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Many modern chemoinformatics systems for small molecules rely on large fingerprint vector representations,
where the components of the vector record the presence or number of occurrences in the molecular graphs
of particular combinatorial features, such as labeled paths or labeled trees. These large fingerprint vectors
are often compressed to much shorter fingerprint vectors using a lossy compression scheme based on a
simple modulo procedure. Here, we combine statistical models of fingerprints with integer entropy codes,
such as Golomb and Elias codes, to encode the indices or the run lengths of the fingerprints. After reordering
the fingerprint components by decreasing frequency order, the indices are monotone-increasing and the run
lengths are quasi-monotone-increasing, and both exhibit power-law distribution trends. We take advantage
of these statistical properties to derive new efficient, lossless, compression algorithms for monotone integer
sequences: monotone value (MOV) coding and monotone length (MOL) coding. In contrast to lossy systems
that use 1024 or more bits of storage per molecule, we can achieve lossless compression of long chemical
fingerprints based on circular substructures in slightly over 300 bits per molecule, close to the Shannon
entropy limit, using a MOL Elias Gamma code for run lengths. The improvement in storage comes at a
modest computational cost. Furthermore, because the compression is lossless, uncompressed similarity (e.g.,
Tanimoto) between molecules can be computed exactly from their compressed representations, leading to
significant improvements in retrival performance, as shown on six benchmark data sets of druglike molecules.

1. INTRODUCTION

In most modern chemoinformatics systems for small
organic molecules, molecules are represented by fingerprint
vectors (refs 1-6 and references therein). For a given
molecule, the components of this vector record the binary
presence/absence or the number of occurrences of particular
features, such as functional groups or substructures. It is these
fingerprints and the derived similarity measures,7-10 such as
the Tanimoto measure, that are used for efficiently searching
large repositories, containing millions of compounds, such
as PubChem, ZINC,11 or ChemDB.12

In early chemoinformatics systems, these feature vectors
were relatively short, with typically a few dozen components
associated with a small basis of more or less hand-picked
features derived mostly from expert chemical knowledge.
In most modern systems, however, the major trend is toward
the combinatorial construction of very long feature vectors
associated with, for instance, all possible labeled paths up
to a certain length (see, for example, ref 13). The advantage
of these much longer representations is two-fold: they do
not rely on expert knowledge, which may be incomplete or
unavailable, and they can support extremely large numbers
of molecules, such as those that are starting to become
available in public repositories and commercial catalogs, as
well as the recursively enumerable space of virtual mol-
ecules.14

These long vector representations are in turn compressed
to shorter fingerprint vectors, of fixed or variable length.
High-compressibility results directly from the sparseness of
the long fingerprints. In most modern chemoinformatics
systems, this compression is implemented using a simple
folding operation described in detail in the next sections.
The advantage of the compression is that it yields more
compact representations that require less storage space and
can be searched faster than the uncompressed version. The
drawback of the folding compression, however, is that it is
lossy: some information is lost during the compression. As
a result, when similarity between molecules is measured by
similarity between their compressed representations, retrieval
quality deteriorates, and increasingly so, as the length of the
compressed fingerprint is reduced.2

To address this problem, in Swamidass and Baldi,15 a
mathematical approach was developed for deriving better
estimates of the uncompressed similarity from the lossy
compressed-by-folding representations. Here, we explore a
different direction by derivinglosslessfingerprint compres-
sion schemes using statistical models of fingerprints and
integer entropy coding techniques.

2. FINGERPRINT REPRESENTATIONS, DATA, AND
STATISTICAL MODELS

2.1. Fingerprint Representations.We useA to denote
a molecule. We assume that molecules are represented by
feature vectors, or fingerprints, of fixed-lengthN*, denoted
by AB* ) (Ai). Because the focus of the algorithms to be
presented is the compression of large sparse vectors, the
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particular set of features and labeling scheme used is not
important. But to be specific, in the simulations, we illustrate
the methods using two different types of chemical features
corresponding to two kinds of labeled subgraphs of the
molecular graphs: (1) paths and (2) and circular substruc-
tures. Molecular graphs are the familiar 2D representations,
used ubiquitously in chemistry, where atoms are associated
with labeled vertices and bonds with labeled edges. The
details of the features and labeling schemes are given in the
next section.

For simplicity, and because they are the most widely used,
we present the compression algorithms for the case of binary
fingerprints but we then also briefly show how the same
principles can be applied immediately to fingerprints on the
basis of counts. We define the density of a fingerprint vector
as the ratio of the number of nonzero components divided
by the total length of the vector.

From binary fingerprints of fixed lengthN*, two other
equivalent representations that are important for our com-
pression derivations can be obtained: the index representa-
tion and the run-length representation. The index represen-
tation indexes the fingerprint components that are set to 1,
whereas the run-length representation indexes the length of
the corresponding runs (series of 0 bits followed by a 1 bit).
For instance, if we consider the vector (1,0,0,1,0,0,0,0,1,0)
with N* ) 10, the first, fourth, and ninth components are set
to 1, and therefore the index representation is given by
(1,4,9). The corresponding run-length representation is
(0,2,4). Thus, the index and run-length representations
produce a variable-length vector of integers, which is already
a form of compressed representation if the initial bit vector
is sparse. To further compress the index or run-length
representations, one must consider how to encode vectors
of integers.

While we useN* generically to denote the length of the
long fingerprint vectors before the compression algorithms
are applied, one should be aware of certain distinctions:

• Ntot is the number of all possible features, including some
that may not be present in the data.

• Nobs is the total number of features observed across all
the molecules in a given database (Nobs e Ntot).

• Nhash is the size of the vector associated with the hash
functions that are used to map features to random component
locations of a large vector of sizeNhash. In some very rare
cases, collisions may occur where two different features are
mapped to the same location. This loss of information is very
small whenNhashis large and will be ignored; in other words,
in practical terms, we are interested in lossless compression
starting from the vector of sizeNhash.

