
4

Serial Computations of Levenshtein

Distances

In the previous chapters, we discussed problems involving an exact match

of string patterns. We now turn to problems involving similar but not

necessarily exact pattern matches.

There are a number of similarity or distance measures, and many of

them are special cases or generalizations of the Levenshtein metric. The

problem of evaluating the measure of string similarity has numerous appli-

cations, including one arising in the study of the evolution of long molecules

such as proteins. In this chapter, we focus on the problem of evaluating a

longest common subsequence, which is expressively equivalent to the simple

form of the Levenshtein distance.

4.1 Levenshtein distance and the LCS problem

The Levenshtein distance is a metric that measures the similarity of two

strings. In its simple form, the Levenshtein distance, D(x; y), between

strings x and y is the minimum number of character insertions and/or

deletions (indels) required to transform string x into string y. A commonly

used generalization of the Levenshtein distance is the minimum cost of

transforming x into y when the allowable operations are character insertion,

deletion, and substitution, with costs �(�; �); �(�; �), and �(�

1

; �

2

), that are

functions of the involved character(s).

There are direct correspondences between the Levenshtein distance of

two strings, the length of the shortest edit sequence from one string to the

other, and the length of the longest common subsequence (LCS) of those

strings. If D is the simple Levenshtein distance between two strings having

lengths m and n, SES is the length of the shortest edit sequence between

the strings, and L is the length of an LCS of the strings, then SES = D

and L = (m+ n�D)=2. We will focus on the problem of determining the

length of an LCS and also on the related problem of recovering an LCS.

Another related problem, which will be discussed in Chapter 7, is that of

approximate string matching, in which it is desired to locate all positions

within string y which begin an approximation to string x containing at

most D errors (insertions or deletions).
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procedure CLASSIC( x, m, y, n, C, p ):

begin

L[0:m; 0] 0;

P [0:m; 0] 1;

L[0; 0:n] 0;

P [0; 0:n] 2;

for i 1 until m do

for j  1 until n do

if x

i

= y

j

then L[i; j] 1 + L[i� 1; j � 1]

else if L[i� 1; j] > L[i; j � 1] then L[i; j] L[i� 1; j]

else L[i; j] L[i; j � 1];

if x

i

= y

j

then P [i; j] 3

else if L[i� 1; j] > L[i; j � 1] then P [i; j] 1

else P [i; j] 2;

p L[m;n];

(i; j) (m;n);

k p;

while k > 0 do

if P [i; j] = 3 then

begin

C[k] x

i

;

k  k � 1;

(i; j) (i � 1; j � 1);

end

else

if P [i; j] = 1 then i i � 1

else j  j � 1

end

Fig. 4.1. Classic LCS algorithm

4.2 Classical algorithm

Let the two input strings be x = x

1

x

2

:::x

m

and y = y

1

y

2

:::y

n

and let

L(i; j) denote the length of an LCS of x[1:i] and y[1:j]. A simple recurrence

relation exists on L:

L(i; j) =

8

<

:

0; if either i = 0 or j = 0

1 + L(i � 1; j � 1); if x

i

= y

j

maxfL(i � 1; j); L(i; j � 1)g; if x

i

6= y

j

(4:1)

This forms the basis for a dynamic programming algorithm that deter-

mines the length of an LCS. We �ll matrix L[0:m; 0:n] with the values of
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the L-function. We �rst set the values stored in the boundary cells (L[0; �]

and L[�; 0]) to 0. By sweeping the matrix in an order calculated to visit a

cell only when its precedents (as de�ned by the recurrence) have already

been valuated, we iterate setting the value stored in L[i; j] to the value

of L(i; j) using the recurrence relation. (See Figure 4.1.) Storing point-

ers P [i; j] that indicate which L-entry contributed to the value of L(i; j)

(change of coordinate 1, 2, or both), enables the recovery of an LCS by

tracing these threads from (m;n) back to (0,0). A solution LCS, having

length p = L(m;n), will be placed in array C. This method requires O(mn)

time and space.

