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Abstract. We study practically efficient methods for performing combinatorial group testing.
We present efficient nonadaptive and two-stage combinatorial group testing algorithms, which iden-
tify the at most d items out of a given set of n items that are defective, using fewer tests for all
practical set sizes. For example, our two-stage algorithm matches the information-theoretic lower
bound for the number of tests in a combinatorial group testing regimen.
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1. Introduction. The problem of combinatorial group testing dates back to
World War II, for the problem of determining which in a group of n blood samples
contain the syphilis antigen (hence, are contaminated). Formally, in combinatorial
group testing, we are given a set of n items, at most d of which are defective (or
contaminated), and we are interested in identifying exactly which of the n items are
defective. In addition, items can be “sampled” and these samples can be “mixed”
together, and so tests for contamination can be applied to arbitrary subsets of these
items. The result of a test may be positive, indicating that at least one of the items
of that subset is defective, or negative, indicating that all items in that subset are
good. Example applications that fit this framework include the following:

• Screening blood samples for diseases. In this application, items are blood
samples and tests are disease detections done on mixtures taken from selected
samples.

• Screening vaccines for contamination. In this case, items are vaccines and
tests are cultures done on mixtures of samples taken from selected vaccines.

• Clone libraries for a DNA sequence. Here, the items are DNA subsequences
(called clones) and tests are done on pools of clones to determine which clones
contain a particular DNA sequence (called a probe) [10].

• Data forensics. In this case, items are documents and the tests are appli-
cations of one-way hash functions with known expected values applied to
selected collections of documents. The differences from the expected values
are then used to identify which, if any, of the documents have been altered.

The primary goal of a testing algorithm is to identify all defective items using as
few tests as possible. That is, we wish to minimize the following function:

• t(n, d): the number of tests needed to identify up to d defectives among n
items.

This minimization may be subject to possibly additional constraints, as well. For
example, we may wish to identify all the defective items in a single (nonadaptive)
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round of testing, we may wish to do this in two (partially-adaptive) rounds, or we may
wish to perform the tests sequentially one after the other in a fully adaptive fashion.

In this paper we are interested in efficient solutions to combinatorial group testing
problems for realistic problem sizes, which could be applied to solve the motivating
examples given above. That is, we wish for solutions that minimize t(n, d) for practical
values of n and d as well as asymptotically. Because of the inherent delays that are
built into fully adaptive, sequential solutions, we are interested only in solutions that
can be completed in one or two rounds. Moreover, we desire solutions that are efficient
not only in terms of the total number of tests performed but also for the following
measures:

• A(n, t): the analysis time needed to determine which items are defective.
• S(n, d): the sampling rate—the maximum number of tests any item may be

included in.
An analysis algorithm is said to be efficient if A(n, t) is O(tn), where n is the number
of items and t is the number of tests conducted. It is time-optimal if A(n, t) is O(t).
Likewise, we desire efficient sampling rates for our algorithms; that is, we desire that
S(n, d) be O(t(n, d)/d). Moreover, we are interested in this paper in solutions that
improve previous results, either asymptotically or by constant factors, for realistic
problem sizes. We do not define such “realistic” problem sizes formally, but we may
wish to consider as unrealistic a problem that is larger than the total memory capacity
(in bytes) of all CDs and DVDs in the world (< 1025), the number of atomic particles
in the earth (< 1050), or the number of atomic particles in the universe (< 1080).

Viewing testing regimens as matrices. A single round in a combinatorial group
testing algorithm consists of a test regimen and an analysis algorithm (which, in a
nonadaptive (one-stage) algorithm, must identify all the defectives). The test regimen
can be modeled by a t×n Boolean matrix, M . Each of the n columns of M corresponds
to one of the n items. Each of the t rows of M represents a test of items whose
corresponding column has a 1-entry in that row. All tests are conducted before the
results of any test are made available. The analysis algorithm uses the results of the
t tests to determine which of the n items are defective.

As described by Du and Hwang [6, p. 133], the matrix M is d-disjunct if the
Boolean sum of any d columns does not contain any other column. In the analysis
of a d-disjunct testing algorithm, items included in a test with negative outcome can
be identified as pure. Using a d-disjunct matrix enables the conclusion that if there
are d or fewer items that cannot be identified as pure in this manner, then all those
items must be defective and there are no other defective items. If more than d items
remain, then at least d + 1 of them are defective. Thus, using a d-disjunct matrix
enables an efficient analysis algorithm, with A(n, t) being O(tn).