• Nposthashis the length of the fingerprints after a trivial
postprocessing step which removes all the 0 columns
corresponding to components (features) that are absent in
all of the molecules from a given database.

So, in typical cases,Nhash is larger thanNobs, andNobs is
equal toNposthashor slightly larger if there are collisions.

2.2. Fingerprint Data. To develop and test the compres-
sion algorithms, we use small molecules from the ChemDB
database.12 For illustration purposes, the results reported here
are obtained using a large random sample of 50 000
molecules from ChemDB. Retrieval capabilities are also
tested using the data sets in Stahl and Rarey.16 In the
simulations, we illustrate the methods using fingerprints

associated with two schemes: labeled paths of a length up
to 8 (i.e., nine atoms and eight bonds) or labeled circular
substructures of a depth up to 2, with element (E) and
extended connectivity (EC) labeling.

In the first scheme, referred to aspaths throughout the
paper, for each chemical, we extract all labeled paths of a
length up to 8 (i.e., nine atoms and eight bonds) starting
from each vertex and using depth-first traversal of the edges
in the corresponding molecular graph (Figure 1). Extracting
paths in this manner requires approximatelyO(ND2.5) steps,
whereD denotes the maximum path depth andN denotes
the number of atoms in the molecule,10,13 hence, roughly a
constant cost per molecule. For this scheme, molecular
graphs are labeled as follows: each vertex is labeled by the
element (C, N, O, etc.) of the corresponding atom, and each
edge is labeled by the type (single, double, triple, aromatic,
and amide) of the corresponding bond. This scheme is closely
related to the fingerprints used in many existing chemoin-
formatics systems, including the Daylight system.3

In the second scheme, referred to ascircular throughout
the paper, for each chemical, we extract every circular
substructure, of a depth up to 2, from the corresponding
molecular graph. Circular substructures (see Hert et al.,17

Bender et al.,18 and Hassan et al.19) are fully explored labeled
trees of a particular depth, rooted at a particular vertex. All
of the circular substructures of a molecule can be trivially
listed usingO(ND) steps, whereD denotes the maximum
tree depth andN denotes the number of atoms in the
molecule. For this scheme, molecular graphs are labeled as
follows: each vertex is labeled by the element (C, N, O,
etc.) and degree (1, 2, 3, etc.) of the corresponding atom,
and each edge is labeled as above. The degree of a vertex is
given by the number of edges incident to that vertex or,
equivalently, the number of atoms bonded to the correspond-
ing atom. For example, propane would be labeled as
C1sC2sC1, and ethene would be labeled asC1dC1. This
scheme corresponds to the Extended Connectivity Finger-
prints (ECFP) of the literature, which has been shown
sometimes to outperform path-based fingerprint schemes in
terms of storage size and retrieval.17

These two schemes are representative of the schemes
typically used in chemical informatics systems. Results
derived by using reasonable variations of these basic
schemes, based on other combinatorial features or other
labeling schemes (e.g., SYBYL by Tripos), ought to be
robust and consistent with those reported here. All finger-
prints are computed using in-house programs written in
Python. To give a sense of the ranges, in the experiments,
we varyNhashfrom 25 to 232. Nobs can vary in the 104 to 106

range, depending on the combinatorial features, the labeling
scheme, and so forth. For instance, withNhash) 230, we have
Nobs ) 292 742 for the E labeling scheme applied to paths

Figure 1. A molecule represented as a labeled graph. The labels
on the vertices correspond to atom symbols, and those on the edges
describe the type of covalent bond between atoms (e.g., “s” for
single bond and “d” for double bond). Also shown are examples
of labeled paths of lengths 1 and 2 resulting from a depth-first search
exploration of the graph, starting from one of the carbon atoms.
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of length 0-8, andNobs) 58 225 for the EC labeling scheme
applied to a circular substructure of depth 0-2.

2.3. Fingerprint Statistical Models.Statistical models of
fingerprints are important for compression, particularly in
entropy coding schemes that match code lengths to symbol
probabilities, assigning shorter codes to more probable
symbols23-25. According to Shannon’s source coding theo-
rem, the optimal code length for a symbol is-logb p, where
here b is the size of the coding alphabet andp is the
probability of the input symbol.

The simplest statistical model for binary fingerprints is a
Bernoulli process (coin flip) with probabilityp of producing
a 1 bit, andq ) 1 - p of producing a 0 bit. Long fingerprints
of lengthN* are typically very sparse, so the average density
p is close to 0 (Figure 2). Under this model, the total number
of 1 bits has a binomial distributionB(N*,p). Runs, defined
by sequences of 0 bits followed by a 1 bit, have a geometric
distribution so that the probability of a run of lengthj (j )
0, 1, 2, ...) is given byqjp, and the average run length isl )
q/p. The coin flip model is consistent with fingerprint features
that are randomly ordered and statistically exchangeable, in
fact even independent.

While the coin flip model is useful for deriving a number
of approximations, it is clear that chemical fingerprints have
a more complex structure, and their components are not
exactly exchangeable, since the individual feature prob-
abilities p1 to pN* are not identical and equal top but vary
and, when reordered in decreasing order, follow roughly a
power-law distribution. The probability associated with the
j-ranked component is given approximately bypj ) Cj-R,
resulting in a line of slope-R in a log-log plot (Figure 3).
Thus, the statistical model at the next level of approximation
is that of a nonstationary coin flip where the probabilitypj

of each coin flip varies.

The next level of statistical approximation would have to
take into account the correlations between pairs of features.
In general and on average, these correlations are close to 0
and will not be considered here.

3. FINGERPRINT COMPRESSION ALGORITHMS

In this section, we first review existing compression
algorithms for chemical fingerprints and then develop new
compression algorithms for these fingerprints. Other com-
pression algorithms exist, such as Lempel-Ziv, which have
been applied to other molecular representations, such as
SMILES strings.20 For fingerprints, however, the most widely
used compression algorithm is the modulo compression
algorithm, used in many commercial fingerprint systems
(e.g., Daylight, Avalon, and Unity).

