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In many large chemoinformatics database systems, molecules are represented by long binary fingerprint
vectors whose components record the presence or absence of particular functional groups or combinatorial
features. To speed up database searches, we propose to add to each fingerprint a short signature integer
vector of length M. For a given fingerprint, the i component of the signature vector counts the number of
1-bits in the fingerprint that fall on components congruent to i modulo M. Given two signatures, we show
how one can rapidly compute a bound on the Jaccard-Tanimoto similarity measure of the two corresponding
fingerprints, using the intersection bound. Thus, these signatures allow one to significantly prune the search
space by discarding molecules associated with unfavorable bounds. Analytical methods are developed to
predict the resulting amount of pruning as a function of M. Data structures combining different values of M
are also developed together with methods for predicting the optimal values of M for a given implementation.
Simulations using a particular implementation show that the proposed approach leads to a 1 order of magnitude
speedup over a linear search and a 3-fold speedup over a previous implementation. All theoretical results
and predictions are corroborated by large-scale simulations using molecules from the ChemDB. Several
possible algorithmic extensions are discussed.

INTRODUCTION

We consider the problem of efficiently searching large
databases of vectors, which occurs in various areas of
information retrieval. In chemoinformatics, we assume that
we have a large database of small molecules.1-5 It is
common practice to represent these molecules using long
fingerprint vectors, where the components of a vector
correspond to binary or integer variables, associated with
the presence or absence or the number of occurrences of a
particular feature in a molecule.6-12 For simplicity, in the
rest of the paper, we consider the most frequently used binary
fingerprints, but most of the ideas can be extended to integer
valued fingerprints. Typical features used in the literature
and existing chemoinformatics systems correspond, for
instance, to all possible labeled paths or trees up to a certain
depth.13-16 The exact nature of the fingerprints is not
important for what follows, and the derivations can be
applied to any kind of fingerprint vectors. Thus, for any
molecule A , we assume that we have a corresponding binary
fingerprint vector Ab ) (Ai) of length N with A ) ∑i)1

N Ai. We
call A the size or weight of the corresponding fingerprint.
Assuming that A is the query molecule, we are interested
in rapidly retrieving all the molecules B in the database that
are similar to A . The approach we propose is described using
the most widely used Jaccard-Tanimoto similarity measure
given by

where A∩B and A∪B denote the size of the intersection and
union of Ab and Bb. In the case of integer- or real-valued
vectors, this can be generalized by

But the same ideas can be adapted to other similarity
measures.17 We will assume that one is interested in
retrieving all the molecules B with similarity to A above a
certain Jaccard-Tanimoto threshold 0 e t e 1. In large
chemoinformatics databases, the overwhelming majority of
the molecules will not be similar to the query. Thus, the basic
idea pursued here is the idea of database pruning, which seeks
to develop fingerprint representations and algorithms to prune
the search space and avoid having to search the space linearly
and compute the Jaccard-Tanimoto similarity for all the
molecules in the database. More precisely, the idea is to
derive short signatures from the long fingerprints and use
the shorter signatures to both derive efficient bounds on the
similarity measures and organize the set of fingerprints to
facilitate rapid searches. Molecules for which the bound is
unfavorable can be discarded from the search. In other words,
for a search based on a similarity threshold t, we are
interested in rapidly identifying a collection of molecules
that are guaranteed to have a similarity to A lower than t
and discard them from the search.

One general approach of deriving fingerprint signatures
is to partition the components of the fingerprints into M sets
(1 e M e N) and, for each molecule, use a simple function
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∑
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∑
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f to summarize the complement of 1-bits that are observed
in each set. While uneven partitions are possible and briefly
discussed at the end of this article, here we consider even
partitions where all the sets have the same size (N/M). Since
random permutations are often applied to fingerprint vectors,
we can assume without any loss of generality that the
partition i corresponds to taking components that are congru-
ent to i modulo M. Several methods proposed in the literature
can be viewed as special cases of this framework:

(1) When M ) 1 and f is the sum, the signature
corresponds to the total number of bits set to 1 in the
fingerprint, and one then can use the bounds derived in ref
18 to prune the database.

(2) When f is the logical OR operator capturing whether
there is at least one 1-bit in a given partition (with, for
instance, M ) 1024), one obtains the lossy OR-compressed
fingerprint used in the Daylight system,8 and the Jaccard-
Tanimoto similarity computed on these compressed fingerprints
can be used to search the database directly, although even better
results can be obtained with a systematic correction.19

(3) When f is the logical XOR operator capturing whether
the total number of 1-bits in a given partition is odd or even
(with, for instance, M ) 128), one obtains the approach
described in ref 20 and the corresponding bounds to prune
the database.
The approach that we study here can be viewed as a
generalization of the first approach where f is still the sum
operator but M > 1, or a generalization of the second and
third approaches where M > 1 but f is the sum operator.21-24

THE MODULO M HASHING REPRESENTATION AND
THE INTERSECTION INEQUALITY

In this work, we thus propose to use and exploit the
modulo M-hashing representation and the intersection bound
introduced in previous work.24 In this approach, given any
integer 1eMe N, for each fingerprint vector Ab we construct
a new integer vector signature of length M, abM ) (ai

M) )
(ai) with i ) 1, ..., M, where ai

M ) ai counts the number of
1-bits in Ab falling on components that are congruent to i
modulo M. For instance, if Ab ) (0, 1, 0, 1, 1, 0) and M ) 3,
then ab ) (1, 2, 0) (see Figure 1). The superscript M is used
only in situations where several values of M are used in
combination. Most of the time, in the following derivations,
M is fixed and clear from the context; hence we drop it from
the notations and write, for instance, ab ) (ai). Note that for
any M, we have a(M) ) a ) ∑i)1

M ai
M ) A. In the next sections,

we look at the intersection and other related bounds associ-
ated with the modulo-M-hashing representations and show
how these can be used for efficient pruning of database
searches. The level of pruning for different values of M is
estimated mathematically and confirmed empirically. We
then turn to the problem of optimizing M, combining
different values of M, and optimizing the overall strategy
for efficiently searching the database and show empirically

how the proposed approach leads to a 1 order of magnitude
speedup over a linear search, and a 3-fold speedup over the
methods described in ref 20.