M is d-separable (d-separable) if the Boolean sums of d (up to d) columns are all
distinct. The d-separable property implies that each selection of up to d defective
items induces a different set of tests with positive outcomes. Thus, it is possible to
identify which are the up to d defective items by checking, for each possible selection,
whether its induced positive test set is exactly the obtained positive outcomes. How-
ever, it might not be possible to detect that there are more than d defective items.
This analysis algorithm takes time Θ(nd) or requires a large table mapping t-subsets
to d-subsets.

Generally, d-separable matrices can be constructed with fewer rows than can
d-disjunct matrices having the same number of columns. Although the analysis al-
gorithm described above for d-separable matrices is not efficient, some d-separable
matrices that are not d-disjunct have an efficient analysis algorithm.
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Previous related work. Combinatorial group testing is a rich research area with
many applications to many other areas, including communications, cryptography, and
networking [3]. For an excellent discussion of this topic, the reader is referred to the
book by Du and Hwang [6]. For general d, Du and Hwang [6, p. 149] describe a
slight modification of the analysis of a construction due to Hwang and Sós [11] that

results in a t × n d-disjunct matrix, with n ≥ (2/3)3t/16d
2

, and so t ≤ 16d2(1 +
log3 2 + (log3 2) lg n). For two-stage testing, De Bonis, Gasieniec, and Vaccaro [5]
provide a scheme that achieves a number of tests within a factor of 7.54(1 + o(1)) of
the information-theoretic lower bound of d log(n/d). For d = 2, Kautz and Singleton
[12] construct a 2-disjunct matrix with t = 3q+1 and n = 32q

, for any positive integer
q. Macula and Reuter [13] describe a 2-separable matrix and a time-optimal analysis
algorithm with t = (q2 + 3q)/2 and n = 2q − 1, for any positive integer q. For d = 3,
Du and Hwang [6, p. 159] describe the construction of a 3-separable matrix (but do
not describe the analysis algorithm) with t = 4

(
3q
2

)
= 18q2 − 6q and n = 2q − 1, for

any positive integer q.
Our results. In this paper, we consider problems of identifying defectives using

nonadaptive or two-stage protocols with efficient analysis algorithms. We present sev-
eral such algorithms that require fewer tests than do previous algorithms for practical-
sized sets, although we omit the proofs of some supporting lemmas in this paper, due
to space constraints. Our general case algorithm, which is based on a method we call
the Chinese remainder sieve, improves the construction of Hwang and Sós [11] for all
values of d for real-world problem instances as well as for d ≥ n1/5 and n ≥ e10. Our
two-stage algorithm achieves a bound for t(n, d) that is within a factor of 4(1+o(1)) of
the information-theoretic lower bound. This bound improves the bound achieved by
De Bonis, Gasieniec, and Vaccaro [5] by almost a factor of 2. Likewise, our algorithm
for d = 2 improves on the number of tests required for all real-world problem sizes
and is time-optimal (that is, with A(n, t) ∈ O(t)). Our algorithm for d = 3 is the first
known time-optimal testing algorithm for that d-value. Moreover, our algorithms all
have efficient sampling rates.

2. The Chinese remainder sieve. In this section, we present a solution to the
problem for determining which items are defective when we know that there are at
most d < n defectives. Using a simple number-theoretic method, which we call the
Chinese remainder sieve method, we describe the construction of a d-disjunct matrix
with t = O(d2 log2 n/(log d+log logn)). As we will show, our bound is superior to that
of the method of Hwang and Sós [11] for all realistic instances of the combinatorial
group testing problem.

Suppose we are given n items, numbered 0, 1, . . . , n − 1, such that at most d <
n are defective. Let {pe11 , pe22 , . . . , pekk } be a sequence of powers of distinct primes,
multiplying to at least nd. That is,

∏
j p

ej
j ≥ nd. We construct a t× n matrix M as

the vertical concatenation of k submatrices, M1,M2, . . . ,Mk. Each submatrix Mj is

a tj × n testing matrix, where tj = p
ej
j ; hence, t =

∑k
j=1 p

ej
j . We form each row of

Mj by associating it with a nonnegative value x less than p
ej
j . Specifically, for each

x, 0 ≤ x < p
ej
j , we form a test in Mj consisting of the item indices (in the range

0, 1, . . . , n− 1) that equal x (mod p
ej
j ). For example, if x = 2 and p

ej
j = 32, then the

row for x in Mj has a 1 only in columns 2, 11, 20, and so on.
The following lemma shows that the test matrix M is d-disjunct.
Lemma 1. If there are at most d defective items, and all tests in M are positive

for i, then i is defective.
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Proof. If all k tests for i (one for each prime power p
ej
j ) are positive, then there

exists at least one defective item. With each positive test that includes i (that is, it
has a 1 in column i), let p

ej
j be the modulus used for this test, and associate with j a

defective index ij that was included in that test (choosing ij arbitrarily in case test j
includes multiple defective indices). For any defective index i′, let

Pi′ =
∏

j s.t. ij=i′

p
ej
j .