The recurrence relation on L can be revised to enable computation

of the generalized Levenshtein distance, D(i; j) between x[1:i] and y[1:j],

where insertions, deletions and substitutions have costs that are a function,

�, of the symbols involved. A similar dynamic programming algorithm will

evaluate D.

D(i; j) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

0; if i = 0 and j = 0

D(0; j � 1) + �(�; y

j

); if i = 0 and j > 0

D(i � 1; 0) + �(x

i

; �); if i > 0 and j = 0

D(i � 1; j � 1); if x

i

= y

j

min

8

<

:

D(i; j � 1) + �(�; y

j

);

D(i � 1; j) + �(x

i

; �);

D(i � 1; j � 1) + �(x

i

; y

j

)

9

=

;

; if x

i

6= y

j

(4:2)

4.3 Non-parameterized algorithms

A number of algorithms developed for solving the LCS problem have exe-

cution times dependent upon either the nature of the input (beyond merely

the sizes of the two input strings) or the nature of the output. Such algo-

rithms are referred to as input- or output-sensitive. Before discussing such

algorithms, we �rst describe two LCS algorithms of general applicability

whose performance is not parameterized by other variables.

4.3.1 LINEAR SPACE ALGORITHM

The space complexity of determining the length of an LCS can be reduced

to O(n) by noting that each row of L depends only on the one immediately

preceding row of L. The length of an LCS of strings x[1:m] and y[1:n] will be

returned in L[n] after invoking FINDROW(x;m; y; n; L). (See Figure 4.2.)

Recovering an LCS using only linear space is not as simple. The \curve"

that recovers an LCS was obtained by following threads through the L

matrix after it was computed in its entirety. Instead, we �rst determine the

middle point of an LCS curve and then, applying the procedure recursively,

we determine the quartile points, etc.
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procedure FINDROW( x, m, y, n, L ):

begin

L[0 : n] 0;

for i 1 until m do

begin

for j  1 until n do

if x

i

= y

j

then L

new

[j] 1 + L[j � 1]

else L

new

[j] maxfL

new

[j � 1]; L[j]g;

for j  1 until n do L[j] L

new

[j]

end

end

Fig. 4.2. FINDROW algorithm

There are several ways to determine the middle point of an LCS curve.

We outline two methods, one that is conceptually simple and the other

that is easier and more e�cient to implement.

The simple method computes the middle row of L and then continues

computing additional rows L[i; �], retaining for each element (i; j) a pointer

to that element of the middle row through which the LCS curve from (0,0)

to (i; j) passes. The pointer retained by (m;n) indicates the middle point

of an LCS. (See Figure 4.3.)

A more e�cient method is to use the linear space FINDROW algorithm

to compute the middle row of L and also the middle row of the solution

matrix L

R

for the problem of the reverses of strings x and y. It can be

shown that their sum is maximized at points where LCS curves intersect

with the middle row. It is in this manner that the middle point of an

LCS curve is determined. Applying this procedure recursively, the quartile

intersections can be recovered, etc. (See Figure 4.4.) Each iteration uses

linear space, and it can be shown that the total time used is still quadratic,

though about double what it was before.

This paradigm to recover an LCS, requiring only linear space, by using

divide-and-conquer with algorithms that only evaluate the length of an

LCS, can also be applied to many other algorithms for the LCS problem.

4.3.2 SUBQUADRATIC ALGORITHM

A subquadratic time algorithm for this problem, that applies to the case

of a �nite alphabet of size s, uses a \Four Russians" approach. Essentially,

instead of calculating the matrix L, the matrix is broken up into boxes of

some appropriate size, k. The \high" sides of a box (the 2k�1 elements of

L on the edges of the box with largest indices) are computed from L-values

known for boxes adjacent to it on the \low" side and from the relevant



NON-PARAMETERIZED ALGORITHMS 127

function FINDMID( x, m, y, n ):

begin

L[0 : n] 0;

mid dm=2e;

for i 1 until mid do

begin

for j  1 until n do

if x

i

= y

j

then L

new

[j] 1 + L[j � 1]