To derive the intersection inequality, note that the bits that
are in common to two fingerprints Ab and Bb can be partitioned
into bits that are in common for each set of components
congruent to i modulo M, and these in turn can be bounded
by min(ai, bi). Thus, for any 1 e M e N, we have the
intersection inequality:20

This leads to the following bound on the Jaccard-Tanimoto
similarity:

Furthermore, note that for any 1 e M e N and 1 e k e
N/M

APPLICATION TO DATABASE PRUNING

If we are interested in finding molecules with a Jaccard-
Tanimoto similarity above some threshold t, then we can
remove all the molecules satisfying

which gives

The Case of M ) 1. This is exactly the case described in
previous work.18 In this case, eq 7 implies that we can discard
all the molecules Bb with B e tA or B g A/t. For example,
with fingerprints of length N ) 1024, consider a typical query
Ab with A ) 400 and a similarity threshold of t ) 0.8. Then,
using the triangle inequality, we can immediately discard
from the search all the molecules Bb with B e 320 ) 0.8 ×
400 or B g 500 ) 400/0.8 and restrict the search to
molecules satisfying 320 < B < 500.

Figure 1. An illustration of modulo hashing at M ) 1, 2, and 3.
For demonstration purposes, a small 6-bit fingerprint Ab )
(0, 1, 0, 1, 1, 0) is used.

A ∩ B e ∑
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The Case of M ) 2. The case M ) 2 subsumes the case
M ) 1 and allows one to prune additional molecules. In this
case, we have ab ) (a1, a2) and bb ) (b1, b2) where, for
instance, b1 represents the number of 1-bits in Bb falling on
odd-numbered components, and b2 the number of 1-bits in
Bb falling on even-numbered components, with b1 + b2 ) B.
In this case, the intersection bound leads to pruning all the
molecules Bb such that

Depending on the realization of each minimum in eq 8,
one obtains four exclusion subcases:

(1) a1 + a2 ) A e t(A + B)/(1 + t), which yields B g A/t
(as in the case of M ) 1).

(2) b1 + b2 ) B e t(A + B)/(1 + t), which yields B e tA
(as in the case of M ) 1).

(3) a1 + b2 e t(A + B)/(1 + t), which yields b2 e -a1 +
t(A + B)/(1 + t).

(4) b1 + a2 e t(A + B)/(1 + t), which yields b1 e -a2 +
t(A + B)/(1 + t).
Subcases 1 and 2 correspond to the pruning derived when
M ) 1, and subcases 3 and 4 correspond to additional
pruning. From subcases 1 and 2, we can focus the search
exclusively on the set of molecules satisfying At < B < A/t.
And for a fixed B in that set, using subcases 3 and 4, we can
focus exclusively on the molecules satisfying -a2 + t(A +
B)/(1 + t) < b1 < B + a1 - t(A + B)/(1 + t), since b1 ) B
- b2.

In the example above, with a query Ab with A ) 400 and
t ) 0.8, subcases 3 and 4 allow us to prune additional
molecules Bb with 320 < B < 500. For instance, assume that
ab) (250, 150). Then, even among the molecules Bb contain-
ing the same number of 1-bits as the query (i.e., A ) B )
400), we can eliminate all the ones associated with
bb ) (b1, b2) for which b1 e 205 or b2 e 105. Because b1 +
b2 ) 400, eliminating b1 e 205 and b2 e 105 is equivalent
to restricting b1 to be in the range 205 < b1 < 295.

The Case of General (Large) M. In the general case,
pruning is implemented similarly using the intersection
inequality. As M is increased, the amount of pruning can be
expected to increase too. However, M cannot be chosen to
be arbitrarily large because other important factors must be
taken into consideration to optimize a given implementation,
including the additional storage and computing resources
associated with the signature, as well as the corresponding
data structures. In any case, before one can begin addressing
these trade-offs, it is essential to be able to understand and
estimate analytically, as well as empirically, the amount of
pruning as a function of M.

ESTIMATING THE AMOUNT OF PRUNING
ANALYTICALLY

The Case of M ) 1. For a given fingerprint query
containing A 1-bits, we have seen that we can discard all
the molecules with Bb satisfying B e tA or B g A/t. Thus,
the fraction of total pruning for M ) 1 is given by

where we use a continuous notation and let g(u) be the
density approximation to the histogram of the number of
molecules per number of 1-bits contained in their fingerprints.
This is the formula derived in ref 18. In practice, it can be
easily verified empirically and shown analytically for some
simple probabilistic models of fingerprints that g is well
approximated by a Normal density. In other words, in a
typical large database containing D small molecules, the
number of molecules containing A 1-bits in their fingerprint
is approximately given by D × g(A) ) D × (2π)-1/2σ-1

exp[-(A - µD)2/2σD
2 ]. The mean and variance of the Normal

density can easily be computed from a sample of molecules
and their values depend on the details of a particular
implementation. It can be shown,18 using standard ap-
proximations, that when the threshold t is close to 1, the
fraction of total pruning is given approximately by

so the fraction of pruning scales at least like 1 - C(1 - t)
when t is close to 1 for some constant C. Note that the
formula given in this section can be integrated over the
distribution of the query sizes (g(A)) to get the average
fraction of pruning across the queries. In particular, if
the distribution of the number of 1-bits in the queries is the
same as in the database, one can integrate eq 9 with respect
to the density g to get the average fraction of pruning across
all queries, in the form