That is, Pi′ is the product of all the prime powers such that i′ caused a positive test
that included i for that prime power. Since there are k tests that are positive for i, each
p
ej
j appears in exactly one of these products, Pi′ . So

∏
Pi′ =

∏
p
ej
j ≥ nd. Moreover,

there are at most d products, Pi′ . Therefore, maxi′ Pi′ ≥ (nd)1/d = n; hence, there
exists at least one defective index i′ for which Pi′ ≥ n. By construction, i′ is congruent
to the same values to which i is congruent, modulo each of the prime powers in Pi′ .
By the Chinese remainder theorem, the solution to these common congruences is
unique modulo the least common multiple of these prime powers, which is Pi′ itself.
Therefore, i is equal to i′ modulo a number that is at least n, and so i = i′; hence, i
is defective.

The important role of the Chinese remainder theorem in the proof of the above
lemma gives rise to our name for this construction—the Chinese remainder sieve.

Analysis. As mentioned above, the total number of tests, t(n, d), constructed in

the Chinese remainder sieve is
∑k

j=1 p
ej
j , where

∏
p
ej
j ≥ nd. If we let each ej = 1,

we can simplify our analysis to note that t(n, d) =
∑k

j=1 pj , where pj denotes the

jth prime number and k is chosen so that
∏k

j=1 pj ≥ nd. To produce a closed-form
upper bound for t(n, d), we make use of the prime counting function, π(x), which is
the number of primes less than or equal to x. We also use the well-known Chebyshev

function, θ(x) =
∑π(x)

j=1 ln pj . In addition, we make use of the following (less well-

known) prime summation function, σ(x) =
∑π(x)

j=1 pj . Using these functions, we bound
the number of tests in the Chinese remainder sieve method as t(n, d) ≤ σ(x), where x
is chosen so that θ(x) ≥ d lnn, since ln

∏
pj≤x pj = θ(x). For the Chebyshev function,

it can be shown [1] that θ(x) ≥ x/2 for x > 4 and that θ(x) ∼ x for large x. So if
we let x = �2d lnn�, then θ(x) ≥ d lnn. Thus, we can bound the number of tests in
our method as t(n, d) ≤ σ(�2d lnn�). To further bound t(n, d), we use the following
lemma, which may be of mild independent interest.

Lemma 2. For integer x ≥ 2,

σ(x) <
x2

2 lnx

(
1 +

1.2762

lnx

)
.

Proof. Let n = π(x). Dusart [7, 8] shows that, for n ≥ 799,

1

n

n∑
j=1

pj <
1

2
pn;

that is, the average of the first n primes is half the value of the nth prime. Thus,

σ(x) =

π(x)∑
j=1

pj <
π(x)

2
pn ≤ π(x)

2
x
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for integer x ≥ 6131 (the 799th prime). Dusart [7, 8] also shows that

π(x) <
x

lnx

(
1 +

1.2762

lnx

)

for x ≥ 2. Therefore, for integer x ≥ 6131,

σ(x) <
x2

lnx

(
1 +

1.2762

lnx

)
.

In addition, we have verified by an exhaustive computer search that this inequality
also holds for all integers 2 ≤ x < 6131. This completes the proof.

Thus, we can characterize the Chinese remainder sieve method as follows.
Theorem 1. Given a set of n items, at most d of which are defective, the Chinese

remainder sieve method can identify the defective items using a number of tests

t(n, d) <
�2d lnn�2

2 ln�2d lnn�

(
1 +

1.2762

ln�2d lnn�

)
.