3.1. Modulo Compression.In the modulo compression
algorithm, fingerprints are “folded” using a modulo operator
into shorter fingerprints of fixed lengthN, with N* ) Nk. In
the binary case, for a given molecule, a bit in positionj of
the compressed fingerprint is set to 1 if and only if there is
at least one bit set to 1 in any positionk ≡ j moduloN in
the full fingerprint of lengthN* (Figure 4). Typically, in
current chemoinformatics systems,N ) 29 ) 512 or N )
210 ) 1024. While in some applications it may be possible
to exploit or weigh information associated with specific
components, the compression moduloN is most effective
only if all the bits are treated equally, so that the specific
ordering of the bits is irrelevant. Hence, it is most efficient
and consistent with an exchangeable statistical model
(stationary coin flip). In practice, this requires applying a
fixed but random permutation to all the fingerprints of length
N* prior to compression, or using a good hashing function
to derive “randomized” fingerprints of lengthN. The diagram

Figure 2. Fingerprint density as a function of fingerprint length. Logarithms on both axes are taken to base 2. The average density is
captured byp, the probability of a 1 bit in long fingerprint vectors computed across all the molecules. Blue lines correspond to path features
with element labeling. Red lines correspond to circular substructure features, with extended connectivity labeling.
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in Figure 4 illustrates the simple process of folding a binary
fingerprint vector of sizeN* ) 16 into a compressed
fingerprint vector of sizeN ) 4 using a modulo operator.

Modulo compression is very simple to implement. How-
ever, it suffers from two drawbacks. First, it is a lossy
compression method: when a component of the compressed
fingerprint is set to 1, there is no way of recovering which
corresponding bits were set to 1 in the unfolded vector.
Second, there is no indication that the compression rate may
be close to optimal.

3.2. Modulo Compression: Variable Length.For com-
pleteness, we also describe a variation on modulo compres-
sion which uses variable-length modulo compression,3 where
the length of the encoding of a molecule depends on the
molecule itself. This is done by setting a thresholdR and
repeatedly folding the fingerprint vectorAB* until the density

of the compressed fingerprint exceeds the valueR. In this
case,AB* is represented by a compressed fingerprint vector
ABN(AB*) of lengthN(AB*), whereN(AB*) varies across molecules,
such thatN* ) N(AB*)k(AB*) andAN(AB*)/N(AB*) g R, the latter
inequality being violated ifAB* is folded fewer thank(AB*)
times. Thus, the compressed fingerprint is the longest
modulo-compressed vector that satisfies the density inequal-
ity. Typically, R ) 0.3, which corresponds to a maximum
density of approximately 0.5. Variable compression may
improve the compression rate but is still a lossy compression
scheme. We now turn to lossless compression schemes using
integer entropy codes.21-25

The starting points for these schemes are the lossless
integer run-length or index representations of fingerprints.
The messages to be compressed are viewed as sequences of
integers. Thus, the goal of the algorithms considered here is
to encode arbitrary integers into variable-length (prefix) bit
strings in a lossless way. The Shannon entropy of the source
distribution provides a theoretical lower bound to the number
of bits required on average for lossless transmission (com-
pression) of each symbol (integer) in the limit of very long
messages. Thus, in entropy coding compression, one tries
to approach this limit by striving to match the length of the
code words to the distribution over the integers associated
with the messages, that is, the molecules in the database, by
assigning shorter code words to integers that occur more
frequently in the messages. Note that encoding by concat-
enating the binary representations of each integer does not
work since the boundaries between the integers are lost.
Reserving one binary symbol (e.g., 0) as a delimiter and using
the remaining symbol to unary encode each integer is very
inefficient. Thus, in the binary encoding of sequences of
integers, the differentiation of two successive integers
becomes an essential problem to be addressed.

Figure 3. Power law distributions for paths of length 0-8 and circular substructures of depth 0-2. Thex axis corresponds to the feature’s
rank and they axis to the feature’s probability, using logarithmic scales on both axes.

Figure 4. Illustration of the folding process with a binary vector
of lengthN* ) 16 (1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0)folded into a
binary vector of lengthN ) 4 (1 0 0 1), modulo 4. Note how
information in the first position of the compressed vector is lost
due to clashes.
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3.3. Golomb and Golomb-Rice Codes.Golomb codes
were specifically developed to encode stationary coin
flips with p * 0.5.21 Thus, they can be applied directly
to the run-length representation of fingerprints. They are
known to be optimal and achieve the Shannon limit if
the data are generated by random coin flips or, equiv-
alently, if the distribution over the integers (runs) is
geometric. The more skewed the probabilityp is (toward 0
or 1), the greater the level of compression that can be
achieved.

Golomb codes are a family of codes with one integer
parameterm. Any positive integerj can be written using its
quotient and remainder modulom as j )  j/m + (j mod
m). To encodej, the Golomb code with parametermencodes
the quotient and remainder by using

•  j/m 1 bits for the quotient
• followed by a 0, as a delimiter (unary encoding of

 j/m)
• followed by the phased-in binary code forj mod m for

the remainder (described below)
The encoding of integers 0 tom - 1 normally requiresB

) log m bits. If m is not a power of two, then one can
sometimes useB - 1 bits. More specifically, in the “phased-
in” approach:

• If i < 2B - m, then encodei in binary, using (B - 1)
bits

• If i g2B - m, then encodei by i + 2B - m in binary,
usingB bits

For instance, form ) 5, i ) 2 is encoded as “10” using
two () B - 1) bits, andi ) 4 is encoded as “111” using
three () B) bits (see Table 1).

Thus, the encoding ofj requires in totalj/m + 1 + log
m or  j/m + 1 + log m bits (Table 1), and the code
word for the integerj + m has one more bit than the code
word for the integerj. Unless otherwise specified, here and
everywhere else in the paper, all logarithms are taken to base
2. In this section only, we use also “[logm]” to denote “log
m or log m”.