The Case of M ) 2. When M ) 2, we have seen that
there are two levels of pruning. For a given query with
signature (a1, a2) and A ) a1 + a2 1-bits, the first level of
pruning is identical to the case of M ) 1, and we need only
to focus on molecules in the database for which At < B <
A/t. For each B in this range, one can additionally prune all
the molecules with signature (b1, b2) such that b1 e -a2 +
t(A + B)/(1 + t) or b1 g B + a1 - t(A + B)/(1 + t). The
corresponding proportion of molecules can again be esti-
mated by

where gB is now the density approximation to the histogram
associated with the values of b1, within the set of molecules
with fingerprints containing B 1-bits. Again, in most practical
cases, this density is approximately Normal. [Of course, this
approximation can break down for extreme values of B (e.g.,
B close to 0 or its maximal value), but these are atypical
and can be neglected to a first degree of approximation].
Approximate Normality is also shown in the Appendix using
a theoretical model from which one can also derive the mean

min(a1, b1) + min(a2, b2) e
t

1 + t
(A + B) (8)

P1(A) ) ∫0

tA
g(u) du + ∫A/t

N
g(u) du ) 1 - [G(A/t) -

G(tA)] (9)

1 - A(1 - t2)
tσD

1

√2π
exp[-(A - µD)2/2σD

2 ] ≈ 1 -

(1 - t)
2A

√2πσ
exp[-(A - µD)2/2σD

2 ] (10)

P1 ) ∫A)1

N
g(A) P1(A) ) ∫A)1

N
g(A)[1 - (G(A/t) -

G(tA))] (11)

∫0

-a2+t(A+B)/(1+t)
gB(u) du +

∫B+a1-t(A+B)/(1+t)

B
gB(u) du )

1 - [GB(B + a1 - t(A + B)/(1 + t)) -
GB(-a2 + t(A + B)/(1 + t))]

(12)
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and standard deviation of this Normal distribution in the
form

Thus, for a query with A 1-bits, the total fraction of pruning
is given by

This fraction can again be integrated over the distribution
of the query sizes (g(A)) to get the total average fraction of
pruning across all possible queries. If the distribution of the
number of 1-bits in the queries is the same as in the database,
the average fraction of pruning can again be computed as

The Case of General (Large) M. The estimation of the
total fraction of pruning is somewhat more involved, and
the mathematical derivation is given in the Appendix.
However, the basic idea is easy to understand. From eq 9,
the basic quantity of interest is the intersection bound S )
∑i)1

M min(ai
M, bi

M). Intuitively, for large values of M, one ought
to be able to approximate the distribution of S reasonably
well by a Normal distribution by the central limit theorem.25

This is not a rigorous argument since the individual terms
min(ai, bi) are not independent and identically distributed.
Under exchangeability assumptions, these terms are identi-
cally distributed as discussed in the Appendix. In any case,
the results presented in the next sections show that the
Normal approximation works well in practice.

DATA

In the simulations, we illustrate the methods using
fingerprints that are randomly selected from more than 5
million molecules available in the ChemDB database.1 While
the approach described in this paper can be applied with any
kind of fingerprint system, in the simulations we use
fingerprints based on labeled paths of lengths up to eight.
For this scheme, each vertex is labeled by the element (C,
N, O, etc.) associated with the corresponding atom, and each
edge is labeled by the type (single, double, triple, aromatic,
and amide) of the corresponding bond. This scheme is closely
related to the scheme used in many existing chemoinfor-
matics systems, including the Daylight system.8 In the
simulations, we used both uncompressed fingerprints, cor-
responding also to lossless compressed fingerprints,12 as well
as lossy compressed fingerprints obtained using the standard
modulo-OR-compression algorithm to generate fingerprint
vectors of length N ) 1024. Typical simulations are run using
a sample of n ) 100 queries against a background of 100 000
fingerprints randomly sampled from ChemDB.

RESULTS

Pruning Results. The case M ) 1 has been studied
extensively in ref 18.

The Case of M ) 2. Figure 2 shows empirical and
theoretical results corresponding to the case of M ) 2. The
figure displays the level of pruning as a function of the
Tanimoto threshold. The empirical curve is obtained by
averaging the pruning levels of 100 query molecules with A
) 205 used to search a background sample of 100 000
molecules from ChemDB. In this case, the fingerprints are
compressed in a lossy fashion using the standard modulo-
OR-compression algorithm. The theoretical results are
computed using eq 14. g(B) is approximated using a Normal
distribution with parameters obtained empirically (µD )
205, σD ) 97.9). As Figure 2 shows, the theoretical curve
follows very closely the empirical level of pruning as a
function of the Tanimoto threshold.