The sample rate can be bounded by

S(n, d) <
�2d lnn�

2 ln�2d lnn�

(
1 +

1.2762

ln�2d lnn�

)
,

and the analysis time, A(n, t), is O(nt(n, d)).
By calculating the exact numbers of tests required by the Chinese remainder sieve

method for particular parameter values and comparing these numbers to the claimed
bounds for Hwang and Sós [11], we see that our algorithm is an improvement when

• d = 2 and n ≤ 1057 • d = 3 and n ≤ 1066

• d = 4 and n ≤ 1070 • d = 5 and n ≤ 1074

• d = 6 and n ≤ 1077 • d ≥ 7 and n ≤ 1080.
Of course, these are the most likely cases for any expected actual instance of the

combinatorial group testing problem. In addition, our analysis shows that our method
is superior to the claimed bounds of Hwang and Sós [11] for d ≥ n1/5 and n ≥ e10.
Less precisely, we can say that t(n, d) is O(d2 log2 n/(log d+log logn)), that S(n, d) is
O(d log n/(log d+ log logn), and that A(n, t) is O(tn), which is O(d2n log2 n/(log d+
log log n)).

Heuristic improvements. Although it will not reduce the asymptotic complexity
of t, we can reduce the number of tests by starting with a sequence of primes up to
some upper bound x and efficiently constructing a set of good prime powers from this
sequence. We can allow some powers, ej , to be zero (meaning that we do not use
this prime), while giving others values greater than one. The objective is to choose
carefully the values ej in order to minimize the number of tests while maintaining
the property that

∏
p
ej
j ≥ nd. This typically yields a savings of between five and ten

percent.
An example implementation in Python 2.3 is shown in the appendix in Fig-

ures A.1 and A.2. This implementation starts with the ej = 1 solution to determine
an initial suitable sequence of primes, pj , to use. It then does a backtracking search
to find the optimal set of ej for these pj , subject to the constraint that each p

ej
j is

not greater than the largest prime in the original solution (with each ej = 1). Since
the number of ej powers is sublogarithmic, and most of them must be 0 or 1, this
backtracking search takes time sublinear in n for fixed d.
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Table 2.1

Comparing t(n) for d = 5 and d = 10.

(d = 5) 100 104 106 108 1010 1020 1030

Our bktrk 131 378 738 1176 1709 5737 11782
Our genl 160 440 791 1264 1851 6081 12339
HS 2329 4006 5683 7359 9036 17420 25803

(d = 10) 100 104 106 108 1010 1020 1030

Our bktrk 378 1176 2350 3896 5737 19681 41020
Our genl 440 1264 2584 4227 6081 20546 42468
HS 9316 16023 22730 29437 36144 69678 103213

Comparison of the number of tests required. Table 2.1 lists the number of tests
required by the Hwang–Sós (HS) algorithm, our general algorithm (using the initial
set of primes pj having exponents ej = 1), and our improved backtrack algorithm,
for some values of n. As can be seen, for moderate values of n our algorithms require
a small fraction of the number of tests required by the HS algorithm. However,
asymptotically for fixed d, the HS algorithm requires fewer tests.

3. A two-stage rake-and-winnow protocol. In this section, we present a
randomized construction for two-stage group testing. This two-stage method uses a
number of tests within a constant factor of the information-theoretic lower bound. It
improves previous upper bounds [5] by almost a factor of 2. In addition, it has an
efficient sampling rate, with S(n, d) being only O(log(n/d)). All the constant factors
“hiding” behind the big-ohs in these bounds are small.

Preliminaries. One of the important tools we use in our analysis is the follow-
ing lemma for bounding the tail of a certain distribution. It is a form of Chernoff
bound [14].

Lemma 3. Let X be the sum of n independent indicator random variables, such
that X =

∑n
i=1 Xi, where each Xi = 1 with probability pi, for i = 1, 2, . . . , n. If

E[X] =
∑n

i=1 pi ≤ μ̂ < 1, then, for any integer k > 0,

Pr(X ≥ k) ≤
(
eμ̂

k

)k

.

Proof. Let μ = E[X] be the actual expected value of X. Then, by a well-known
Chernoff bound [14], for any δ > 0,

Pr[X ≥ (1 + δ)μ] ≤
[

eδ

(1 + δ)1+δ

]μ
.

(The bound in [14] is for strict inequality, but the same bound holds for nonstrict
inequality.) We are interested in the case when (1+δ)μ = k, that is, when 1+δ = k/μ.
Observing that δ < 1 + δ, we can therefore deduce that

Pr(X ≥ k) ≤
[

ek/μ

(k/μ)k/μ

]μ
=

ek

(k/μ)k
=

(eμ
k

)k

.

Finally, noting that μ ≤ μ̂,

Pr(X ≥ k) ≤
(
eμ̂

k

)k

.

In addition to this lemma, we also use the following.
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Lemma 4. If d < n, then
(
n

d

)
<

(en
d

)d

.