The entropy of the geometric distribution of run lengths
is given by

and provides the optimal Shannon coding lower bound on
the expected encoding length per integer:

under the coin flip model. Thus, the Golomb code approaches
the Shannon limit whenqm ) 0.5. In particular, this ensures
that for each integerj

whereP(j) is the probability associated with the integerj.

Note that for chemical fingerprints we can use a single
value ofp ) 1 - q (hencem) averaged across all molecules,
or we can use a differentp (hence differentm) for
each molecule. In the latter case, for each molecule, we
must store the value ofmat the beginning of the fingerprint.
The value ofm can be encoded using Elias Gamma codes
(see below). Experiments show that this is a small cost to
incur compared to the savings achieved by using a value of
p that is adapted to the bit density of each molecular
fingerprint. Thus, the results to be reported are based on an
implementation that uses a different value ofp for each
molecule.

Finally, Golomb-Rice codes are a particularly convenient
subfamily of Golomb codes, whenm ) 2k. To encodej, we
concatenate j/2k 1 bits, one 0 bit, and thek least-significant
bits of j. The length of the encoding ofj is thus j/2k + k
+ 1. The decoding of Golomb-Rice codes is particularly
simple, the position of the 0 bit gives the value of the prefix
to be followed by the nextk bits. Golomb-Rice codes are
used in the simulations (see Table 2).

3.4. Elias Codes.Golomb encoding is optimal for
fingerprints generated by a stationary coin-flip model, where
each feature is observed with equal probability. As we have
seen, however, chemical features are not uniformly distrib-
uted across molecules, some features are much more frequent
than others and, upon reordering, follow roughly a power-
law distribution. Elias codes,22 in particular Elias Gamma
codes, take advantage of this nonstationarity, observed in
real chemical fingerprints.

Elias codes are applied here to the fingerprint integer index
representation, although they can also be applied to the run-
length representation. In the Elias Gamma coding scheme,
one simply concatenates the scale ofj with its binary
representation. More precisely, to encode the scale and value
of j:

• write log j 0 bits

• followed by the binary value ofj beginning with its most
significant 1 bit

The length of the encoding ofj is 2log j + 1 (Table 3).
The decoding is obvious: first, readn 0 bits until the first 1
bit is encountered, then readn more bits to get the binary
representation ofj.

Table 1. Golomb Encoding of the Integersj ) 0-8, for Different
Values of the Parameterm

j m ) 2 m ) 3 m ) 4 m ) 5 m ) 6

0 00 00 000 000 000
1 01 010 001 001 001
2 100 011 010 010 0100
3 101 100 011 0110 0101
4 1100 1010 1000 0111 0110
5 1101 1011 1001 1000 0111
6 11100 1100 1010 1001 1000
7 11101 11010 1011 1010 1001
8 1111100 11011 11000 10110 10100

H(geometric)) -∑
j)0

∞

qjp log(qjp) (1)

E(l) ≈ ∑
j)0

∞

qjp( j/m + 1 + [log m]) (2)

Table 2. Golomb-Rice Encoding of Integersj ) 0-33 with k ) 2
(m ) 4) andk ) 3 (m ) 8)a

number encoding (k ) 2) number encoding(k ) 3)

0-3 0xx 0-7 0xxx
4-7 10xx 8-15 10xxx
8-11 110xx 16-31 110xxx

33 11111111001 33 11110001

a Integerj is encoded by concatenatingj/2k 1 bits, one 0 bit, and
the k least significant bits ofj.

-log P(j) ) log(qjp) ≈  j/m + 1 + [log m] (3)
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Applying the relationship

to the integer probabilities shows that Elias Gamma encoding
asymptotically approaches the Shannon limit forP(j) ≈ Cj-2.
This is a power law relationship with exponent-2, andC
is a normalizing constant, equal to 6/π2 in the case of a
perfect power law. Note that, for both Golomb (eq 3) and
Elias Gamma codes (eq 4), several different consecutive
integers can be encoded into a bit vector with the same
length; hence, the relationship-log P(j) ≈ length(j) is only
approximate with respect to geometric or power-law distri-
butions over the integers. To be more precise, the optimal
distribution associated with the Elias Gamma code can be
separated into the product of a probability distribution over
the lengthl given byP(l) ) 2-l and a uniform distribution
over the integers having an encoding of lengthl given by
P(j|l) ) 2-l+1.

Golomb codes based on a stationary coin-flip model are
associated with a random ordering of the fingerprint features.
While the Elias Gamma code could be applied to the integer
index representation associated with a random ordering of
the components, it is most efficient if the components are
reordered in decreasing order of frequency across the
molecules in the database to match the power-law prob-
abilities of the symbols to the code-word lengths. In this way,
smaller indices associated with more frequent features are
encoded more efficiently using fewer bits. The reordering
is an additional preprocessing step, but it needs to be carried
out only once, or once in a while if the database grows, and
can be done entirely off-line.

3.5. Monotone Value Coding (MOV Coding).Regard-
less of whether the features are sorted or randomly ordered,
it is important to remark that the integers occurring in an
index representation are in strictly increasing order. Here,
we introduce a modification of the codes described above,
presented with the Elias Gamma codes, for messages
consisting of monotone sequences of integers, such as index
representations. When the value of the integers being encoded
increases monotonically, additional lossless compression can
be obtained by encoding only the scale increases and their
location (Figure 5).

More precisely, if the index sequence of a fingerprint is
given by (j1,j2,...,jK) with j1 < j2 ... < jK:

• encodej1 using Elias Gamma encoding
• for i ) 2, ...,K, write log (j i) - log (j i-1) 0 bits
• followed by the binary value ofji beginning with its most

significant 1 bit
The MOV-encoded integer index vector can be decoded

by a simple algorithm:
• setk ) 1

• decode each integer in succession by repeating the
following steps

• incrementk by the number of 0 bits in the input stream
before reaching the first 1 bit

• counting this first 1 bit as the first digit of the integer,
read the remainingk - 1 bits of the integer from the input
stream

Each of the integers read from the stream corresponds to
a single feature observed in the uncompressed feature vector.