else L

new

[j] maxfL

new

[j � 1]; L[j]g;

for j  1 until n do L[j] L

new

[j]

end;

for j  0 until n do P [j] j;

for i mid+ 1 until m do

begin

for j  1 until n do

begin

if x

i

= y

j

then L

new

[j] 1 + L[j � 1]

else L

new

[j] maxfL

new

[j � 1]; L[j]g;

if x

i

= y

j

then P

new

[j] P [j � 1]

else if L

new

[j � 1] > L[j] then

P

new

[j] P

new

[j � 1]

else P

new

[j] P [j]

end;

for j  1 until n do L[j] L

new

[j];

for j  1 until n do P [j] P

new

[j]

end;

return P [n]

end

Fig. 4.3. FINDMID algorithm

symbols of x and y by using a lookup table that was precomputed.

There are 2k+1 elements of L adjacent to a box on the \low" side. Two

adjacent L-elements can di�er by either zero or one. There are thus 2

2k

possibilities in this respect. The symbols of x and y range over an alphabet

of size s for each of the 2k elements, yielding a multiplicative factor of s

2k

and the total number of boxes to be precomputed is therefore 2

2k(1+log s)

.

Each such box can be precomputed in time O(k

2

) for a total precomputing

time of O(k

2

2

2k(1+log s)

).

The sides of a box can be stored as \steps" consisting of 0's and 1's

indicating whether adjacent elements of the side di�er by 0 or 1. A box

can therefore be looked up in time O(2k). There are (n=k)

2

boxes to be



128 SERIAL COMPUTATIONS OF LEVENSHTEIN DISTANCES

procedure LINEARSPACE( x, m, y, n, C, p ):

begin

if n = 0 then p 0

else

if m = 1 then

if 9j � n with y

j

= x

1

then

begin

p 1;

C[1] x

1

end

else p 0

else

begin

i dm=2e;

FINDROW( x, i, y, n, L );

let x

R

be the reverse of string x;

let y

R

be the reverse of string y;

FINDROW( x

R

, m� i, y

R

, n, L

R

);

determine a k in the range 0 . . .n

that maximizes L[k] + L

R

[n� k];

LINEARSPACE( x, i, y, k, C, q );

let x

0

[1 : m� i] consist of elements x[i+ 1 : m];

let y

0

[1 : n� k] consist of elements y[k + 1 : n];

LINEARSPACE( x

0

, m � i, y

0

, n� k, C

0

, r );

p q + r;

let C[q + 1 : p] consist of elements C

0

[1 : r]

end

end

Fig. 4.4. Linear space LCS algorithm

looked up, for a total time of O(n

2

=k).

The total execution time will therefore be O(k

2

2

2k(1+log s)

+ n

2

=k).

If we let k = (logn)=(2 + 2 log s), we see that the total execution time

will be O(n

2

= logn). This algorithm can be modi�ed for the case when

the alphabet is of unrestricted size, with the resulting time complexity of

O(n

2

(log logn)= logn).

We note that this method works only for the classical Levenshtein dis-

tance metric but not for generalized cost matrices.
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4.3.3 LOWER BOUNDS

The O(n

2

= logn) algorithm is the asymptotically fastest known. It is an

open question as to whether this algorithm is asymptotically best possible.

If we consider algorithms for solving the LCS problem that are restricted

to making symbol comparisons of the form \�

1

= �

2

?" then any such

algorithm must make 
(n

2

) comparisons for alphabets of unrestricted size

and 
(ns) comparisons for alphabets of size restricted to s. In particular,

if T (n; s) is the minimum number of \equal-unequal" comparisons under

the decision tree model needed to �nd an LCS of two strings of length n

when the total number of distinct symbols that can appear in the strings

is s, then

T (n; 2) = 2n� 1

T (n; s) � ns=2 + s

2

=4; for s � n

T (n; s) � 3ns=4; for n � s � 4n=3

T (n; s) = n

2

; for s � 4n=3

If we consider algorithms that may make symbol comparisons of the

form \�

1

� �

2

?" then any such algorithm that solves the LCS problem

must make 
(n logm) symbol comparisons for alphabets of unrestricted

size. The proofs of these lower bounds generally have relied on exhibiting

a path of requisite length in decision trees that support such algorithms by

using adversary arguments. We present a sketch of the 
(n logm) lower

bound.