The Case of General (Large) M. Here, we consider
fingerprints with an associated signature of length M. As
discussed in the Appendix, the analytical derivation to predict
the levels of pruning starts by studying the distribution of
the number ai

M of 1-bits in a particular class modulo M.
Figure 3 shows the empirical distributions of ai

M at M ) 16,
32, 64, and 128, with their Normal approximations in solid
black lines. The empirical results are derived from a sample
of 100 000 molecules from ChemDB. The means and
variances of the Normal distributions are obtained using the
hypergeometric model described in the Appendix (eqs 33
and 34). As expected, as M increases relative to A, or as the
ratio A/M decreases, the distribution of ai

M transitions from
a Normal distribution to a Poisson distribution with mean λ
) A/M, corresponding to more rare bit events. This is visible
in the two bottom subfigures of Figure 3 where the Poisson
approximations, shown in dashed black lines, provide a better
fit for the empirical data.

Next, we study the distribution of S ) ∑i)1
M min(ai

M, bi
M),

corresponding to the intersection bound and the left-hand
side of eq 7. The top left subfigure of Figure 4 shows the
empirical means and standard deviations (µ, σ) of S in black.
The empirical results are obtained again by using 100 query

µB ) B
2

and σB
2 ) B(N - B)

4(N - 1)
(13)

P2(A) ) 1 - [G(A/t) - G(tA)] +

∑
At

A/t

g(B) g(B) (1 - [GB(B + a1 - t(A + B)/

(1 + t)) - GB(-a2 + t(A + B)/(1 + t))])
(14)

P2 ) ∫A)1

N
g(A) P2(A) (15)

Figure 2. Theoretical curve following the empirical level of pruning
as a function of the Tanimoto threshold. The solid curve represents
the empirical fraction of pruning measured over different Tanimoto
thresholds with the M ) 2 hashing approach. A sample of 100
query fingerprints with A ) 205 is selected from ChemDB and
run against a random sample of 100 000 fingerprints from ChemDB.
The dotted curve shows the analytically predicted fraction of
pruning (eq 14) given A ) 205, the mean (205) and standard
deviation (97.9) of the number B of 1-bits for the fingerprints in
the background sample, and the threshold t.

HASHING ALGORITHMS AND DATA STRUCTURES J. Chem. Inf. Model., Vol. 50, No. 8, 2010 1361



molecules with A ) 205 against a sample of 100 000
molecules from ChemDB. The fingerprints use the standard
modulo-OR lossy compression algorithm. Theoretical results,
shown by the red curve and error bars for M < 64, are
obtained by approximating the underlying distribution of ai

M

by a Normal distribution, as described in the Appendix. The
green curve and error bars at M g 64 show the theoretical
results when the Poisson approximation is used for ai

M. As
expected, S decreases as M increases, resulting in higher
levels of pruning according to eq 7. As shown in the

Figure 3. The distribution of the number ai
M of 1-bits in a generic bin i for M ) 16, 32, 64, and 128, for ChemDB fingerprints with A )

205. The black curve shows the Normal approximation with parameters estimated using the hypergeometric model (eqs 33 and 34). For
larger values of M in the two lower figures, the dashed black line shows how the Poisson distribution provides a better approximation of
the empirical data.

Figure 4. Top left: the empirical means (black dots) and standard deviations (black error bars) of the intersection bound S ) ∑i)1
M min(ai

M, bi
M)

as a function of M. The results correspond to 100 query molecules with A ) 205 against a sample of 100 000 molecules from ChemDB.
The red and green curves show the analytical predictions using the Normal and the Poisson approximations for ai

M, respectively. Top right:
analytical (dotted lines) and empirical amount of pruning for M ) 256 and M ) 512. Bottom left: empirical distribution of S for M ) 256
(magenta) with its Normal approximation. Bottom right: empirical distribution of S for M ) 512 (blue) with its Normal approximation.
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Appendix, integrating the distribution of S over regions
determined by A, B, and t yields an estimate for the amount
of pruning. The analytical approach in the Appendix provides
a good approximation for the mean µ and standard deviation
σ of S. For demonstration purposes, the bottom row subfig-
ures of Figure 4 show the full distributions at M ) 256 and
512, encapsulated by the magenta and blue rectangles in the
top left subfigure of Figure 4. For these values of A and M,
the Normal approximation shown by the black solid line
provides a good approximation of the empirical distribution.
However, the distribution of S does not always follow closely
a Normal distribution for a variety of reasons. Exceptions
are found when M is small, or in regimes where the
correlations between the terms in the sum are too large.

In the top right subfigure of Figure 4, the amount of
pruning at M ) 256 and M ) 512 is shown in magenta and
blue respectively. The dotted lines show the theoretical levels
of pruning computed using eqs 28-32. As expected, the level
of pruning increases at higher values of M. The distribu-
tion of S, whether obtained empirically or approximated using
a Normal distribution (bottom row of Figure 4), leads to a
good approximation for the level of pruning.

Figure 5 shows empirical pruning results obtained by
averaging runs of 100 random query molecules against a
sample of 100 000 molecules from ChemDB. In this experi-
ment, uncompressed fingerprints are used. Cases correspond-
ing to M ) 1, 2, 4, 8, 16, 32, 64, 128, 256, and 512 are
shown in black, red, cyan, magenta, yellow, green, red, cyan,
magenta, and blue, respectively. In the left subfigure, each
curve corresponds to the fraction of database pruning as a
function of the Tanimoto threshold on the horizontal axis.
Predicted curves obtained using eq 28 are also shown for M
) 256 and M ) 512 and closely agree with the empirical
values. Predictions for smaller values of M are less accurate.
The right subfigure displays the additional pruning fraction
relative to M ) 1, for various values of M. As expected, the
pruning levels increase as M increases. Empirical results
show that the case of M ) 2 only slightly outperforms the
case of M ) 1, primarily for Tanimoto thresholds greater
than 0.85. Furthermore, larger values of M show substantial
levels of additional pruning, compared to the case where M
) 1 essentially at all threshold values.