3.6. Monotone Length Coding (MOL Coding). The
same idea, with some modifications, can also be applied to
the run lengths. First, we have checked that, when the
fingerprint components are sorted by decreasing order of
frequency, the run lengths follow approximately a power-
law distribution, instead of a geometric distribution in the
case of randomly sorted components. Second, when the
fingerprint components are sorted by decreasing frequency
order, the sequence of run lengths of a given molecule will
be “quasi-monotone”. It will tend to increase, overall, but
not in a perfect monotone fashion: occasionally a run length
may be followed by a shorter run length. Thus, one cannot
encode only the increases. To address this problem, we use
a 1 bit to signal when the scale of a run length is equal to or
smaller than the scale of the previous run length. Otherwise,
we use a number of 0 bits equal to the increase in the scale.
Thus, in this case, it is the length of the binary encoding of
the integers that varies monotonically, rather than their
values. Some care must be taken with the initialization of
the variablescaleto manage the case when the initial run
length is 0.

More precisely, if the run-length sequence of a fingerprint
is given by (j1,j2,...,jK) :

• initialize scale) 0
• for i ) 1, ...,K, if log j i + 1 e scale, then write a 1

bit followed by j i written in binary using scale bits
• else write (log j i + 1 - scale) 0 bits, set scale) log

j i + 1, and write the binary value ofj i using scale bits
An example of MOL encoding is given in Figure 6.
With minor adjustments, the same ideas can be applied to

other coding schemes such as Golomb-Rice. However,
because after reordering the components both the indices and
the run lengths have power-law distribution trends, in the
simulations, we use primarily MOV/MOL codes with Elias
Gamma codes. Slight additional savings could also be
obtained by coding the absence of a feature, rather than its
presence, for the fewpi’s satisfying pi > 0.5. This is an
implementation detail which may be effective for some
feature sets but not others.

3.7. Byte Arithmetic. Direct implementations of the
decoding algorithms process the compressed fingerprints bit-

Table 3. Elias Gamma Encoding. Each Integerj Is Encoded by
Concatenatinglog j 0’s with the Binary Value ofj.

number encoding
implicit

probability
empirical

probability (paths)

1 1 0.50 0.65
2-3 01x 0.25 0.27
4-7 001xx 0.125 0.050
8-15 0001xxx 0.0625 0.020

16-31 00001xxxx 0.03125 0.0006

-log P(j) ≈ 2log j + 1 (4)

Figure 5. Monotone value coding (MOV). The principle is
illustrated using the index representation vector (1, 2, 3, 9, 14, 26,
29). Each integerj is converted to a binary representation of length
log j which begins with a 1 bit. 0 bits are used between two
consecutive integers only when the length (scale) increases. The
number of 0 bits is equal to the increase in the length.
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by-bit; however, it is possible to implement faster decoders,
which decode the compressed data byte-by-byte. These faster
decoders work by looking up information from precomputed
tables. These tables are indexed by (1) all possible bytesB
(ranging from 0 to 255) and (2) a bit indexi (ranging from
0 to 7) which marks the position of the decoder within the
byte. These tables may store quantities such as the binary
value of byteB starting from biti, the number of bits turned
on in byteB starting from biti, and the unary value of byte
B starting from biti. The exact quantities stored depend on
the details of a particular decoder implementation.

In practice, byte arithmetic considerably increases decod-
ing speed, sometimes approaching as much as an 8-fold
improvement (in the case of modulo-compressed fingerprints)
over the corresponding bit-by-bit implementation. The exact
value of the speedup depends on several factors including
the data set of molecules, the compression scheme, and the
hardware used. In the simulation benchmarks, we compare
the byte-by-byte decoders of various compression schemes
operating on compressed representations of identical finger-
prints on the same machine.

3.8. Computing Similarity Measures.When searching
large databases, one must be able to rapidly compute the
similarity between the query molecule and the other mol-
ecules in the database from their compressed representations.
Most commonly used similarity measuresS(A,B) between
moleculeA andB are derived from the intersectionA* ∩
B* ) |AB* ∩ BB*| and the unionA* ∪ B* ) |AB* ∪ BB*| of the
corresponding uncompressed binary fingerprint vectors. For
instance, the widely used Tanimoto measure is given by the
ratio S ) (A* ∩ B*)/(A* ∪ B*). Thus, one must be able to
rapidly compute or estimate the values of this union and
intersection from the compressed fingerprint representations.
To achieve this goal, at the beginning of each compressed
fingerprint, we store in the header the total number (A*) of
1 bits contained in the corresponding uncompressed finger-
print (AB*) using Elias Gamma coding. In the case of count
fingerprints, we store the same quantity∑iAi. This introduces
a very small overhead in the overall compression scheme.
Note that the header is also useful to avoid having to define
a special terminator symbol to signal the end of the index
or run-length sequence. During the decoding phase, bits or
counts are progressively added until the total value∑iAi is
reached. Alternatively, one can signal the end of an index
or run-length sequence by encoding an index or run length
equal to zero.

SinceA* ∪ B* ) A* + B* - (A* ∩ B*), the union can be
computed from the intersection, and so to compute the
similarity, we need only to compute the intersection. Given
a query molecule A, we first uncompress its compressed
representation into the corresponding index representation.
This is true for both Golomb and Elias coding schemes, with
the caveat that Golomb coding requires a small additional
processing step whereby the run-length representation is
transformed into the index representation. This decompres-
sion operation has to be done only once for each query. Then,
for each molecule B in the database, we uncompress its
compressed representation into its index representation. The
intersectionA* ∩ B* is then rapidly computed by counting
the number of integers in common between the two index
representations.

