwise, iteration i is bad.

Lemma 1 The probability that an iteration i is bad is at most min{2/3, 70/d̂2}.
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Proof Similar to our usage above, let X be the number of items that are not detected
in the given iteration i and note that E(X) ≤ d̂/2. Then, by Markov’s inequality (e.g.,
see Motwani and Raghavan 1995),

Pr(X ≥ (3/4)d̂) ≤ E(X)

(3/4)d̂
≤ d̂/2

(3/4)d̂
= 2

3
.

Note that X can be written as X = X1 + · · · + Xm to be a random variable defined
as the sum of m 4-wise independent 0/1 random variables, with expected value μ =
E(X) ≤ d̂/2 and variance σ 2 ≤ d̂/4, since X is Binomial and each Xi is 1 with
probability at most 1/2. By an inequality due to Schmidt et al. (1993), which requires
that the variables defining X be 4-wise independent,

Pr(X ≥ 3d̂/4) = Pr(X − d̂/2 ≥ d̂/4)

≤ Pr(|X − μ| ≥ d̂/4) ≤ 2

(
4σ 2

e(d̂/4)2

)2

≤ 2

(
d̂

e(d̂/4)2

)2

= 512

e2d̂2
<

70

d̂2
.

Combining the above bounds proves the lemma. �

Thus, if there are d̂ defectives remaining at the beginning of an iteration i, then
with high probability there will be at most (3/4)d̂ defectives remaining after the
iteration completes.

Theorem 3 Given a set of n items with d defectives, the number of tests performed by
the reduced-randomness ternary-result group testing algorithm is O(d) with proba-
bility 1 − O(1/d).

Proof For the sake of the analysis, we divide the iterations of the randomized ternary-
result group testing algorithm into two phases:

– Phase 1: Each iteration i such that i ≤ log4/3 logd and the number of undetected
defectives is more than d/ logd at the beginning of the iteration

– Phase 2: The remaining iterations.

Let us analyze each phase separately. By Lemma 1, the probability that a particular
iteration i in Phase 1 is bad is at most min{2/3, 70 log2 d/d2}. Thus, the probability
that any iteration i in Phase 1 is bad is at most min{(2/3) log4/3 logd, 70 log2 d log4/3

logd/d2}, which is O(1/d). That is, with high probability, all the iterations in Phase 1
are good, which implies that, with at least the same probability, the number of tests
performed in Phase 1 is O(d) and the number of defectives remaining at the begin-
ning of Phase 2 is at most d/ logd . So, let us assume that this many defectives remain
at the beginning of Phase 2.

Unfortunately, we cannot claim with high probability that all the iterations in
Phase 2 are good. But we do know that once we have g = log4/3 d/ logd good it-
erations in Phase 2, we are done. Let Z denote the number of iterations we make in
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Phase 2. By Lemma 1, E(Z) ≤ 3g. Note further that whether any given iteration is
good is independent of whether any other iteration is good (since we use a different
random hash function, h, for each iteration). Thus, we can use a Chernoff bound (e.g.,
see Motwani and Raghavan 1995) to show that

Pr(Z ≥ 8g) = Pr(Z ≥ (1 + 5/3)3g)

≤ Pr(Z ≥ (1 + 5/3)E(Z))

≤ 2−E(Z) ≤ 2−g < (logd/d)2.

Thus, Phase 2 uses at most O(logd/ logd) iterations, with probability at least
1 − O(1/d). Since we are assuming that each iteration in Phase 2 will require at
most d/ logd tests (which we have already shown to hold with high probability), this
implies that Phase 2 will require O(d) tests with high probability, that is, with prob-
ability that is at least 1 − O(1/d). Combining this bound with the bound for Phase 1
completes the proof. �

Thus, assuming we know the value of d , then the randomized ternary-result group
testing algorithm uses O(d) tests, with high probability. This fact can itself be used
to estimate d , of course, by a simple doubling strategy. We start such a strategy by
assuming that the number of defectives is at most d = 2 and we run our algorithm
based on this assumption, except that we stop the algorithm short if it uses more than
cd tests, where c is the constant “hiding” behind the big-Oh in the high-probability
bound on the number of tests needed. We then double the value of d and repeat.
Since we double the number of tests with each round, we will quickly come to a
round that succeeds within the claimed number of tests. Moreover, since we double
the number of tests we perform with each round, this implies that the total number of
tests is O(d) with high probability. Therefore, we can achieve this bound, with high
probability, even without knowing the value of d in advance. Of course, there is a
trivial lower bound of Ω(d) tests for any ternary-result group testing algorithm with
identifying tests in the tainted case, so our performance bound is within a constant
factor of optimality, with high probability.