Implementation Optimization and Data Structures:
The Choice of M. While using larger values of M induces
greater pruning, one must carefully consider implementation
issues, in particular the data structure used. Without any data
structure considerations, for a given query, one must compute
the intersection bound for all the molecules in the database
in order to decide which molecules to discard and which
molecules to keep for computing the Jaccard-Tanimoto
similarity. Thus, while there is pruning at the level of the
Jaccard-Tanimoto computation, there is no pruning at the
level of the intersection bound computationsall the signa-
tures in the database must be considered sequentially. As
we shall see, however, this does not have to be so with the
choice of proper data structures. Thus, the final search
speedup is dependent on the data structure used, as the use
of different data structures results in different levels of
pruning and overhead.

For the case M ) 1, it is possible to use a data structure
that induces very little overhead while still pruning a
significant portion of the database.18 In the preprocessing
step of this approach, the fingerprints Bb in the database are
binned according to their size B, and the bins are organized
in increasing (or decreasing) order. The intersection bound
with M ) 1 leads immediately to discarding bins with values
of B that are either too small or too large relative to the
number A of 1-bits in the query. Thus, even in the simple
case of M ) 1, organizing the data into bins with increasing
B provides additional savings since the intersection bound
does not need to be computed for all the fingerprints found
in bins that are excluded. The overhead machinery (tables/
pointers) required to navigate the bins is minimal. This
efficient organization can be extended for hashing with M
) 2, simply by organizing all the fingerprints within a bin
associated with B 1-bits by increasing (or decreasing) values
of b1. Thus, for instance, within the bin associated with B )
400, the (b1, b2) signatures are ordered as (0, 400) < (1, 399)
< (2, 398) etc. [If several fingerprints have the same (b1, b2)
signature, their ordering does not matter for the M ) 2
hashing approach]. During a search, the M ) 1 intersection
bound is used to remove the bins with unfavorable B values.
For the remaining bins, the process is repeated using again
the intersection inequality to search over b1. Thus, for M )

Figure 5. Left: curves showing the average fraction of pruning for different thresholds t and different values of M. The results are obtained
by averaging runs of 100 random query molecules against a background of 100 000 molecules from ChemDB. Color legend from right to
left: black corresponds to M ) 1, red corresponds to M ) 2, dashed curve to recursive hashing (see text), cyan to M ) 4, magenta to M
) 8, yellow to M ) 16, green to M ) 32, red to M ) 64, cyan to M ) 128, magenta to M ) 256, blue to M ) 512. Predicted curves
obtained using eq 28 are shown with dots of the corresponding color for M ) 256 and M ) 512. Right: similar results and colors, but
displaying the fraction of molecules eliminated for different values of M, relative to M ) 1.
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2, a signature of the form (B, b1) may be equivalent in
content, but more efficient, than a signature of the form
(b1, b2).

For values of M > 2, there are different possible strategies.
For simplicity, here we consider the case where we first
implement the M ) 2 pruning, since the corresponding
overhead is small, followed by pruning at a fixed level M >
2. In this framework, what is the optimal value of M > 2
that one ought to choose? To answer this question, an
estimate of the search time can be given by

where D is the database size, PM is the average fraction of
pruning at a given M averaged over all Tanimoto thresholds,
TM represents the average time required for a single
computation of S ) ∑ i)1

M min(ai
M, bi

M), and TTanimoto represents
the average time required to compute the Jaccard-Tanimoto
similarity between two uncompressed fingerprints. φ denotes
constant overhead calculations independent of M. Thus, the
first term in eq 16 represents the time spent on computing
the intersection inequality on the signatures that have passed
the M ) 2 bound, and the second term represents the time
spent on computing the Jaccard-Tanimoto similarity mea-
sure on the fingerprints that have passed the M ) 2 and M
> 2 intersection bounds. Here, we use a uniform distribution
over all possible thresholds, but other distributions can easily
be used instead. The average fraction of pruning for various
values of M is shown in Figure 6. While the figure shows
empirical results of pruning, this work also provides a
framework to predict these values analytically. TM and
TTanimoto are given in Table 1.

To select the value of M > 2 that minimizes the search
time, we assume that the overhead is roughly constant or
negligible. Thus, the goal is to find M > 2 to minimize the
quantity

The left subfigure of Figure 7 plots Q as a function of M.
Here, the quantities P2, PM (Figure 6), TM, and TTanimoto (Table

1) are estimated from Monte Carlo runs. The approximation
is consistent with the empirical results shown in the right
subfigure of Figure 7. The red curve corresponds to empirical
timing results obtained by searching 100 random molecules
against a 100 000 database sample of fingerprints with
lossless compression, while the blue curve shows the
approximation given by eq 16 with the overhead fitted to
empirical data (φ ) 0.32). The plots shows that for this
particular implementation, using M ) 2 hashing followed
by M ) 256 hashing minimizes the search time over all
Tanimoto thresholds. And this is the strategy that we use to
run the timing tests.

Timing Results. Search time is measured by the time it
takes to search a query molecule against a database of
molecules. Time that is not directly related to searching, such
as preprocessing, is thus not considered. In a search, the most
computationally expensive operation is the computation of
the Jaccard-Tanimoto similarity between two fingerprint
vectors. Database pruning speeds up the search by limiting
the number of pairwise similarity computations to only a
fraction of the database. The speedup is dependent on the
data structure as different data structures bring different levels
of pruning and overhead. In the hashing approach described
here, the main overhead that contributes to the overall
running time is the computation of the intersection bound
S ) ∑i)0

M min(ai
M, bi

M).

The timing experiments are run using a dual-core AMD
Opteron 280 processor, with a 2.4 GHz CPU, 1 megabyte
of cache, and 4 gigabytes of RAM. In these experiments,
we average the timing results obtained using 100 random
queries extracted from ChemDB against a random back-
ground of 100 000 molecules. For this experiment, we use
uncompressed fingerprints. Figure 8 compares the best speed
results, obtained by using hashing at M ) 2 followed by
hashing at M ) 256, with our previous best method obtained
by combining hashing at M ) 128 with an XOR-folding
signature approach.20 The red curve, corresponding to M )
2 hashing followed by M ) 256 hashing, shows a remarkable
speedup over the previous approach represented by the blue
curve. For instance, at t ) 0.6 the red curve is about 10
times faster than the linear search and about 5 times faster
than the blue curve; at t ) 0.8, the red curve is about 20
times faster than the linear search and about 3 times faster
than the blue curve. Thus, the hashing framework allows
one to gain speedups of at least 1 order of magnitude over
a linear search and at least 3-fold over a previous state-of-
the-art approach.

Figure 6. Average amount of pruning across all possible thresholds
(t) obtained empirically from 100 random query molecules used to
search a random sample of 100 000 ChemDB molecules using
fingerprints with lossless compression.

search time ≈ [D × (1 - P2) × TM] +
[D × (1 - PM) × Ttanimoto] + φ (16)

Q ) [(1 - P2) × TM + (1 - PM) × Ttanimoto] (17)

Table 1. Averages of 106 Computations at Various Values of M
and the Average of 106 Tanimoto Computations on Full Fingerprints
with Lossless Compression

computation time (µs)

TM)4 6.51 ( 1.09
TM)8 6.35 ( 0.61
TM)16 6.47 ( 0.57
TM)32 6.48 ( 0.78
TM)64 6.59 ( 0.79
TM)128 6.73 ( 0.70
TM)256 7.03 ( 0.52
TM)512 7.97 ( 0.91
TM)1024 9.68 ( 1.43
TTanimoto 48.8 ( 20.4
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DISCUSSION OF POSSIBLE EXTENSIONS

We describe some possible extensions of this work.
Adaptive Hashing. The selection of M that minimizes the

search time can be derived per Tanimoto threshold, t, and/
or per query size, A. Thus, in principle, different values of
M could be used for different queries. The quantities P2 and
PM in eq 16 can be derived using analytical formulas (or
tabled from empirical results) as a function of t and A (see
Figures 2 and 5). During a search, t and A are used to derive
P2 and PM in order to select the value of M that minimizes
the search time in eq 17. At the expense of memory storage,
this technique requires multiple M-hashed signatures for each
database fingerprint to be computed offline. For instance,
after having preprocessed all signatures bbM for each database
fingerprint, Bb, consider a query fingerprint Ab with A ) 205.
At Tanimoto threshold t ) 0.5, M ) 128 minimizes eq 16.
This leads to obtaining ab128 from Ab and computing
∑i)0

128 min(ai
128, bi

128) to prune the database. At t ) 0.8, M )

16 minimizes eq 16, and the database is thus pruned with
the computation of ∑i)0

16 min(ai
16, bi

16).
Recursive Hashing. Another approach is to use recursive

hashing of fingerprints to build a tree data structure. At the
top level, the fingerprints are binned as in the case of M )
1. Within each bin, the fingerprints are binned, as in the case
of M ) 2, according to the number of bits in half of the
fingerprint components (example: odd-numbered compo-
nents). This is repeated at the next level by binning according
to the number of bits in half of the bits of the previous level.
Figure 9 demonstrates this approach on a small 16-bit
fingerprint. During a search, the query fingerprint is hashed,
and the tree is traversed accordingly. At each level, the bins
satisfying eq 7 and their subtrees are pruned. While this
approach has the advantage of little overhead, the level of
pruning achieved does not compare to approaches described
above for M > 4. The level of pruning achieved by this
approach is demonstrated by the dashed blue curve in Figure
5.

Alternative Partitions. Another approach is to partition
the fingerprint components in a different way, allowing also
for uneven partitions. Partitioning the components evenly
by using their position modulo M is an approach that is
consistent with the exchangeability assumption. However,
the components of real fingerprints are not exchangeable.
First, the bit probabilities of each component are far from
identical and tend to follow a power-law distribution.26

Second, there are both positive and negative correlations
between the components. Thus, it may be possible to exploit
these features to come up with even faster algorithms, for
instance by using different ways of partitioning the compo-
nents. Note that even with a different partition system, the
intersection inequality can still be applied.

Figure 7. Left: quantity Q ) (1 - P2) × TM + (1 - PM) × TTanimoto plotted as a function of M to examine at which M the minimum occurs.
Right: the plot compares empirical search times (red) to the approximation formula of eq 16 with φ ) 0.32 (blue). The empirical results
are obtained by averaging search times across all thresholds t for 100 random query molecules searched against a random sample of
100 000 ChemDB fingerprints encoded with lossless compression.

Figure 8. Curves showing the improvement in time over a linear
search of the database. The timing results correspond to the average
of 100 random ChemDB molecules queried against a random
background of 100 000 molecules using a combination of M ) 1
hashing with the XOR approach20 (blue) and the hashing approach
with M ) 2 followed by M ) 256 (red). Note that for very small
thresholds (t e 0.2) of little general interest, the search time is
worse than linear (which corresponds to the dotted line). This is
because the amount of pruning is negligible, and therefore the extra
computational cost associated with the signatures becomes significant.

Figure 9. Left: an example of recursive hashing of a small 16-bit
fingerprint. Right: the location in the tree data structure where the
fingerprint is stored.
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Alternative Signatures. In this paper, we have associated
a signature of length M with each fingerprint by counting
the number of 1-bits in each partition modulo M. An
alternative approach is to organize the data into clusters
offline with a representative center for each cluster and use
signatures such that if the signature of the query and the
signature of the center of a cluster lead to an unfavorable
bound, the entire cluster can be eliminated from the search.
This approach may also be useful to speed up existing
techniques for queries consisting of a cluster of related
molecules27 by associating the set of query fingerprints with
one center.

Extension to Other Similarity Measures. We used the
Jaccard-Tanimoto similarity measure because it has been
shown to be a good measure for molecular fingerprints and
is the most widely used similarity measure in chemoinfor-
matics systems. However, the methods described here can
be extended to other similarity measures, as most similarity
measures can also be expressed in terms of A∩B and A∪B,
as well as obvious terms such as A, B, and N.

CONCLUSION

In summary, a new approach has been developed for
fingerprint-based chemical searches, which relies on comput-
ing for each fingerprint small signature vectors containing
primarily the sums of hashed subsets of bits. The intersection
inequality applied to these signatures provides efficient
bounds on the intersection of two fingerprints, hence also
on their Jaccard-Tanimoto similarity. During a database
search, whenever the bound is unfavorable, the corresponding
fingerprint can be pruned from the search. We have
implemented and tested this approach using large sets of
molecules and shown that there is good agreement between
the theory and its predictions and the empirical data. With
the proper data structure organization, this approach leads
to speedups of 1 order of magnitude over a linear search.
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APPENDIX

In this appendix, we derive the analytical formula for certain
relevant distributions and for the amount of pruning under
certain assumptions. In particular, certain calculations become
more tractable under the assumption that the fingerprint
components are exchangeable. Exchangeable is a weaker
concept than independentsit basically means that the validity
of any formula should remain unchanged under any permutation
of the fingerprint components. It is clear that in most cases real
fingerprint components are not exchangeable. In fact the
different components do not even have similar distributionsssome
features may be very common, others very rare. However, in
spite of the deviations from exchangeability, previous work28

has shown that the exchangeability assumption leads to good

global estimates of bulk properties, such as the distribution of
the number B of 1-bits across all the molecules in a large
database.

Estimating Distributions and Normal Approxi-
mations when M ) 2. Here, we consider the case M ) 2,
with a query molecule A with signature (a1, a2) and A ) a1

+ a2. We have seen that for a given threshold t, the M ) 1
filtering stage allows one to limit the search only to molecules
of size B, with At < B < A/t. Under the exchangeability
assumption, given a molecule with B 1-bits, the probability
of having b1 of these 1-bits associated with odd components
is

To simplify notations, from now on we assume that N is
even (as in most chemoinformatics systems), N ) 2P, so
that

This is a hypergeometric distribution with mean µB ) PB/N
) B/2, mode (B + 1)(P + 1)/(N + 2), and variance σB

2 )
[B(P/N)(1 - P/N)(N - B)]/(N - 1) ) [B(N - B)]/[4(N -
1)]. Furthermore, it is well-known that if B is large, and N
is large compared to B, then this hypergeometric distribution
can be well approximated by a corresponding Normal
distribution with mean µB and variance σB

2. If there are D
fingerprints in the database, then we have seen that the
number of fingerprints of size B is typically given by Dg(B),
where g is Normal. The expected number of fingerprints of
type b1, b2 with B ) b1 + b2 is then given by

By the intersection inequality, we have seen that for a given
B such that At < B < A/t, we need only to retain molecules
with signature (b1, b2), satisfying

Thus for all molecules B with B 1-bits that pass the first test
(i.e., tA < B < A/t), we can discard a fraction of them that is
approximately given by

where Φ is the distribution function of the normalized
Normal distribution with mean 0 and variance 1:

P(b1|N, B) )
(N

2 
b1

)( N
2 

B - b1
)

(N
B )

(18)

P(b1|N, B) )
(P
b1

)( P
B - b1

)
(N
B )

)
(P
b1

)(P
b2

)
(N
B )

(19)

Dg(B)
(P
b1

)( P
B - b1

)
(N
B )

) Dg(B)
(P
b1

)(P
b2

)
(N
B )

(20)

a1 - A - tB
1 + t

< b1 < a1 + B - tA
1 + t

(21)

1 - (Φ(X2) - Φ(X1)) (22)
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and

Of course, this is just another way of writing eq 12. As xf
∞, the distribution of the normalized Normal can be
approximated by

Thus, in the regime where X1 is small enough and X2 is large
enough, the fraction of discarded molecules can be ap-
proximated by

Equations 22-26 show the derivation of the fraction of
molecules to be pruned for a given B satisfying At < B <
A/t. One can compute the expression above for all values of
B and then weigh the results by the proportion of molecules
with B 1-bits in the database. As already mentioned, this
proportion is well approximated by a Normal distribution g
with mean µD and variance σD

2 . Thus, combining the two
filtering stages, the total fraction of pruning can be ap-
proximated by

Of course this equation is similar to eq 14.
Estimating the Amount of Pruning in the General

Case: Estimation Using Independence. In this section, we
assume that the components of the signatures are generated
independently of each other. In other words, for each class
modulo M, we sample independently from the same fixed
distribution, typically a Normal or Poisson distribution, to
determine the number of 1-bits in ai