Let the adversary's response to a comparison p : q be as follows. If p

and q are both positions in string x (say, x

i

and x

j

) then if i < j return

\less than"; otherwise, return \greater than".

If p and q are not both positions in string x then let R be the number

of relative orderings of positions of strings x and y that are consistent

with the results of comparisons made thus far and that are consistent with

x

1

< x

2

< ::: < x

m

. Let R

1

be the subset of R consistent with p < q and

let R

2

be the subset of R consistent with p > q. If jR

1

j > jR

2

j then return

\less than"; otherwise, return \greater than".

De�ne positions p and q to be comparable with respect to a sequence of

comparisons if it can be logically deduced from the results of the compar-

isons that p < q or that p > q.

Lemma 4.1. The algorithm must perform su�cient comparisons so that

all positions in x are comparable to all positions in y.

Each y

j

in string y can be in any one of m + 1 distinct states:

y

j

� x

1

;

x

i

< y

j

� x

i+1

; [i = 1; :::;m� 1];

x

m

< y

j
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Thus, there are (m + 1)

n

possible relative orderings of the elements of

y with respect to the elements of x and it will take log(m + 1)

n

� n logm

comparisons to distinguish which states the elements of y are in.

There are many algorithmic techniques that are not modeled by decision

trees and for which these lower bounds would not apply. Examples of such

techniques include array indexing (as used by the subquadratic algorithm

of Section 4.3.2) and hashing.

4.4 Parameterized algorithms

In this section, we discuss several algorithms for the LCS problem whose

performance is parameterized by variables other than the sizes of the two

input strings. Before describing these algorithms, we de�ne some notation.

Consider the (m + 1) � (n + 1) lattice of points corresponding to the

set of pre�x pairs of x and y, allowing for empty pre�xes. We refer to

the �rst coordinate of a point as its i-value and to the second coordinate

as its j-value. We say that point (i; j) dominates point (i

0

; j

0

) if i

0

� i

and j

0

� j. A match point is a point (i; j) such that x

i

= y

j

. The point

(0; 0) is specially designated as also being a match point. Point (i; j) has

rank k if L(i; j) = k. Point (i; j) is k-dominant if it has rank k and it is

not dominated by any other point of rank k. Analagously, a point (i; j)

is k-minimal if it has rank k and it does not dominate any other point of

rank k. Note that if a point is k-dominant or k-minimal then it must be a

match point.

The dominance relation de�nes a partial order on the set of match

points. The LCS problem can be expressed as the problem of �nding a

longest chain in the poset of match points, modi�ed to exclude links be-

tween match points that share the same i-value or j-value. Most known

approaches to the LCS problem compute a minimal antichain decompo-

sition for this poset, where a set of match points having equal rank is an

antichain. These approaches typically either compute the antichains one at

a time, or extend partial antichains relative to all ranks already discovered.

Let r be the number of match points, excluding (0; 0), and let d be the

total number of dominant points (all ranks). Then 0 � p � d � r � mn.

4.4.1 PN ALGORITHM

We describe an algorithm that solves the LCS problem by computing the

poset antichains one at a time, iteratively determining the set of k-minimal

points for successively larger values of k. This algorithm requires time

O(pn+ n logn). If the expected length of an LCS is small, this algorithm

will be faster than the classic algorithm.