3.9. Count Fingerprints. The described compression
methods only compress sparse binary vectors. We can,
however, extend Golomb, Elias, or MOV/MOL coding
schemes to fingerprint count vectors which also store the
number of times a given feature is observed in a given
molecule. The basic idea is to interleave two codes to-
gether: the code for the positions as described above and
the code for the corresponding counts. The encoding
algorithm is as follows: each index with a count greater than
zero is encoded using previously derived methods (Golomb,
Golomb-Rice, Elias Gamma, and MOV/MOL). After en-
coding each index, but before encoding the next index, we
encode the number of times the corresponding feature is
observed. Counts can be encoded either with fixed-width bit
vectors or, more efficiently, with Elias Gamma encoding.
Decoding the interleaved code is trivial. After each index is
decoded, the corresponding count is decoded before decoding
the next index.

4. RESULTS

Here, we compare the lossless integer entropy code
algorithms to the lossy modulo-compression algorithms not
only in terms of compression rates, but also in terms of time
complexity and retrieval accuracy.

4.1. Compression Rates.The main simulation results
comparing different compression schemes are illustrated in
Figure 7 for paths and Figure 8 for circular substructures.
These figures plot the average length of a compressed
fingerprint as a function ofNhashfor Golomb and MOV/MOL
encoding schemes applied to various feature vectors. It must
be noted that, although Golomb is most consistent with a
random ordering of the uncompressed fingerprint compo-
nents, it can still be applied to fingerprints where the features
have been sorted in decreasing order of frequency. In this
case, the run lengths are increasing on average, but not
strictly, as one moves from frequent bits to rare ones.

Likewise, since both sorted and nonsorted fingerprints
yield index representations consisting of monotonically
increasing lists of integers, MOV/MOL encoding can be
applied to indices in both sorted and nonsorted fingerprints.
Since MOV/MOL Elias Gamma coding always achieves
better compression performance than does Elias Gamma
coding, here we report only the results of MOV/MOL
compression and compare them to Golomb-Rice and
modulo compression.

As expected, the results are entirely consistent across
feature types or labeling schemes, as can be seen by the

Figure 6. Monotone length coding (MOL). The principle is
illustrated using the run-length vector (0, 0, 0, 5, 4, 11, 2) associated
with the index vector of Figure 5. Each integerj, except for the
initial 0s, is converted to a binary representation of lengthlog j
+ 1 which begins with a 1 bit. In addition, a 1 bit is used between
two consecutive integers when the scale does not increase. 0 bits
are used between two consecutive integers only when the length
(scale) increases. The number of 0 bits is equal to the increase in
the scale. The three initial 0 bits are associated with a scale of 0
leading to the three initial 1 bits in the encoding, followed by three
0 bits to denote the increase in scale from 0 to 3 bits.
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relative ordering of the curves associated with different
compression schemes, although the magnitude can vary. For
small values of logNhash, less than 14 for paths and 17 for
circular substructures, Golomb codes achieve better average
compression. However, for larger and more realistic values
of Nhash(e.g., above 220), MOV/MOL encoding achieves the
best average compression. MOL is noticeably better than
MOV. When columns of zeros are removed (posthash), the
average size becomes flat asNhashis increased; otherwise, it
grows linearly asNhash is increased. Sorting the bits by
decreasing frequencies improves both Golomb-Rice and
Elias Gamma encodings.

For Nhash ) 230, the average compressed sizes are given
in Table 4. Remarkably, lossless compression can be
achieved using fewer bits than current lossy systems. With
MOL Elias Gamma encoding applied to circular substruc-
tures and binary fingerprints after removing columns of zeros
(posthash) and sorting the components in decreasing fre-
quency order, the average code size is only 316.2 bits per
molecule. This lossless compression performance must be
contrasted with current available systems which typically use
lossy modulo compression with fingerprints of fixed size
1024. Thus, in this case, MOL encoding provides more than
a 3-fold compression improvement without any loss of
information. This is to be compared to the sum of entropies
-∑i[pi log pi + (1 - pi) log(1 - pi)], which in this case is
equal to 287.4 bits forNhash) 230. This value is a reasonable
approximation to the theoretical Shannon limit, although the
true limit is likely to be slightly lower due to the correlations
between the components. However, it is easy to check that
these correlations are typically very small, and zero in

average (data not shown). A different theoretical argument
given in the concluding section provides a similar lower
bound in the range of 250 bits. For comparison, the similar
entropy in the case of paths is equal to 1243.5 bits.

Headers at the beginning of the compressed fingerprints
are relatively short and implementation-dependent and, thus,
are a relatively minor issue. In our implementation, headers
typically contain one bit for count versus binary fingerprints,
the value ofA ) ∑iAi encoded using Elias Gamma, and
possibly the value of the parameterm (or k) when using
Golomb (or Golomb-Rice) codes with parameter values that
are tuned to each individual molecule. The values given in
Table 4 are given without including these small headers. The
small effect of these headers can be seen in Table 5 where
we compare two possible implementations of Golomb-Rice
codes using a fixedk for all the molecules, and a variablek
adapted to each molecule. Typically, the variablek approach
costs an additional 5-10 bits to store the value ofk in the
header but, overall, saves 50-100 bits by leveraging the
variable fingerprint density to encode the run lengths.

It is worth noting that, with the interleaving encoding
algorithm described above, the use of count fingerprints
rather than binary fingerprints merely shifts all the curves
in Figures 7 and 8 upward by a constant amount, equal to
the average number of bits used to encode the counts (Table
6). Therefore, the ordering between the curves does not
change. For instance, with MOV/MOL encoding applied to
circular substructures, an average of 1.89 bits is required to
encode each count. On average, this increases the lengths
of the fingerprints by 82.49 bits.