Proof.
(
n

d

)
=

n!

(n− d)! d!

=
n(n− 1)(n− 2) · · · (n− d + 1)

d!

<
nd

d!
.

By Stirling’s approximation [4],

d! =
√

2πn

(
d

e

)d (
1 + θ

(
1

n

))
.

Thus, d! > (d/e)d. Therefore,

nd

d!
<

nd

(d/e)d
=

(en
d

)d

.

Identifying defective items in two stages. As with our Chinese remainder sieve
method, our randomized combinatorial group testing construction is based on the use
of a Boolean matrix M where columns correspond to items and rows correspond to
tests, so that if M [i, j] = 1, then item j is included in test j. Let C denote the set of
columns of M . Given a set D of d columns in M , and a specific column j ∈ C−D, we
say that j is distinguishable from D if there is a row i of M such that M [i, j] = 1 but
i contains a 0 in each of the columns in D. Such a property is useful in the context of
group testing, for the set D could correspond to the defective items, and if a column
j is distinguishable from the set D, then there would be a test in our regimen that
would determine that the item corresponding to column j is not defective.

An alternate and equivalent definition [6, p. 165] for a matrix M to be d-disjunct
is if, for any d-sized subset D of C, each column in C − D is distinguishable from
D. Such a matrix determines a powerful group testing regimen, but, unfortunately,
building such a matrix requires M to have Ω(d2 log n/ log d) rows, by a result of
Ruszinkó [15] (see also [6, p. 139]). The best known constructions have Θ(d2 log(n/d))
rows [6], which is a factor of d greater than information-theoretic lower bound, which
is Ω(d log(n/d)).

Instead of trying to use a matrix M to determine all the defectives immediately,
we will settle for a weaker property for M , which nevertheless is still powerful enough
to define a good group testing regimen. We say that M is (d, k)-resolvable if, for
any d-sized subset D of C, there are fewer than k columns in C − D that are not
distinguishable from D. Such a matrix defines a powerful group testing regimen, for
defining tests according to the rows of a d-resolvable matrix allows us to restrict the
set of defective items to a group D′ of smaller than d + k size. Given this set, we
can then perform an additional round of individual tests on all the items in D′. This
two-stage approach is sometimes called the trivial two-stage algorithm; we refer to
this two-stage algorithm as the rake-and-winnow approach.
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Thus, a (d, k)-resolvable matrix determines a powerful group testing regimen. Of
course, a matrix is d-disjunct iff it is (d, 1)-resolvable. Unfortunately, as mentioned
above, constructing a (d, 1)-resolvable matrix requires that the number of rows (which
correspond to tests) be significantly greater than the information-theoretical lower
bound. Nevertheless, if we are willing to use a (d, k)-resolvable matrix, for a reasonably
small value of k, we can come within a constant factor of the information-theoretical
lower bound.

Our construction of a (d, k)-resolvable matrix is based on a simple, randomized
sample-injection strategy, which itself is based on the approach popularized by the
Bloom filter [2]. This novel approach also allows us to provide a strong worst-case
bound for the sample rate, S(n, d), of our method. Given a parameter t, which is
a multiple of d that will be set in the analysis, we construct a 2t × n matrix M
in a columnwise fashion. For each column j of M , we choose t/d rows at random
and set the values of these entries to 1. The other entries in column j are set to 0.
In other words, we “inject” the sample j into each of the t/d random tests we pick
for the corresponding column (since rows of M correspond to tests and the columns
correspond to samples). Note, then, that for any set of d defective samples, there
are at most t tests that will have positive outcomes and, therefore, at least t tests
that will have negative outcomes. The columns that correspond to samples that are
distinguishable from the defectives ones can be immediately identified. The remaining
issue, then, is to determine the value of t needed so that, for a given value of k, M is
a (d, k)-resolvable matrix with high probability.

Let D be a fixed set of d defectives samples. For each (column) item i in C−D, let
Xi denote the indicator random variable that is 1 if i is falsely identified as a positive
sample by M (that is, i is not included in the set of (negative) items distinguished
from those in D), and is 0 otherwise. Observe that the Xi’s are independent, since
Xi depends only on whether the choice of rows we picked for column i collide with
the at most t rows of M that we picked for the columns corresponding to items in
D. Furthermore, this observation implies that any Xi is 1 (a false positive) with
probability at most 2−t/d. Therefore, the expected value of X, E[X], is at most
μ̂ = n/2t/d. This fact allows us to apply Lemma 3 to bound the probability that
M does not satisfy the (d, k)-resolvable property for this particular choice, D, of d
defective samples. In particular,

Pr(X ≥ k) ≤
(
eμ̂

k

)k

=

(
en
k

)k
2(t/d)k

.