The k-minimal points, if ordered by increasing i-value, will have their j-

values in decreasing order. The algorithm detects all minimalmatch points

of one rank by processing the match points across rows.
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procedure PN( x, m, y, n, C, p ):

begin

8� 2 x, build ordered MATCHLIST(�) of y-positions containing �;

M [0; 0:m] 0;

first  0;

for k 1 step 1 do

begin

prev  first;

low  M [k � 1; prev];

high n + 1;

for i prev + 1 until m do

begin

t minfj 2 MATCHLIST(x

i

) j j > lowg;

if t < high then

M [k; i] high t

else M [k; i] 0;

if M [k; i] > 0 and first = prev then first  i;

if M [k� 1; i] > 0 then low  M [k� 1; i]

end;

comment M [k; 0:m] contains the set of k-minimal points;

if first = prev then goto recover

end;

recover:

p k � 1;

k p;

for i m step �1 until 0 do

ifM [k; i] > 0 then

begin

C[k] x

i

;

k  k � 1

end

end

Fig. 4.5. Sketch of pn LCS algorithm

De�ne low

k

(i) to be the minimum j-value of match points having rank

k�1 whose i-value is less than i. De�ne high

k

(i) to be the minimumj-value

of match points having rank k whose i-value is less than i (n + 1 if there

are no such points). The following lemma is essential to the algorithm.

Lemma 4.2. (i; j) is a k-minimal point i� j is the minimum value such

that x

i

= y

j

and low

k

(i) < j < high

k

(i).

A sketch of the O(pn) algorithm is given in Figure 4.5. The algorithm
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obtains its e�ciency by the use of three simple data structures. First, a col-

lection of balanced binary search trees provides a mapping of alphabet sym-

bols to the integers f1; . . . ; j�jg. Second, for each � 2 x, MATCHLIST(�)

contains the ordered list of positions in y in which symbol � occurs. Third,

arrayM maintains the set of k-minimalpoints ordered by the i-values of the

points. For each value of k, an iteration of the outer loop determines the set

of k-minimal points in linear time. A crucial observation is that the eval-

uation of variable t, the minimum element in MATCHLIST(x

i

) satisfying

the low and high bounds, can be accomplished by iteratively decrementing

a pointer to that MATCHLIST. The total number of decrementations to

that MATCHLIST cannot exceed the size of that MATCHLIST, and the

sum of the lengths of all MATCHLISTs is n.

4.4.2 HUNT-SZYMANSKI ALGORITHM

We now describe an algorithm, due to J. Hunt and T. Szymanski, for

solving the LCS problem in O((r + n) logn) time and O(r + n) space.

(See Figure 4.6.) This algorithm is particularly e�cient for applications

where most positions of one sequence match relatively few positions in the

other sequence. Examples of such applications include �nding the longest

ascending subsequence of a permutation of the integers f1 . . .ng and �le

di�erencing in which a line of prose is considered atomic.

The algorithm detects dominant match points across all ranks by

processing the match points row by row. For each i, the ordered list

MATCHLIST(i) is set to contain the descending sequence of positions j

for which x

i

= y

j

. This initializing process can be performed in time

O(n logn) by stably sorting a copy of sequence y while keeping track of

each element's original position, and counting the number of elements of

each symbol value. MATCHLIST(i) can be implemented with a count of

the size and a pointer to the last of the now contiguous subset of elements

having symbol x

i

. Then, iteratively for each row i, the algorithm evalu-

ates the threshhold function T (i; k) de�ned to be the smallest j such that

L(i; j) � k. This function satis�es the recurrence relation

T (i; k) =

8

<

:

smallest j such that x

i

= y

j

and T (i � 1; k� 1) < j � T (i � 1; k)

T (i � 1; k), if no such j exists

(4:3)

By maintaining the T values in a one-dimensional array THRESH and

considering the j in MATCHLIST(i) in descending order, the k for which

T (i; k) di�ers from T (i�1; k) can be determined in O(logn) time by using

binary search on the THRESH array.

Variations of the Hunt-Szymanski algorithm have improved complexity.

The basic algorithm can be implemented with 
at trees to achieve time
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procedure HUNT( x, m, y, n, C, p ):

begin

for i 1 until m do

begin

comment initialize THRESH values;

THRESH[i] n+ 1;

set MATCHLIST[i] to be the descending sequence

of positions j s.t. x

i

= y

j

;

end

THRESH[0]  0;

LINK[0]  �;

comment compute successive THRESH values

THRESH[k] = T (i� 1; k) (initially) and T (i; k) (�nally);

for i 1 until m do

for each j in MATCHLIST[i] do

begin

use binary search on the THRESH array to �nd k

such that THRESH[k � 1] < j � THRESH[k];

if j < THRESH[k] then

begin

THRESH[k] j;

create a list node new whose �elds contain:

i, LINK[k � 1];

LINK[k] new

end

end

t largest k such that THRESH[k] 6= n+ 1;

last LINK[t];

p 0;

while last 6= � do

begin

comment recover LCS in reverse order;

(i; prev)  �elds of list node last;

p p+ 1;

S[p] x

i

;

last  prev

end;

C[1 : p] the reverse of the sequence of elements S[1 : p]

end

Fig. 4.6. Hunt-Szymanski LCS algorithm



134 SERIAL COMPUTATIONS OF LEVENSHTEIN DISTANCES

complexity O(r log logn+n logn) over an unbounded alphabet and O((r+

n) log logn) over a �xed-size alphabet. However, since the use of 
at trees

imposes a large multiplicative constant, this improvement is of theoretical

interest only.

By concentrating attention on the d dominant points (a subset of the

r match points), the basic algorithm can be modi�ed to have O(m logn +

d log(mn=d)) time complexity and O(d + n) space complexity. The time

complexity can be theoretically further improved to O(n+d log log(mn=d))

by application of Johnson's improvement to 
at trees.

4.4.3 ND ALGORITHM

Let D be the di�erence in length between x and LCS(x; y); D = m �

p. We now describe an O(nD)-time LCS algorithm. (See Figure 4.7.)

This algorithm is based on evaluating the function M (k; i) de�ned to be

the largest j such that x[i : m] and y[j : n] have an LCS of size � k.

This function is symmetric to the threshhold function (Equation 4.3 of

Section 4.4.2) and satis�es the following recurrence relation.

M (k; i) =

8

<

:

largest j > M (k; i+ 1) such that x

i

= y

j

, and

if k > 1; j < M (k � 1; i+ 1)

M (k; i+ 1); if no such j exists

(4:4)

The e�ciency of this algorithm derives from the procedure of avoiding

calculating elements ofM which cannot induce an LCS. The elements ofM

are evaluated along diagonals, one diagonal at a time. The �rst diagonal

(diag = m) is M [1;m] through M [m; 1]; successive diagonals (smaller val-

ues of diag) are M [1; diag] through M [diag; 1]. No further elements of M

are evaluated beyond diagonal p. We know that we have encountered the

last required diagonal when the length, p, of the longest found CS equals

the diagonal number. Each diagonal requires only linear time since the y

index, j, has range at most 1 to n. Therefore the total time required is

O(n(m � p)).

The algorithm, as given, uses m

2

space for the M array. However, by

using the simple mapping of M [k; i] to an element of a one-dimensional

array, it is straightforward to use space O(mD). The space-saving tech-

nique, discussed earlier, can be applied to this algorithm, resulting in an

algorithm with O(nD) time and linear space complexity.

4.4.4 MYERS ALGORITHM

Myers developed an O(nD) time algorithm that can be executed using

linear space. Under a basic stochastic model, his algorithm has expected

time complexity O(n + D

2

). A non-practical variation, using su�x trees,

has O(n logn+D

2

) worst-case time complexity.
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procedure NAKATSU( x, m, y, n, C, p ):

begin

diag m;

p 0;

while p < diag do

begin

i diag;

len 1;

j

max

 n+ 1;

comment evaluate M [k; i] along one diagonal;

while i 6= 0 and j

max

6= 0 do

begin

comment clear an element of M

for uniform handling;

if diag = m or len > p then M [len; i+ 1] 0;

j

min

 maxf1;M [len; i+ 1] g;

j  j

max

� 1;

comment calculate one M [k; i];

while j � j

min

and x

i

6= y

j

do j  j � 1;

if j � j

min

then j

max

 j

else j

max

 M [len; i+ 1];