5 Our anonymous algorithm

In this section, we discuss an efficient concise deterministic ternary-result group test-
ing algorithm for the case in which a test of a tainted set does not identify the defective
item.

Consider algorithm AN(S), shown in Figs. 1 and 2.
Subroutine Reduce reduces the original problem to one of identifying the d de-

fective items in a collection L of d tainted subsets. Note that Reduce is essentially
our earlier Identify algorithm, in which testing a tainted set immediately identified
the defective item. Here, we require additional testing to identify the defective item.
When d = 2, subroutine Final2 iterates reducing the size of the two sets in L until
they are singletons. When d ≥ 3, subroutine Final3 iterates reducing the size of three
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Algorithm AN ( S )
// Given: set S of items
// Return: identity of all defective items

if test (S) ≤ 1 then identify the defective via binary search and exit
list L ← ∅
Reduce(S)
if list L has only 2 sets, A and B then Final2(A,B)
else Final3(L)

Subroutine Reduce ( S )
// Given: set S of items that includes at least 2 defective items
// Return: list L of disjoint subsets of S, each with one defective item

p2 ← 0.38196601
Partition S into two subsets, A and B, where |A| = p2|S|
t1 ← test (A)

if t1 ≥ 2 then Reduce(A)
if t1 = 1 then add A to list L

if t1 = 0 then t2 ← 2
else t2 ← test (B)

if t2 ≥ 2 then Reduce(B)
if t2 = 1 then add B to list L

Subroutine Final2 ( A,B )
// Given: two disjoint tainted sets
// Return: identity of the 2 defective items

p3 ← 0.3176722 // q3 = (1 − p3)

while |A| > 1 and |B| > 1 // Start with sets (A,B) having sizes (x, y)

Partition A into A1 and A2, where |A1| = p3|A|
Partition B into B1 and B2, where |B1| = p3|B|
t1 ← test (A1 ∪ B1)

if t1 = 0 then 〈A,B〉 ← 〈A2,B2〉 // R0: sizes (q3x, q3y), 1 test
else if t1 = 1 then

t2 ← test (A1)

if t2 = 0 then 〈A,B〉 ← 〈A2,B1〉 // R1: sizes (q3x,p3y), 2 tests
else 〈A,B〉 ← 〈A1,B2〉 // R1: sizes (p3x, q3y), 2 tests

else /* (t1 = 2) */ 〈A,B〉 ← 〈A1,B1〉 // R2: sizes (p3x,p3y), 1 test
use binary search to identify defectives in the set of A and B whose size > 1

Fig. 1 Analysis algorithm using anonymous ternary tests

of the sets in L until at most two of the d sets are non-singleton, and then utilizes
either Final2 or binary search to reduce the remaining set(s) to become singleton(s).

All subsets can be selected so that the items of each subset have ID value ranks
that are contiguous. All tests involve the union of at most three subsets, each of which
can be specified as consisting of items whose ID values are in a specified range. Thus,
algorithm AN is concise.
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Subroutine Final3 ( L )
// Given: list L of d ≥ 3 disjoint tainted sets
// Return: identity of the d defective items

p4 ← 0.27550804 // q4 = (1 − p4)

while ∃ at least three non-singleton sets in L

〈a, b, c〉 ← indices of the largest three non-singleton sets in L

// Start with sets (La,Lb,Lc) having sizes (x, y, z)