Note that this bound immediately implies that if k = 1 and t ≥ d(e+1) logn, then M
will be completely (d, 1)-resolvable with high probability (1− 1/n) for any particular
set of defective items, D.

We are interested, however, in a bound implying that for any subset D of d
defectives (of which there are

(
n
d

)
< (en/d)d, by Lemma 4), our matrix M is (d, k)-

resolvable with high probability, that is, probability at least 1− 1/n. That is, we are
interested in the value of t such that the above probability bound is (en/d)−d/n. From
the above probability bound, therefore, we are interested in a value of t such that

2(t/d)k

(
en
k

)k ≥
(en
d

)d

n.

That is, we would like

2(t/d)k ≥
(en
d

)d (en
k

)k

n.
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This bound will hold whenever

t ≥ (d2/k) log(en/d) + d log(en/k) + (d/k) log n.

Thus, we have the following.
Theorem 2. If t ≥ (d2/k) log(en/d) + d log(en/k) + (d/k) log n, then a 2t × n

random matrix M constructed by sample-injection is (d, k)-resolvable with high prob-
ability, that is, with probability at least 1 − 1/n.

Taking k = 1, therefore, we have an alternative method for constructing a d-
disjunct matrix M with high probability.

Corollary 1. If t ≥ d2 log(en/d) + d log en + d log n, then a 2t × n random
matrix M constructed by sample-injection is d-disjunct with high probability.

That is, we can construct a one-round group test based on sample-injection that
uses O(d2 log(n/d)) tests.

As mentioned above, a productive way of using the sample-injection construction
is to build a (d, k)-resolvable matrix M for a reasonably small value of k. We can then
use this matrix as the first round in a two-round rake-and-winnow testing strategy,
where the second round simply involves our individual testing of the at most d + k
samples left as potential positive samples from the first round.

Corollary 2. If t ≥ 2d log(en/d) + logn, then the 2t × n random matrix M
constructed by sample-injection is (d, d)-resolvable with high probability.

This corollary implies that we can construct a rake-and-winnow algorithm where
the first stage involves performing O(d log(n/d)) tests, which is within a (small) con-
stant factor of the information theoretic lower bound, and the second round involves
individually testing at most 2d samples.

4. Improved bounds for small d values. In this section, we consider efficient
algorithms for the special cases when d = 2 and d = 3. We present time-optimal
algorithms for these cases, that is, with A(n, t) being O(t). Our algorithm for d = 3
is the first known such algorithm.

Finding up to two defectives. Consider the problem of determining which items
are defective when we know that there are at most two defectives. We describe a
2-separable matrix and a time-optimal analysis algorithm with t = (q2 + 5q)/2 and
n = 3q, for any positive integer q.

Let the number of items be n = 3q, and let the item indices be expressed in radix
3. Index X = Xq−1 · · ·X0, where each digit Xp ∈ {0, 1, 2}.

Hereafter, X ranges over the item index numbers {0, . . . , n − 1}, p ranges over
the radix positions {0, . . . , q − 1}, and v ranges over the digit values {0, 1, 2}.

For our construction, matrix M is partitioned into submatrices B and C. Matrix
B is the submatrix of M consisting of its first 3q rows. Row 〈p, v〉 of B is associated
with radix position p and value v. B[〈p, v〉, X] = 1 iff Xp = v.

Matrix C is the submatrix of M consisting of its last
(
q
2

)
rows. Row 〈p, p′〉 of C

is associated with distinct radix positions p and p′, where p < p′. C[〈p, p′〉, X] = 1 iff
Xp = Xp′ .

Let testB(p, v) be the result (1 for positive, 0 for negative) of the test of items
having a 1-entry in row 〈p, v〉 in B. Similarly, let testC(p, p′) be the result of testing
row 〈p, p′〉 in C. Let test1(p) be the number of different values held by defectives in
radix position p. test1(p) can be computed by testB(p, 0) + testB(p, 1) + testB(p, 2).

The analysis algorithm is shown in the appendix in Figure A.3.
It is easy to determine how many defective items are present. There are no

defective items when test1(0) = 0. There is only one defective item when test1(p) = 1
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for all p, since if there were two defective items, then there must be at least one
position p in which their indices differ and test1(p) would then have value 2. The one
defective item has index D = Dq−1 · · ·D0, where digit Dp is the value v for which
testB(p, v) = 1.