M [len; i] j

max

;

if j

max

= 0 then len len� 1;

if len > p then p len;

len len + 1;

i i � 1

end;

diag  diag � 1

end;

comment recover an LCS, the length of which is p;

if j

max

= 0 then i i + 2

else i i + 1;

k p;

while k > 0 do

begin

while M [k; i] = M [k; i+ 1] do

i i + 1;

C[p+ 1� k] x

i

;

i i + 1;

k  k � 1

end

end

Fig. 4.7. nD LCS algorithm
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functionMYERS( x, m, y, n ):

begin

DOMI[1] 0;

comment look for dominant D-deviation points;

for D  0 until m + n do

for k �D step 2 until D do

begin

comment diagonals are 2 apart;

if k = �D or (k 6= D and

DOMI[k � 1] <DOMI[k + 1]) then

i DOMI[k + 1]

else i DOMI[k � 1] + 1;

j  i � k;

comment until non-match is found

increment both coordinates;

while i < m and j < n and x[i+ 1] = y[j + 1] do

(i; j) (i + 1; j + 1);

comment store i-value

of diagonal k dominant D-deviation;

DOMI[k] i;

comment if we found minimum adequate deviation

then return length of LCS;

if i = m and j = n then

return (i + j �D)=2;

end

end

Fig. 4.8. Myers LCS algorithm

The LCS trace will not deviate from the main diagonal more than the

di�erence between the two input sequences. The essence of Myers' algo-

rithm is to avoid evaluating unnecessary parts of the L matrix. Associated

with each point (i; j) having rank k is its diagonal number, i � j, and its

deviation, i+ j �2k. There is only one 0-dominant point, (0; 0), and it has

deviation 0. The set of dominant 0-deviation points lie on the 0-diagonal

from (0; 0) through (i � 1; i� 1), where i is the minimum index such that

x

i

6= y[i]. The algorithm iterates calculating the set of dominant points hav-

ing successively higher deviation. Each dominant (D + 1)-deviation point

can be found by starting at a dominant D-deviation point, traversing one

unit orthogonally (adding one to exactly one coordinate), and iteratively

incrementing both coordinates until just before the �rst non-match point

is encountered. The algorithm terminates when point (m;n) is reached.
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Implementation is made easier by the fact that there will be exactly one

dominant D-deviation point for every other diagonal (that is, half the di-

agonals) in the range �D to +D.

The code shown in Figure 4.8 returns the length of an LCS. In this code,

DOMI[k] stores the i-value of the dominant D-deviation point located on

diagonal k. Therefore, that point is (DOMI[k],DOMI[k]� k).

In order to recover an LCS, either the sequence of all encountered domi-

nant points (all successive values of array DOMI) are retained, necessitating

the usage of O(nD) space or, by using a space-saving method similar to

that used earlier, linear space will su�ce at a cost of increasing the time

requirements by a factor of about two.

A linear space version is enabled by determining the midpoint of an SES

(shortest edit sequence) curve. This can be done by alternately calculating

dominantD-deviation points for the two reverse problems (x,y and x

R

,y

R

)

for iteratively larger values of D until a member of one of the two sets of

dominant deviation points meets or passes a member of the other set along

their common diagonal. A �rst point of meeting or passage will be an SES

midpoint.

4.5 Exercises

1. Implement the classical algorithm to recover the sequence of edit

operations (insert, delete, substitute) that will result in minimum

total cost. Assume that substituting one symbol for another incurs

cost 1.5 while insertion or deletion of a symbol incurs unit cost.

2. A string insertion (deletion) consists of inserting (deleting) a string of

any length at one location. Implement an algorithm that determines

the minimum cost sequence of character and string insertions and

deletions required to transform string x into string y under the con-

straint that no substring of an inserted string may subsequently be

deleted. Assume that single character insertions and deletions have

unit cost, and that each string insertion and deletion has cost 1 +

stringlength/2.

3. What can you say about the complexity of the above problem with-

out the constraint disallowing subsequent partial deletion of inserted

strings.

4. Show that the sum of the middle rows of L and L

R

is maximized at

points where LCS curves intersect with the middle row.

5. How many nested levels of iterations are required by the Linear Space

Algorithm? Show that the total time used is quadratic.

6. Implement the pn LCS algorithm.

7. Prove the recurrence relation on threshhold values.

8. Show the relation between the T function de�ned in Section 4.4.2, and

the M function de�ned in Section 4.4.3. What, if any, is the relation
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between the T function and the low and high functions de�ned in

Section 4.4.1?

9. Implement a linear space version of Myers algorithm that recovers an

LCS.

10. Implement a cubic-time and quadratic-space algorithm that recovers

a longest subsequence common to three strings.

4.6 Bibliographic notes

Levenshtein [1966] introduced measures of distance between strings based

on indels. Applications of the LCS and related problems are discussed

in more detail in Sanko� and Kruskal [1983]. The string-to-string edit

problem is described and solved in Wagner and Fisher [1974]. Approxi-

mate string matching is discussed in Ukkonen [1985], Galil and Giancarlo

[1988], Landau and Vishkin [1988], and Galil and Park [1990]. Chin and

Poon [1994] analyze some heuristics for computing an LCS. Gotoh [1982]

exhibits an O(mn) time algorithm to compute the edit distance between

two strings under a generalized Levenshtein distance in which indels of

substrings have cost linear in the indel length. The linear space algorithm

for the LCS problem is due to Hirschberg [1975]. The conceptually simple

linear space method of determining the middle of an LCS curve is due to

Eppstein (unpublished).

The \Four Russians" are Arlazarov, Dinic, Kronrod, and Faradzev

[1970]. Their approach is also discussed in Aho, Hopcroft, and Ullman

[1974]. The subquadratic time algorithm for restricted size alphabet is

from Masek and Paterson [1980]. A discussion for the case of unrestricted

size alphabet can be found in Hunt and Szymanski [1977].

Lower bounds for the LCS problem are proven in Aho, Hirschberg, and

Ullman [1976], Wong and Chandra [1976], and Hirschberg [1978]. The

description of LCS algorithmic approaches in terms of poset antichains

was �rst explicated in Apostolico, Browne, and Guerra [1992]. An LCS

algorithmwith time complexityO(pn+n logn) is in Hirschberg [1977]. The

O((r + n) logn) time Hunt-Szymanski algorithm is described in Hunt and

Szymanski [1977]. Apostolico [1986] improves its worst-case performance.

The notion of 
at trees is from van Emde Boas [1975]; they are improved

in Johnson [1982]. Modi�cations to the Hunt-Szymanski algorithm are

discussed in Hsu and Du [1984a] (but see Apostolico [1987]), Apostolico

and Guerra [1987] and Eppstein, Galil, Giancarlo, and Italiano [1990].

Other algorithms are discussed in Chin and Poon [1990] and Rick [1995].

The O(nD)-time algorithm is due to Nakatsu, Kambayashi, and Yajima

[1982]. The code in Figure 4.7 is from their paper, with changes in the

variable names. The linear space version of Nakatsu's algorithm is shown

in Kumar and Rangan [1987].

Myers algorithm is from Myers [1986]. The code in Figure 4.8 is from
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Myers [1986], with changes in the variable names. Wu, Manber, Myers,

and Miller [1990] obtain a slightly faster O(nP ) algorithm, where P is the

number of deletions in the shortest edit script.

The LCS problem can be generalized to the problem of determining

a longest sequence common to N strings. Maier [1978] shows that if the

number of strings, N , is not a constant then the N -LCS problem is NP-

complete. However, for �xed values ofN , the N -LCS problem can be solved

using extensions of the algorithms in this chapter for the 2-LCS problem.

Itoga [1981] shows that the extension of the classical algorithm has time

and space complexity proportional to the product of the number of strings

and the strings' lengths which, in the case of N strings each of length n, is

�(Nn

N

). Other algorithms for the N -LCS problem are shown in Hsu and

Du [1984b] and Irving and Fraser [1992].
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