Partition La into A1 and A2, where |A1| = p4|La |
Partition Lb into B1 and B2, where |B1| = p4|Lb|
Partition Lc into C1 and C2, where |C1| = p4|Lc|
t1 ← test (A1 ∪ B1 ∪ C1)

if t1 = 0 then 〈La,Lb,Lc〉 ← 〈A2,B2,C2〉
// R0: sizes (q4x, q4y, q4z), 1 test

else if t1 = 1 then
t2 ← test (A1 ∪ B2)

if t2 = 0 then 〈La,Lb,Lc〉 ← 〈A2,B1,C2〉
// R1: sizes (q4x,p4y, q4z), 2 tests

else if t2 = 1 then 〈La,Lb,Lc〉 ← 〈A2,B2,C1〉
// R1: sizes (q4x, q4y,p4z), 2 tests

else /* (t2 = 2) */ 〈La,Lb,Lc〉 ← 〈A1,B2,C2〉
// R1: sizes (p4x, q4y, q4z), 2 tests

else // (t1 = 2)
t2 ← test (A1 ∪ B2)

if t2 = 0 then 〈La,Lb,Lc〉 ← 〈A2,B1,C1〉
// R2: sizes (q4x,p4y,p4z), 2 tests

else if t2 = 1 then
t3 ← test (C1)

if t3 = 0 then 〈La,Lb,Lc〉 ← 〈A1,B1,C2〉
// R2: sizes (p4x,p4y, q4z), 3 tests

else 〈La,Lb,Lc〉 ← 〈A1,B1,C1〉
// R3: sizes (p4x,p4y,p4z), 3 tests

else /* (t2 = 2) */ 〈La,Lb,Lc〉 ← 〈A1,B2,C1〉
// R2: sizes (p4x, q4y,p4z), 2 tests

if ∃ two non-singleton sets (A and B) in L then Final2(A,B)
else if ∃ one non-singleton set, A, in L

then identify A’s defective by using binary search

Fig. 2 Final subroutine when d ≥ 3

5.1 Correctness of Final3’s reduction process

Final3 partitions each of three tainted non-singleton sets into two subsets—a rela-
tively small subset and a relatively large subset—and makes the determination as to
which three of the six newly created subsets are tainted. It first tests the union of the
three smaller subsets. If this union is pure then the three larger subsets are tainted.
Otherwise, one or two further tests suffice to make the determination, as shown in the
following lemmas.
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Lemma 2 If we are given six sets, (A1,A2,B1,B2,C1,C2), such that each pair of
sets (X1,X2) consists of one pure and one tainted set, and that exactly one of the
sub1 sets (A1,B1,C1) is tainted, then one ternary test suffices to identify which three
sets are tainted.

Proof Test the union of sets A1 and B2.
If the test shows that the union is pure then B2 is pure, and so B1 is the tainted

sub1 set. Consequently, the tainted sets are (A2, B1, C2).
If the test shows that the union is tainted then either (1) A1 is tainted and B2 is pure,

implying that B1 is also tainted which is inconsistent with the lemma’s hypothesis that
there is only one tainted sub1 set, or (2) A1 is pure and B2 is tainted, implying that
B1 is pure and thus that C1 is the one tainted sub1 set. Consequently, the tainted sets
are (A2, B2, C1).

Finally, if the test shows that the union is impure then both A1 and B2 are tainted,
and so A1 is the tainted sub1 set. Consequently, the tainted sets are (A1, B2, C2). �

Lemma 3 If we are given six sets, (A1,A2,B1,B2,C1,C2), such that each pair of
sets (X1,X2) consists of one pure and one tainted set, and that at least two of the
sub1 sets (A1,B1,C1) are tainted, then two ternary tests suffice to identify which
three sets are tainted.

Proof Test the union of sets A1 and B2.
If the test shows that the union is pure, then A1 is pure and so the other two sub1

sets must be tainted. Consequently, the tainted sets are (A2, B1, C1).
If the test shows that the union is tainted, then either (1) A1 is pure and B2 is

tainted, implying that B1 is also pure which is inconsistent with the lemma’s hypoth-
esis that there are at least two tainted sub1 sets, or (2) A1 is tainted and B2 is pure,
implying that B1 is also tainted. In this case, testing C1 will indicate either that C1 is
pure, in which case the tainted sets are (A1, B1, C2), or that C1 is tainted, in which
case the tainted sets are (A1, B1, C1).

Finally, if the test shows that the union is impure, then B2 is tainted and so B1 is
pure. We can conclude that the other two sub1 sets must be tainted. Consequently,
the tainted sets are (A1, B2, C1). �

5.2 Analysis of algorithm AN

Let Wd(n), for d > 1, be the worst-case numbers of tests made by AN(S) when
|S| = n and there turns out to be d defectives.

Theorem 4

W2(n) ≤ 1.8756 lgn + o(lgn)

and, for d ≥ 3, Wd(n) ≤ (0.3307 + 0.7202d) lgn + o(lgn).

Proof We analyze Final2 to evaluate W2(n), and then analyze Final3 to evaluate
Wd(n), for d ≥ 3.



J Comb Optim

Analysis of Final2 We make use of the real root of the equation p3 = (1 − p3)
3,

which is solved by

p3 = 1 + 3

√√
93

18
− 1

2
− 3

√√
93

18
+ 1

2
≈ 0.3176722, (10)

and of q3 = (1 − p3) ≈ 0.6723278. We assign counts of tests performed in Final2
as follows. Tests result in size reductions of the two sets, and we assign such tests to
those sets in proportion to the logarithms of the ratios of the before and after set sizes.
For example, an R1 scenario uses two tests to reduce sets of sizes x and y to sizes
p3x and q3y, and so we assign the size x set a count of 2 lgp3/(lgp3 + lgq3) tests.
We define the normalized cost to be the assigned count divided by the logarithm of
the size reduction. Accordingly, both sets would have the same normalized cost. For
example, in an R1 scenario, both sets would have a normalized cost of −2/(lgp3 +
lgq3).

Let W1(n) be the worst-case number of tests made within Final2 that are assigned
to a set, having initial size n, to identify the defective item in that set. A set’s defective
item will be identified when that set has been reduced to size 1. Therefore, W1(n) is
the product of lgn and the maximum normalized cost, c2.

There are three scenarios of size reductions of the pair of sets. R0: 1 test reduces
both set sizes by a factor of 1/q3, each set is assigned a count of 1

2 test, and the
normalized costs are −1/(2 lgq3) ≈ 0.9067. R1: 2 tests reduce set sizes by factors of
1/p3 and 1/q3, the sets are assigned counts 2 lgp3/(lgp3 + lgq3) and 2 lgq3/(lgp3 +
lgq3) tests, and the normalized costs are −2/(lgp3 + lgq3) ≈ 0.9067. R2: 1 test
reduces both set sizes by a factor of 1/p3, each set is assigned a count of 1

2 test, and
the normalized costs are −1/(2 lgp3) ≈ 0.3022.

Therefore, c2 ≈ 0.9067 and W1(n) ≈ 0.9067 lgn.
However, to the extent that a set uses binary search at the last line of Final2, it does

not participate in size reductions of the R’s. In the worst case, scenario R1 recurs with
one set’s size consistently being reduced by p3 and the other’s size by q3. This can
occur − lgn/ lgp3 times, at which point one set will have size 1 and the other will
have size n1−lgq3/ lgp3 . This second set will then require (1 − lgq3/ lgp3) lgn tests,
for a total of [1−(2+ lgq3)/ lgp3] lgn ≈ 1.8756 lgn tests. Therefore, using W1(n) ≈
0.9067 lgn leaves an undercount of at most [1.8756 − 2(0.9067)] lgn ≈ 0.0622 lgn.

We note that the problem of finding two defectives can be solved using about
1.4 lgn tests (see Gargano et al. 1992 and Christen 1994) but these other methods are
much more complicated and may not admit to concise implementation.

Evaluation of W2(n) We have the following recurrence.

W2(n) = max

⎧
⎨

⎩

2 + W1(p2n) + W1(p2n) + 0.0622 lgn,

2 + W2(p2n),

1 + W2(p2n).

(11)

Consider W2(n) = x lgn + o(lgn).
We use c2 ≈ 0.9067, defined above as the maximum normalized cost, giving

W1(n) ≈ c2 lgn (excluding the undercount).
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If the first term of the recurrence were to be the maximum term, then x = 2c2 >

1.81. If the second term were to be the maximum term, then x = −2/ lgp2 ≈ 1.44.
If the third term were to be the maximum term, then x = −1/ lgq2 ≈ 1.44. Thus, the
first term is the maximum term and W2(n) ≈ (2c2 + 0.0622) lgn ≈ 1.8756 lgn.