Otherwise, there must be two defective items, D = Dq−1 · · ·D0 and E = Eq−1 · · ·E0.
We iteratively determine the values of the digits of indices D and E.

For radix positions in which defective items exist for only one value of that digit,
both D and E must have that value for that digit. For each other radix position, two
distinct values for that digit occur in the defective items.

The first radix position in which D and E differ is recorded in the variable p∗ and
the value of that digit in D (respectively, E) is recorded in v∗1 (respectively, v∗2).

For any subsequent position p in which D and E differ, the digit values of the
defectives in that position are va and vb, which are two distinct values from {0, 1, 2},
as are v∗1 and v∗2 , and therefore there must be at least one value in common between
{va, vb} and {v∗1 , v∗2}.

Let a common value be va and, without loss of generality, let va = v∗1 .
Lemma 5. The digit assignment for position p is Dp = va and Ep = vb iff

testC(p∗, p) = 1.
Proof. We consider the two possibilities of which defective item has va as its digit

in position p.
Case 1. Dp = va.

We see that Dp = va = v∗1 . Accordingly, a defective (D) would be among the items
tested in testC(p∗, p). Therefore, testC(p∗, p) = 1.

Case 2. Ep = va.
We see that Dp �= v∗1 , because Dp �= Ep = va = v∗1 , and also that Ep �= v∗2 , because
Ep = va = v∗1 �= v∗2 . Accordingly, neither of the defective items would be among the
items tested in testC(p∗, p). Therefore, testC(p∗, p) = 0.

We have determined the values of defectives D and E for all positions—those where
they are the same and those where they differ. For each position, only a constant
amount of work is required to determine the assignment of digit values. Therefore,
we have proven the following theorem.

Theorem 3. A 2-separable matrix that has a time-optimal analysis algorithm
can be constructed with t = (q2 + 5q)/2 and n = 3q, for any positive integer q.

Comparison of the number of tests required for the d = 2 method. A 2-separable
or a 2-disjunct t× n matrix enables determination of up to two defective items from
among n or fewer items using t tests. An algorithm is more competitive at or just
below one of its breakpoints, values of n for which increasing n by one significantly
increases t. The Macula–Reuter (MR) algorithm has breakpoints at one under all
powers of 2, our (d=2) algorithm at all powers of 3, and the Kautz–Singleton (KS)
algorithm at only certain powers of 3. Our general-d algorithms do not have significant
breakpoints.

Table 4.1 lists the number of tests required by these algorithms for some small
values of n. For all n ≤ 363, our d = 2 algorithm uses the smallest number of tests. For
higher values of n ≤ 3130, the KS and our d = 2 and general (Chinese remainder sieve)
algorithms alternate being dominant. The alternations are illustrated in Table 4.2.
For all n ≥ 3131, the HS algorithm uses the fewest tests.

Finding up to three defectives. Consider the problem of determining which items
are defective when we know that there are at most three defectives. We describe
a 3-separable matrix and a time-optimal analysis algorithm with t = 2q2 − 2q and
n = 2q, for any positive integer q.
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Table 4.1

t(n) for small n (d = 2).

(d = 2) 15 100 103 104 105 106 108 1010 1020 1030

Our d = 2 12 25 42 63 88 117 187 273 987 2142
Our bktrk 19 36 60 89 131 168 268 378 1176 2350
Our genl 28 41 77 100 160 197 281 440 1264 2584
MR 14 35 65 119 170 230 405 629 2345 5150
KS 27 81 81 243 243 243 729 729 2187 2187
HS 373 507 641 775 909 1177 1446 2787 4129

Table 4.2

t(n) for large n (d = 2).

(d = 2) 363 364 3104 3112 3128 3130 3256

Our d = 2 2142 2208 5668 6552 8512 8775 33408
Our bktrk 2366 2424 5687 6454 8184 8394 28311
Our genl 2584 2584 6081 6870 8582 8893 29296
KS 2187 2187 6561 6561 6561 19683 19683
HS 4136 4200 6760 7272 8296 8424 16488

Let the number of items be n = 2q, and let the item indices be expressed in radix
2. Index X = Xq−1 · · ·X0, where each digit Xp ∈ {0, 1}.

Hereafter, X ranges over the item index numbers {0, . . . , n − 1}, p ranges over
the radix positions {0, . . . , q − 1}, and v ranges over the digit values {0, 1}.