Figure 7. Compression results for Golomb-Rice (red), MOV Elias Gamma for indices (green), and MOL Elias Gamma for run lengths
(blue) encoding schemes applied to binary fingerprints based on paths. Posthash refers to the option where features that are 0 for all the
molecules in the database are removed. Sorted refers to the option where features are sorted in decreasing order of frequency across the
molecules in the database. Curves represent the average number of bits required per molecule as a function of uncompressed fingerprint
size (logNhash). The entropy curve corresponds to the approximate Shannon entropy limit-∑i[pi log pi + (1 - pi) log(1 - pi)], derived
under the independent component approximation. The plots are derived using a random subset of 50 000 molecules from ChemDB.
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4.2. Time Complexity. Compression size and accuracy
are two important dimensions to consider when deciding on
a compression scheme. In this regard, integer entropy codes
can achieve better compression rates than modulo compres-
sion without any loss of information. However, another

important dimension is the complexity and speed of the
encoding and decoding operations. In the case of chemical
fingerprints, encoding using integer entropy codes is not
difficult and can be carried off-line. Thus, the only issue
left to address is the speed of decoding and computing
similarity measures across large numbers of molecules.

Speed benchmarks are given in Table 7 comparing the
performance in seconds of various compression algorithms
when computing 5 million Tanimoto similarity measures
using binary fingerprints. All compression schemes are
implemented using byte-arithmetic and run on the same 2.0
MHz Intel-dual-core Macintosh laptop computer. As can
be expected, plain lossy modulo compression leads to the
fastest time of about 2.79 s for the computation of 5 million
approximate Tanimoto similarity measures using standard
compressed fingerprints of a fixed length of 1024 bits. Using

Figure 8. Compression results for Golomb-Rice (red), MOV Elias Gamma for indices (green), and MOL Elias Gamma for run lengths
(blue) encoding schemes applied to binary fingerprints based on circular substructures. Posthash refers to the option where features that are
0 for all the molecules in the database are removed. Sorted refers to the option where features are sorted in decreasing order of frequency
across the molecules in the database. Curves represent the average number of bits required per molecule as a function of uncompressed
fingerprint size (logNhash). The entropy curve corresponds to the approximate Shannon entropy limit-∑i[pi log pi + (1 - pi) log(1 - pi)],
derived under the independent component approximation. The plots are derived using a random subset of 50 000 molecules from ChemDB.

Table 4. Average Size in Bits of Compressed Molecular
Fingerprints for Different Compression Schemes, with Path and
Circular Substructure Featuresa

encoding path circular

Golomb-Rice[hash] 4094.8 1247.5
Golomb-Rice[posthash] 2066.1 563.1
Golomb-Rice[posthash,sorted] 1879.6 460.8
MOV[hash] 4955.4 1425.5
MOV[posthash] 2954.9 725.7
MOV[posthash,sorted] 1803.3 379.5
MOL[hash] 4489.3 1354.4
MOL[posthash] 2455.1 658.2
MOL[posthash,sorted] 1420.6 316.2

a These values correspond to the values on they axis in Figures 7
and 8 whenx ) log Nhash ) 30. Headers are not included.

Table 5. Average Size in Bits after Golomb-Rice Compression
Using Either a Single Parameterk for All the Molecules or a
Different Parameterk for Each Moleculea

path circular

Golomb-Rice fixedk variablek fixed k variablek

hash 4112.4 4103.8 1249.1 1256.5
posthash 2085.4 2073.5 565.5 569.6
posthash,sorted 1993.5 1886.3 544.4 466.8

a In the case of a different parameterk for each molecule, the value
of k is included in the header.

Table 6. Maximum and Mean Value of the Count Values Across
the Count Fingerprints of the Sample of 50 000 Molecules from
ChemDBa

statistics path circular

max(count) 513 88
mean(count) 1.78 1.71
bits/count 1.75 1.89
bits/fingerprint 303.9 82.49

a The logarithm of the maximum value determines the number of
bits required to encode the counts using bit vectors of fixed length.
Bits/count denotes the average number of bits per count value, using
Elias Gamma encoding. Bits/fingerprint denotes the average number
of bits per fingerprint required to store all the corresponding counts. It
is the amount by which the curves in Figures 7 and 8 are translated
upward if count fingerprints are used instead of binary fingerprints.
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the mathematical correction described in ref 15 to derive
better estimates of the true (uncompressed) similarity measure
increases this time to 4.04 s for circular substructure features.
In contrast, the best implementations of the MOV/MOL
compression requires 6.34 s. Thus, in our implementation,
the MOV/MOL compression is about 1.5-2 times slower
than different variants of modulo compression. This is a
relatively modest cost to pay given the considerable im-
provement in size and accuracy. Finally, it must be noted
that all the integer entropy codes discussed here, including
MOV/MOL encoding, can be used in combination with
the pruning techniques described in ref 26, allowing queries
of the entire ChemDB to run typically in less than a
second.

4.3. Retrieval Accuracy.The previous sections establish
the effectiveness of the integer entropy code algorithms in
terms of compression rate and compression accuracy (loss-
less) for a relatively small computational cost. However,
because the compression is lossless, we can also expect better
retrieval accuracy. To test this hypothesis, we use the six
benchmark datasets in Stahl and Rarey,16 corresponding to
six groups of diverse small-molecule inhibitors of important
pharmaceutical targets. These data sets consist of 128
chemicals which interact with Cox-2, 55 which interact with
the estrogen receptor, 43 which interact with gelatinase-A,
17 which interact with neuraminidase, 25 which interact with
p38-MAP kinase, and 67 which interact with thrombin. These
sets are combined with a random subset of 50 000 molecules
from ChemDB. Retrieval of each data set is tested against
this random background using both lossy and lossless
compressed fingerprints and Tanimoto similarity measures,
using a leave-one-out cross-validation procedure. Receiver
operating characteristic (ROC) curves displaying the tradeoff
between true and false positives are computed for each query
molecule and then aggregated within each data set (Figure
9). The results show that, in all six cases, lossless compres-
sion leads to better retrieval, for instance, in terms of the
area under the curve (AUC) measure. On average, in these
experiments, the AUC is increased by 18% when lossless
representations are used, versus lossy modulo compression
to 512 bits. For comparison purposes, the AUC is increased
by 11% when the same experiments are done with lossy

modulo compression to 1024 bits. Similar improvements are
observed with other classification measures.