Analysis of Final3 We make use of the real root with value less than one of the
equation p4 = (1 − p4)

4, which is solved by

x = 3

√√
849

18
+ 1

2
− 3

√√
849

18
− 1

2
, (12)

p4 = 1 +
√

x

2
− 1

2

√
2√
x

− x ≈ 0.27550804, (13)

and of q4 = (1 − p4) ≈ 0.72449196.
Tests result in size reductions of three sets. Our analysis is similar to that of Final2.

We assign tests to the three involved sets in proportion to the logarithms of the ratios
of the before and after set sizes. We define the normalized cost to be the assigned
count divided by the logarithm of the size reduction. All three involved sets will have
the same normalized cost.

Let W1(n) be the worst-case number of tests made within Final3 that are assigned
to an L-set, having initial size n, to identify the defective item in that set. An L-set’s
defective item will be identified when that set has been reduced to size 1. Therefore,
W1(n) is the product of lgn and the maximum normalized cost, c3.

There are four scenarios of size reductions of a triple of sets. R0: 1 test reduces
three set sizes by a factor of 1/q4, and the normalized costs are −1/(3 lgq4) ≈
0.7169. R1: 2 tests reduce one set size by a factor of 1/p4 and the other two set
sizes by a factor of 1/q4, and the normalized costs are −2/(lgp4 +2 lgq4) ≈ 0.7169.
R2: 2 or 3 tests reduce two of the set sizes by a factor of 1/p4 and the other set size by
a factor of 1/q4, and the normalized costs are either −2/(2 lgp4 + lgq4) ≈ 0.4779, or
−3/(2 lgp4 + lgq4) ≈ 0.7169. R3: 3 tests reduce all three of the set sizes by a factor
of 1/p4, and the normalized costs are −3/(3 lgp4) ≈ 0.5376.

Therefore, c3 ≈ 0.7169 and W1(n) ≈ 0.7169 lgn.
However, to the extent that a set uses Final2 or binary search at the last lines of

Final3, it does not participate in size reductions of the R’s. In the worst case, scenario
R1 recurs with two sets’ sizes consistently being reduced by q4 and the other set size
by p4. This can occur − lgn/ lgp4 times, at which point the two sets will have size
n1−lgq4/ lgp4 = n0.75 and the one set will have size 1. These two sets will then be
reduced by Final2, requiring at most (1.8756)(.75) lgn = 1.406 lgn tests, for a total
of (1.406 − 2/ lgp4) lgn ≈ 2.4814 lgn tests. Then, dW1(n) represents an undercount
of the worst-case total number of tests in Final3 by at most [2.4814−3(.7169)] lgn =
0.3307 lgn.

Evaluation of Wd(n) Define W ′
d(n) to be Wd(n) minus the undercount of dW1(n)

in Final3 which is at most 0.3307 lgn. Then, for d > 2, we have the following recur-
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rence.

W ′
d(n) = max

⎧
⎪⎪⎨

⎪⎪⎩

2 + W ′
i (p2n) + W ′

d−i (q2n), for 1 ≤ i ≤ d − 1,

2 + W ′
d(p2n),

1 + W ′
d(q2n).

(14)

Consider W ′
d(n) = x lgn + o(lgn), and we shall solve for x. Assume that, for

2 < i < d , W ′
i (n) = xi lgn + o(lgn), where x ≥ c3 ≈ 0.7169, and that W ′

2(n) =
2c2 lgn + o(lgn), where c2 ≈ 0.7202 is obtained from the solution to W ′

2(d) =
max{2 + W ′

2(p2n),1 + W ′
2(q2n)}.