Matrix M has 2q2 − 2q rows. Row 〈p, p′, v, v′〉 of M is associated with distinct
radix positions p and p′, where p < p′, and with values v and v′, each of which is in
{0,1}. M [〈p, p′, v, v′〉, X] = 1 iff Xp = v and Xp′ = v′.

Let testM (p, p′, v, v′) be the result (1 for positive, 0 for negative) of testing items
having a 1-entry in row 〈p, p′, v, v′〉 in M . For p′ > p, define testM (p′, p, v′, v) =
testM (p, p′, v, v′).

The following three functions can be computed in terms of testM .
• testB(p, v) has value 1 (0) if there are (not) any defectives having value v in

radix position p, i.e., testB(0, v) = 0 if testM (0, 1, v, 0)+ testM (0, 1, v, 1) = 0,
and 1 otherwise. For p > 0, testB(p, v) = 0 if

testM (p, 0, v, 0) + testM (p, 0, v, 1) = 0,

and 1 otherwise.
• test1(p) is the number of different binary values held by defectives in radix

position p. Thus, test1(p) = testB(p, 0) + testB(p, 1).
• test2(p, p′) is the number of different ordered pairs of binary values held by

defectives in the designated ordered pair of radix positions. Therefore,

test2(p, p′) = testM (p, p′, 0, 0)+ testM (p, p′, 0, 1)+ testM (p, p′, 1, 0)+ testM (p, p′, 1, 1).

The analysis algorithm is shown in the appendix in Figure A.4.
We determine the number of defective items and the value of their digits. There

are no defective items when test1(0) = 0. Moreover, at each radix position p in which
test1(p) = 1, all defective items have the same value of that digit. If all defectives
agree on all digit values, then there is only one defective. Otherwise there are at least
two defectives, and we need to consider how to assign digit values for only the set of



GROUP TESTING ALGORITHMS 1371

positions P in which there is at least one defective having each of the two possible
binary digit values.

Lemma 6. There are only two defectives iff, for p, p′ ∈ P, test2(p, p′) = 2.
Proof. A defective item can contribute at most one new combination of values in

positions p, p′, and so test2(p, p′) ≤ the number of defectives. Accordingly, if there
are fewer than two defectives, then test2(p, p′) < 2.

If there are exactly two defectives, then test2(p, p′) ≤ 2. Since p ∈ P , both binary
values appear among defectives, and so test2(p, p′) ≥ 2, and therefore test2(p, p′) = 2.

Consider the case in which there are three defectives. In any position p1 in
which both binary values appear at that digit among the set of defectives, one of the
defectives (say, D) has one binary value (say, v1) and the other two defectives (E,F )
have the other binary value (v1). Since E and F are distinct, they must differ in value
at some other position p2. Therefore, there will be three different ordered pairs of
binary values held by defectives in positions p1 and p2, and so test2(p1, p2) = 3.

Accordingly, if there is no pair of positions for which test2 has value 3, we can
conclude that there are only two defectives. Otherwise, there are positions p1, p2 for
which test2(p1, p2) = 3, and one of the four combinations of two binary values will
not appear. Let that missing combination be v1, v2. Thus, while position p1 uniquely
identifies one defective, say D, as the only defective having value v1 at that position,
position p2 uniquely identifies one of the other defectives, say E, as having value v2.

Lemma 7. If the position p∗ uniquely identifies the defective X to have value v∗,
then the value of the defective X at any other position p will be that value v such that
testM (p∗, p, v∗, v) = 1.

Proof. If position p∗ uniquely identifies defective X as having value v∗, then
Xp∗ = v∗ and, for any other defective Y , Yp∗ �= v∗.

Let v = Xp for any p �= p∗. Then testM (p∗, p, v∗, v) = 1, since X is a defective
that has the required values at the required positions to be included in this test.

Also, testM (p∗, p, v∗, v) = 0, because none of the defectives is included in this
test. Defective X is not included, because Xp �= v. Any other defective, Y �= X, is
not included, because Yp∗ �= v∗.

Since we have positions that uniquely identify D and E, we can determine the
values of all their other digits, and the only remaining problem is to determine the
values of the digits of defective F .

Since position p1 uniquely identifies D, we know that Fp1 = v1. For any other
position p, after determining that Ep = v, we note that if testM (p1, p, v1, v) = 1, then
there must be at least one defective, X, for which Xp1 = v1 and Xp = v. Defective D
is ruled out, since Dp1 = v1, and defective E is ruled out, since Ep = v. Therefore, it
must be that Fp = v. