
On the Complexity of Learning Decision Trees

J. Kent Martin and D. S. Hirschberg

(jmartin@ics.uci.edu) (dan@ics.uci.edu)

Department of Information and Computer Science

University of California, Irvine, CA, 92717

Abstract

Various factors a�ecting decision tree learning time

are explored. The factors which consistently a�ect

accuracy are those which directly or indirectly (as in

the handling of continuous attributes) allow a greater

variety of potential trees to be explored. Other fac-

tors, e.g., pruning and choice of heuristics, generally

have little e�ect on accuracy, but signi�cantly a�ect

learning time. We prove that the time complexity of

induction and post-processing is exponential in tree

height in the worst case and, under fairly general con-

ditions, in the average case. This puts a premium on

designs which produce shallower and more balanced

trees. Simple pruning is linear in tree height, con-

trasted to the exponential growth of more complex

operations. The key factor in
uencing whether simple

pruning will su�ce is that the split selection and prun-

ing heuristics should be the same and unbiased. The

information gain and �

2

tests are biased towards un-

balanced splits, and neither is admissible for pruning.

Empirical results show that the hypergeometric func-

tion can be used for both split selection and pruning,

and that the resulting trees are simpler, more quickly

learned, and no less accurate than trees resulting from

other heuristics and more complex post-processing.

Introduction

This paper studies the complexity of Top-Down Induc-

tion of Decision Trees | the TDIDT family of algo-

rithms typi�ed by ID3 (Quinlan 1986) and C4.5 (Quin-

lan 1993). The input for these algorithms is a set of

items, each described by a class label and its values for

a set of attributes, and a set of candidate partitions of

the data. These algorithms make a greedy, heuristic

choice of one of the candidates, and then recursively

split each subset until a subset consists only of one

class or until the candidates are exhausted. Early algo-

rithms included other stopping criteria, stopping when

the improvement achieved by the best candidate was

judged to be insigni�cant. Later algorithms dropped

these stopping criteria and added post-processing pro-

cedures to prune a tree or to replace subtrees.

We analyze TDIDT algorithms, not only in the usual

terms of best and worst case data, but also in terms of

Figure 1: TDIDT Tree-Building

BuildTree(A, V, data)

if (AllSameClass(data)) then

MakeLeaf(ClassOf(data))

else

A jA j

N jdata j

if ((N > 0) and (A > 0)) then

Initialize(b; best)

for a = 1 . . .A

sub Partition(data,a,V

a

)

E Heuristic(sub)

if (E < best) then

best E

b a

if (not Signi�cance(best)) then

MakeLeaf(LargestClass(data))

else

sub Partition(data,b,V

b

)

V jV

b

j

for v = 1 . . .V

if (A�fbg = ;) then

MakeLeaf

�

LargestClass(sub

v

)

�

else

BuildTree(A�fbg,V�V

b

; sub

v

)

the choices available in designing an algorithm and,

particularly, in those elements of the choices which

generalize over many input sets. At the highest level,

there are three such choices: (1) how the set of can-

didates is chosen (and handling continuous variables,

look-ahead, etc.), (2) what heuristic function is used,

and (3) whether to stop splitting or to post-process.

Analysis of TDIDT Tree-Building

Figure 1 summarizes the tree-building phase, where

the set of candidates has been de�ned o�-line and is

summarized by the input parameters A (a vector of

partition labels) and V (a matrix of values for splitting

on each attribute). Some algorithms re-evaluate the V

matrix on every call to this procedure. Other major

di�erences between algorithms lie in the Heuristic func-

tion, in the way numeric attributes are handled by the

Partition function, and in whether stopping based on

a Signi�cance function is performed.

Typically, the run times of the Heuristic and Par-

tition functions are linear (�(N)), compiling a contin-

gency matrix and computing a function such as infor-

mation gain. Then, the run time T

B

of BuildTree is

T

B

(A,V,data) = �(AN) +

P

v

T

B

(A�fbg;V�V

b

; sub

v

)

which leads to T

B

= O(A

2

N) for a complete tree of

height A. (Here, b is the `best' split, V

b

its splitting

criteria, V

b

=jV

b

j its arity, and sub

v

its v

th

subset.)

Some algorithms build only binary trees, and most

allow only binary splits on real-valued attributes. In

these cases, the e�ect is the same as that of increas-

ing the number of candidates. If we simply create an

equivalent set of V

i

�1 binary attributes for each can-

didate (where V

i

is the i

th

candidate's arity), the time

is O(d

2

N), where d is the dimensionality of the data,

d =

P

(V

i

� 1). For real-valued attributes, V

i

is O(N)

for each attribute, and these methods could cause the

behavior to be O(A

2

N

3

).

Analysis of real-world data sets is more complicated

because the splitting process for any path may termi-

nate before all attributes have been utilized, either be-

cause all items reaching the node have the same class

or because of some stopping criterion. Thus, the tree

height may be less than the number of candidates A,

and the leaves may lie at di�erent depths. Then, the

time complexity is related to the average height (h)

of the tree (weighted by the number of items reaching

each leaf).

Looking at Figure 1 in detail, and assuming that all

candidates have the same arity V , the time complexity

can be modeled as

T

B

(A;V;N)=K

0

+K

1

N+K

3

V +

P

v

T

B

(A�1; V;m

v

)

+A [K

2

+(E

0

+E

1

N+E

2

C+E

3

V +E

4

CV)]

where C is the number of classes, K

0

, K

2

, & K

3

small

overhead constants, K

1

the incremental cost of the Par-

tition function, and E

i

the coe�cients of the Heuristic

function (E

0

is a small overhead term, and E

1

N typ-

ically dominates the other terms). Assuming that all

leaves lie at the same depth (A�1), this leads to

T

B

� (K

0

+K

3

V) f

1

(A;V)

+ (K

2

+E

0

+E

3

V +E

4

CV) f

2

(A;V)

+ (E

1

N+E

2

C) A(A+1)=2 + K

1

AN

where f

1

(A; V) = (V

A

�1)=(V �1) and f

2

(A; V) =

(f

1

(A+1; V)�(A+1)) /(V �1) .

Empirical data from 16 di�erent populations repre-

senting a wide range of sample sizes, number of at-

tributes, arity of attributes, and a mixture of discrete

and continuous attributes are well-�t by the following

pro-rated model:

T

B

� [(E

1

N+E

2

C)A(A+1)=2

+ K

1

AN +K

0

f

1

(V; h)] h=(A�1)

+ (E

1

N+E

2

C)A+K

0

+K

1

N

Figure 2: Pessimistic Pruning

PostProc(dtree, data)

AsIs, Pruned, Surgery, and Q

are de�ned as in Eval(dtree, data)

if (AsIs � minfPruned,Surgeryg)

return AsIs

else

if (Pruned � Surgery) then

dtree MakeLeaf(data)

return Pruned

else /* surgery performed here */

dtree Q

Surgery PostProc(Q, data)

return Surgery

Eval(dtree, data)

N jdata j

Q nil

if dtree is a leaf then

P PredictedClass(dtree)

E (N� jP j)

Pruned = Surgery = AsIs f(E;N)

return AsIs

else

F SplitInfo(Root(dtree))

Ldata, Rdata Partition(data, F)

L jLdata j =N

R jRdata j =N

AsIs L � Eval(Ltree, Ldata)

+ R � Eval(Rtree, Rdata)

P LargestClass(data)

E (N� jP j)

Pruned f(E;N)

if (L > R) then Q Ltree

else Q Rtree

Surgery Eval(Q, data)

return min(AsIs, Pruned, Surgery)

where V=d=A is the average branching factor.

For trees of modest height and relatively large sam-

ples, the cumulative overhead (K

0

) term is insigni�-

cant | typically, that is, h � 0:3A and N � 25A, and

K

0

(V

h

�1)=(V�1) � E

1

NA

2

, so that T

B

= �(A

2

N)

in most cases. Applications do exist, however, where

the exponential growth of this term cannot be ignored.

For our longest run-time (about 1.5 hrs), A=100 and

a binary tree with average depth h= 30 was built |

the factor of 2

30

for the K

0

term is signi�cant here. In

the worst case h=A�1 and T

B

=O(V

A

).

Analysis of Post-Processing

Figure 2 summarizes a typical post-processing rou-

tine, C4.5's (Quinlan 1993) pessimistic pruning, for bi-

nary trees. Examination of Figure 2 reveals that the

dominant factors are the height of the tree, H, the

data set size, N , the height and weight balance of the

tree, and whether a decision node is replaced by a child

rather than simply pruned or left unmodi�ed.

We denote the time complexity of post-processing

and evaluation as T

P

(H;N) and T

E

(H;N), respec-

tively. In all cases, 0 � H < N and the recursion

ends with T

P

(0; N) = T

E

(0; N) = �(N). When tree

surgery is not actually performed, but merely evalu-

ated, T

P

(H;N) = T

E

(H;N).

When the surgery is performed, then T

P

(H;N) =

T

E

(H;N)+T

P

(q;N) where q is the height of the child

covering the most items (the larger child). In the worst

case q is H�1, and so

T

P

(H;N) � T

E

(H;N) + T

P

(H�1;N) �

P

H

i=0

T

E

(i;N)

If m is the size of the larger child and r the height of

the smaller child, then either q=H�1 or r=H�1, and

T

E

(H;N) = �(N) + T

E

(q;m) + T

E

(r; N�m) + T

E

(q; N)

(1)

We prove that T

E

(H;N) and T

P

(H;N) are �(N) in

the best case and that their worst case complexity is

�(N 2

H

). Thus, both T

E

() and T

P

() have tight bounds

of
(N) and O(N 2

H

).

To infer typical behavior, we note that real world

data are usually noisy, and real attributes are seldom

perfect predictors of class. For these reasons, there is

usually some �nite impurity rate I for each branch of

a split. For n instances from a population with rate I,

the likelihood P that the branch will contain instances

from more than one class is given by P =1�(1�I)

n

,

and is an increasing function of the subset size n. For

such an impure branch, additional splits will be needed

to separate the classes. Thus, there is a tendency for

larger subsets to have deeper subtrees.

If H

L

and H

R

are respectively the left and right

subtree heights, and n the left subset size, then

T

E

(H;N) = �(N) + T

E

(H

L

; n) + T

E

(H

R

;N�n)

+

�

T

E

(H

L

;N) if n � N=2

T

E

(H

R

;N) if n < N=2

Now, either H

L

=H�1 orH

R

=H�1, and the likelihood

that H

L

=H�1 increases as n increases. If we express

this increasing likelihood as Prob(H

L

=H�1) = p(x),

where x=n=N , then the approximate expected value,

t(H;N), of T

E

(H;N) is

t(H;N) � �(N) + 0:5 t(H�1;N) (2)

+ p(x) t(H�1;Nx) + (1�p(x)) t(H�1;N(1�x))

If we assume that p(x) = x, and that x is constant

throughout the tree, we can solve Equation 2 by in-

duction on H, obtaining t(H;N) � �

�

N (1 + z)

H

�

,

where z=2(x�0:5)

2

.

Obtaining a solution is more complex when the

weight balance x is not the same for every split,

but the solution has a similar form, i.e., t(H;N) �

�(N)

P

i

Q

j

(1 + z

ij

) and we should expect a similar

result, namely t(H;N) � �(N (1 + �)

H

), where � is a

geometric mean of the various z

ij

terms and increases

with the variance of x. This expectation is borne out

by simulation results. t(H;N) is also exponential in H

for other forms for p(x), as shown by simulation of a

sigmoid p(x) function, which is more plausible than the

linear form because of certain boundary constraints for

both very large and very small x.

The recurrence (see Equation 2) on which our

�

�

N (1+z)

H

�

result is based gives only a lower bound

on the expected behavior, obtained by omitting the ex-

pected time to evaluate the shallower subtree at each

internal node. The contribution of the omitted sub-

trees increases as their height or weight increases, and

we expect that the incremental run times would be

more nearly correlated with a weighted average depth

than with the maximum depth of the tree. This ex-

pectation is con�rmed by simulation outcomes.

Based on these results, we expect run times to be

proportional to N (1+ �)

h

�

, where h

�

is an average

height (not necessarily the weight average, h). A very

good �t to empirical data spanning 5 decades of run

time is obtained using h

�

=

p

h h

0

; where h and h

0

are, respectively, the weight-average heights before and

after post-processing.

Discussion

Both tree-building and post-processing have compo-

nents that are exponential in tree height, which is

bound above by the candidate set's dimensionality.

While the dominant goal is to maximize accuracy, we

must remember that TDIDT inherently compromises

by using greedy, heuristic search and limiting the can-

didates. A premium is placed on methods which min-

imize dimensionality without sacri�cing accuracy. In

particular, approaches which replace a V -ary split with

binary splits should be avoided, as this leads to deeper

trees and to re-de�ning the candidates at every node,

a considerable computational expense.

We have con�rmed these observations experimen-

tally using 16 data sets from various application do-

mains. Ten of these data sets involved continuous at-

tributes which were converted to nominal attributes

in two ways: using arbitrary cut-points at approx-

imately the quartile values, and choosing cut-points

at local minima of smoothed histograms (the `natural'

cut-points). Of the 26 resulting data sets, 2 involved

only binary attributes, and 24 had attributes of dif-

ferent arities. These 24 data sets were converted to all

binary splits by simply creating a new binary attribute

for each attribute-value pair. (See (Martin 1995) for

details of these experiments).

Multi-way trees consistently have more leaves, are

shallower, and are learned more quickly than their bi-

nary counterparts. On the few occasions when there

is a notable di�erence in accuracy, the binary trees

appear to be more accurate. We show that remap-

ping multi-valued attributes into a new set of binary

attributes indirectly expands the candidate set and,

by heuristically choosing among a larger set of can-

didates, it sometimes improves accuracy. However, a

large penalty is paid in terms of increased run time and

tree complexity.

In the quartiles method, the most unbalanced split is

approximately 75/25. The `natural' cut-points, by con-

trast, tend to produce very unbalanced splits. The dif-

ferences in accuracy may be large, and either method

may be the more accurate one. The quartiles trees

consistently have more leaves, but are shallower (more

e�cient and more quickly learned).

Post-processing does not improve accuracy, and only

occasionally does it signi�cantly reduce the number of

leaves or the average height. It does, however, consis-

tently increase the learning time by as much as a factor

of 2. In the few cases where post-processing does sig-

ni�cantly modify the trees, the unpruned trees are very

unbalanced.

The e�ects of using di�erent heuristics are illustrated

using three functions (information gain, orthogonality,

and the hypergeometric). There are no signi�cant dif-

ferences in accuracy between heuristics, and the in-

ferred trees all have about the same number of leaves.

The tree height and learning time, however, do vary

signi�cantly and systematically. For the worst case

data, learning times di�er by a factor of 12. The hy-

pergeometric is better justi�ed on statistical grounds

than the other heuristic functions, and it also gives

better results empirically.

Stopping and pruning are basically the same opera-

tion, di�ering in that the decision whether to stop is

based on only local information, whereas the decision

whether to prune is based on information from sub-

sequent splits (look-ahead). The e�ect of surgery can

be achieved by simple pruning or stopping performed

on another tree in which the order of the splits is dif-

ferent. This point is very important, since it is the

tree surgery which drives the exponential growth of

run time vs. tree depth | a simple post-pruning algo-

rithm that does not consider the surgical option would

have �(HN) time complexity.

The surgical option can be viewed as an expensive ex

post attempt to correct for a bad choice made during

tree building, which is necessary because the selection

heuristic does not order the splits correctly from the

point of view of e�cient pruning. Since the choice of

heuristic is largely a matter of complexity, not of ac-

curacy, we should prefer heuristics which tend to build

balanced, shallow trees in which the splits are ordered

so as to allow e�cient pruning.

The preceding observations concerning the ordering

of splits are doubly important in the context of stop-

ping, since stopping is simply a pruning decision made

with less information. In particular, if the split selec-

tion heuristic (e.g., information gain) and the stopping

criterion (e.g., �

2

) di�er signi�cantly as to the rela-

tive merit of a candidate (and these two do), then our

stopping strategy (e.g., choose a candidate based on

information gain and accept or reject it based on �

2

)

will almost certainly lead to poor results. The obvious

solution to this dilemma is to use the same evaluation

function for ranking splits as for deciding whether to

prune/stop. We show that neither information gain

nor �

2

is suitable for this dual purpose.

�

2

and gain approximate the logarithm of the hy-

pergeometric function, the exact likelihood that the

observed degree of association between subset mem-

bership and class is coincidental. We compare the

results of stopping using the hypergeometric to un-

stopped and post-processed trees. Stopping in this way

is not detrimental to accuracy. The stopped trees are

markedly simpler than the unstopped trees, and are

learned in about half the time (one-fourth the time for

post-processing).

Conclusions

1. Insofar as accuracy is concerned, the important de-

sign decisions are those which expand the candi-

date set. Other factors (e.g., the heuristic and stop-

ping/pruning) generally have little impact on accu-

racy.

2. For single-attribute, multi-way splits on A discrete

variables, the time to build a tree for N items is

O(A

2

N). If all V -ary splits are binarized, this be-

comes O(d

2

N) where d is the dimensionality. For

continuous attributes, the tree building time may be

�(A

2

N

3

). Thus, there is potentially a large payo�

for pre-processing to reduce dimensionality.

3. Both tree building and post-processing have com-

ponents which increase exponentially in tree height.

This puts a great premium on design decisions which

tend to produce shallower trees.

4. Tree surgery is equivalent to simply pruning an al-

ternative tree in which the root split of the current

tree is made last, rather than �rst. The need for

such surgery arises from using biased heuristics and

di�erent criteria for selection than for pruning.

5. �

2

and information gain are biased and inadmiss-

able, and should not be used. The hypergeometric

is admissible, and it allows e�cient pruning or stop-

ping. It builds simpler and shallower trees which are

no less accurate than those built using other heuris-

tics. Learning time can be reduced as much as an

order of magnitude by using the hypergeometric.

References

Martin, J. K. 1995. An exact probability metric for

decision tree splitting and stopping. Technical Report

95-16, University of California, Irvine, Irvine, CA.

Quinlan, J. R. 1986. Induction of decision trees. Ma-

chine Learning 1:81{106.

Quinlan, J. R. 1993. C4.5: Programs for Machine

Learning. San Mateo, CA: Morgan Kaufmann.