If the first term of the recurrence were to be the maximum term, then x >

dc3 > 2.15, since d ≥ 3. If the second term were to be the maximum term, then
x = −2/ lgp2 ≈ 1.44. If the third term were to be the maximum term, then x =
−1/ lgq2 ≈ 1.44. Therefore, the first term is the maximum term and we obtain
Wd(n) ≤ (0.3307 + 0.7202d) lgn + o(lgn). �

6 Using counting queries

In this section, we discuss a variant of our testing algorithm for the case when the
queries provide an exact count of the number of defectives in a test set, and the result
in the case of a 1-result identifies the defective item in the test set. As we show, the
expected performance of this algorithm is significantly better than that of the ternary-
result group testing algorithm.

We apply an initial spreading action to distribute items across a set of buckets
and we then perform a test for each bucket. The main difference is in the binary tree
algorithm we then apply to each bucket B whose test indicates it has t ≥ 2 defective
items:

1. We set a partition factor, p, according to the analysis, and we split B into subsets
B1 and B2 so that B1 has p|B| items from B and B2 has the remaining items.

2. We perform a test for B1 and, if the number, t1, of defective items in B1 is at least
two, then we recursively search in B1.

3. If the (possibly recursive) testing of B1 has revealed all t defective items from B ,
then we skip the testing of B2, for it contains no defective items in this case.

4. Otherwise, if the test for B1 revealed t1 = t − 1 defectives, then we immediately
test B2 to identify its one defective item.

5. If, on the other hand, the test for B1 revealed t1 defectives, with 0 ≤ t1 < t − 1,
then we recursively search in B2 (without performing a global test for B2, since
we know it must have at least 2 defectives).

Note that no deferral is needed in this algorithm, because we can always infer whether
or not testing in a B2 set will be profitable.

6.1 Analysis of the counting algorithm

We begin by analyzing the expected number of tests of the counting binary tree al-
gorithm, without performing any spreading action. Our analysis parallels the one we
performed for Deferral.
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Let Ed be the expected number of tests performed by the binary tree counting
algorithm (not counting the global test for all of the set), assuming there are d defec-
tives. We evaluate Ed for small values of d . By construction, E0 = E1 = 0. If d = 2,
then the 2-0 case causes 1 test and a recursive call, the 1-1 case causes 2 tests, and
the 0-2 case causes 1 test and a recursive call. Thus, letting q = 1 − p,

E2 = p2(E2 + 1) + 2pq(2) + q2(E2 + 1)

= p2E2 + (p2 + 2pq + q2) + 2pq + q2E2

= 1 + 2pq

1 − p2 − q2
= 1 + 2pq

2pq
.

Likewise, if d = 3, then the 3-0 case causes 1 test and a recursive call, the 2-1 case
causes 2 tests and a 2-defective recursive call, while the 1-2 case causes 1 test and a
2-defective recursive call, and the 0-3 case causes 1 test and a recursive call. Thus,

E3 = p3(E3 + 1) + 3p2q(E2 + 2) + 3pq2(E2 + 1) + q3(E3 + 1)

= 1 + 3p2q + (3p2q + 3pq2)E2

1 − p3 − q3
.

Similarly,

E4 = 1 + 4p3q + (4p3q + 4pq3)E3 + 12p2q2E2

1 − p4 − q4
.

Likewise,

E5 = 1 + 5p4q + (5p4q + 5pq4)E4 + (10p3q2 + 10p2q3)(E2 + E3)

1 − p5 − q5
.

Finally (which will be sufficient for our analysis),

E6 = 1 + 6p5q + (6p5q + 6pq5)E5 + (15p4q2 + 15p2q4)(E2 + E4) + 40p3q3E3

1 − p6 − q6
.

These values can then be combined with an analysis (as given above) for bounding
the number of buckets of various sizes to derive an expected bound on the number
of tests performed by our algorithm. For example, if we choose a spread factor of
s = 0.58 and a split parameter p = 0.4715, then we find that Ed ≤ 1.896d, which is
significantly better than that obtained by the ternary-result group testing algorithm.

7 Conclusion

We have presented several concise algorithms for ternary-result group testing, includ-
ing a randomized algorithm for the identifying case that uses O(d) tests with high
probability, a deterministic algorithm for the identifying case that uses O(d logn)

tests and a deterministic algorithm for the anonymous case that uses O(d logn) tests.
We leave as an open problem whether there is a deterministic group testing algorithm
for the identifying case that uses O(d) tests.
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