5. CONCLUSION

In summary, we have shown how, by using integer entropy
coding techniques, we can achieve efficient lossless com-
pression of large chemical fingerprints. The starting point is
first to convert the fingerprint vectors into lists of integers
corresponding to indices or run lengths. Everything else being
equal, it is preferable to encode run lengths because their
dynamic range is smaller than the dynamic range of indices.
Classical integer coding algorithms, such as Golomb or Elias
codes, encode an integerj by the concatenationp(j)m(j) of
two bit strings: a preamblep(j) and a mantissam(j). The
preamble encodes the scale ofj and sets the stage for the
mantissa by providing information about the size of the
mantissa or providing additional information aboutj that is
not contained in the mantissa. For instance, in Elias Gamma
codes,p(m) is a string of zeroes of lengthlog j, andm(j)
is the binary encoding ofj. In general, Golomb codes are
best suited for geometric distributions over the integers,
whereas Elias codes are best suited for power-law distribu-
tions over the integers. When the fingerprint components are
randomly ordered, the indices tend to have a power-law
distribution and the run-lengths tend to have a geometric
distribution. When the fingerprint components are ordered
by frequency, both the indices and the run lengths tend to
have power-law distributions. Furthermore, within a given
fingerprint, the indices are always strictly increasing (by
definition). The run lengths are random and not increasing
when the components are randomly ordered. However, when
the components are ordered by frequency, the run lengths
are quasi-increasing. The monotonicity or quasi-monotonicity
allows us to gain additional space essentially by usingp(m)
to encode only the changes in the scale ofj, rather than the
scale itself.

Combinations of these ideas yield some new compression
algorithms, and in short, after comparing many possible
combinations and variations, the algorithm we propose has
three key ingredients: (1) reordering of the fingerprint
components, so that the run lengths are approximately power-
law distributed and quasi-monotonic; (2) encoding the power-
law distributed run lengths using Elias codes; and (3) taking
advantage of the quasi-monotonicity of the run lengths to
modify the encoding and gain further space by essentially
encoding only the changes in the scale of successive integers
in the lists. Using large binary fingerprints associated with
hash values up to 232 and circular substructure features, this
approach allows us to encode the fingerprints of molecules
contained in current large repositories in a lossless fashion
using slightly over 300 bits per molecular fingerprint on
average. Thus, not only is this form of compression lossless,
it also produces fingerprints that are approximately1/3 the
size of typical 1024-bit, lossy, modulo-compressed finger-
prints.

One obvious question is whether we have reached the
limits of compressibility. First, we note that the size achieved
is close to the approximate Shannon limit of 290 bits,
estimated assuming independence among the fingerprint bits.
The size difference is more or less within the size of
implementation-specific details, such as headers. Since in

Table 7. Speed Benchmarks for Various Compression Algorithms
Representing Approximate Time in Seconds to Perform 100 Queries
Across a Random Set of 50 000 Molecules from ChemDB (5
Million Similarity Calculations) withNhash ) 230 Using Binary
Fingerprints and Tanimoto Similarity Measurea

encoding path circular

Golomb-Rice[hash] 29.7 8.6
Golomb-Rice[posthash,sorted] 20.9 6.5
MOV[hash] 32.1 9.6
MOV[posthash,sorted] 22.0 6.3
MOL[hash] 27.2 9.0
MOL[posthash,sorted] 20.9 6.4
modulo-corrected (N ) 1024) 4.0 4.0
modulo-uncorrected (N ) 1024) 2.8 2.8

a The last two lines correspond to modulo compression. Modulo-
uncorrected corresponds to computing the Tanimoto similarity directly
on the compressed fingerprints as an estimate of the Tanimoto similarity
on the uncompressed fingerprints. Modulo-corrected refers to a better
estimate of the Tanimoto uncompressed similarity derived in ref 15.
These benchmarks were carried on a 2.0 MHz Intel-dual-core
Macintosh laptop computer.
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reality the features are not exactly independent, some
relatively small improvements may still be possible. For
instance, it may be possible to use a version of Golomb codes
where not only each molecule has its own range parameter
m but the parameterm varies within each molecular
fingerprint, progressively increasing from left to right, when
the components are ordered by decreasing frequencies.
However, it should also be clear that any improvement in
size may at best be incremental. To see this, one needs only
to remark that current rough estimates for the total number
of small organic molecules are in the 1060 range,14 which
corresponds to an absolute minimum of 200 bits per molecule
(2200 ≈ 1060). Beyond the current level, any improvements
in size are also likely to be more costly in terms of speed of
decoding and computing similarity measures. In this respect,
the proposed algorithm requires only a relatively small
computational price. For circular fingerprints, in our imple-
mentation, this overhead is within a factor of 2 in the worst
case scenario. As we approach the limits of lossless
compression and wish to search increasingly larger portions
of chemical space, the emphasis may shift to speed consid-
erations.

Besides space and time, a third important consideration
is accuracy. Because the compression scheme proposed is
lossless, it ought to lead to better retrieval performance than
lossy compression schemes. In controlled leave-one-out
cross-validation experiments, using several pharmacologi-
cally relevant data sets against a large random background
of molecules, we have shown that the lossless representations
yield better retrieval than the lossy representations by any
classification measure. In particular, we observed significant
improvements of 11-18% for the average area under the
ROC curves, depending on the length of the lossy-

compressed fingerprints. These results highlight the utility
of these fingerprints for chemists to effectively find new
molecules of interest from large chemical repositories. While
in time, one can hope that improved chemoinformatics
methods will make their way into proprietary systems like
CAS, a direct comparison to their retrieval capabilities is
currently impossible due to the closed nature of these
systems.

Finally, it is important to note that the MOV/MOL
compression algorithms we have derived are completely
general and not specific to chemical fingerprints. They can
be applied in any situation where monotone or quasi-
monotone, increasing or decreasing, sequences of integers
need to be compressed. In particular, they can be applied in
other domains where binary vector representations of power-
law distributed features are commonly found, such as in the
compression of Web pages or written texts when treated as
“bags of words”.27,28
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