M or bi
M for the query or

the molecules in the database. The 1-bits are then assigned
randomly and uniformly to the fingerprint positions associ-
ated with that class. The parameters of the distribution used
to generate the number of 1-bits in a given class can be tuned
in order to model all the fingerprints in the database, or only
the fingerprints with a particular size (total number of 1-bits).
Given a typical query Ab with A 1-bits, one would like to
understand what fraction of the database can be pruned from
the Tanimoto similarity search at a given similarity threshold
t. As an approximation, assume that the signature of Ab is
generated by the process above using a Normal with mean
A/M and variance σA/M

2 . For cases of A/M e 3, a Poisson
distribution with λ ) A/M gives a better approximation to
the data. Note that the resulting vector does not necessarily
have exactly A 1-bits but in general will be close enough to
cause only minor fluctuations in the formula. Consider now

another molecule Bb. Assume that it was generated by a
similar process using a Normal with mean B/M and variance
σB/M

2 . At a given threshold t, we know that B can be pruned
off the search if S ) ∑i min(ai, bi) e t(A + B)/(1 + t). Thus,
to estimate how many molecules with approximately B 1-bits
are eliminated, we need to estimate the corresponding
probability. In the current framework, the sum S ) ∑i

min(ai, bi) can be viewed as the sum of M i.i.d. random
variables, and therefore, by the central limit theorem, it
approaches a Normal distribution when M is large. In what
follows, we use g to denote (Normal) density functions and
G to denote the corresponding distributions. In particular,
we have

where the mean µ and the variance σ2 depend on A, B, M,
σA/M

2 , and σB/M
2 .

Because S g 0, the lower bound of the integral can be set
to 0. This should not affect the results significantly, especially
for large values of M. Equation 28 can then be integrated
over B to get the fraction of pruning pA associated with A.
Then, pA can be integrated over A to get the average fraction
of pruning across queries.

If the sizes of the query molecules have the same
distribution as the sizes of the molecules in the database,
then we can take A/M ) B/M ) µD/M, where µ is the average
size in the entire database, and σA/M

2 ) σD
2 /M, where σD

2 is
the variance of the size in the entire database, and use eq 28
to estimate the probability of pruning for a random query
versus a random molecule, which ought to give also an
estimate of the average total amount of pruning.

Finally, to estimate the values of µ and σ2 in eq 28, we
use the fact that the random variables mini(ai, bi) are i.i.d.
to obtain

Given that in this approximation ai and bi are Normal
random variables, it is easy to derive expressions for the
density and cumulative function of the minimum and
compute its mean and variance. Let ga and Ga here denote
the Normal (or Poisson) density and cumulative function for
ai, and similarly for bi. Again, the means and standard
deviations of these Normal densities depend on whether one
wants to fix A and let B vary, or vice versa, or integrate
over all queries and all molecules. But in all cases they can
be estimated, and in each case, the density of the minimum
is given by

From which one can get analytic expressions for
E[min(ai, bi)] ) ∫-∞

+∞xfmin(x) dx and Var[min(ai, bi)] )
∫-∞
+∞(x - E[min(ai, bi)])2fmin(x) dx.

X1 ) ([a1 - A - tB
1 + t ] - B

2 )/√B(N - B)/4(N - 1) ≈

([a1 - A - tB
1 + t ] - B

2 )/√B/4 (23)

X2 ) ([a1 + B - tA
1 + t ] - B

2 )/√B(N - B)/4(N - 1) ≈

([a1 + B - tA
1 + t ] - B

2 )/√B/4 (24)

1 - Φ(x) ≈ 1
x
φ(x) ) 1

√2π

1
x

e-x2/2 (25)

1

√2π[ 1
X1

e-X1
2/2 + 1

X2
e-X2

2/2] (26)

∫At

A/t
g(u) du + ∫AT

A/t
g(u)

1

√2π[ 1
X1

e-X1
2/2 + 1

X2
e-X2

2/2]
(27)

P( ∑
i

min(ai, bi) e
t(A + B)

1 + t ) ≈ ∫-∞

t(A+B)/1+t
gµσ2(u) du

(28)

µ ) ME[min(ai, bi)] and σ2 ) MVar[min(ai, bi)]
(29)

fmin(x) ) ga(x)(1 - Gb(x)) + gb(x)(1 - Ga(x))
(30)

Fmin(x) ) P(min(ai, bi) e x) ) ∫-∞

x
fmin(u) du

) 1 - (1 - Ga(u))(1 - Gb(u)) (31)

) Ga(u) + Gb(u) - Ga(u)Gb(u) (32)
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Estimation Using Exchangeability. Modeling fingerprint
signatures associated with fingerprints containing A 1-bits
with M independent Normal distributions, each with mean
A/M, is not quite accurate since (1) it ignores dependencies
between the signature components (or classes modulo M)
and (2) in general it produces fingerprints that do not have
exactly A 1-bits, when used in generative mode. Thus, a more
precise approach is to use a multivariate hypergeometric
distribution where A bits (or balls) are put into M classes
(or boxes). The mean, variance, and covariance of each
resulting variable ai are known and given by

Thus, to get a better estimate of the variance σ2 in eq 29 in
the fixed-A case, we incorporate the covariance between the
pairwise (min(ai, bi), min(aj, bj)):

Using the exchangeability gives

The covariance term in eq 37 can be estimated empirically,
and possibly analytically under a Normal approximation,
where ai and aj are assumed to have identical, but correlated,
Normal distributions, and similarly for bi and bj.
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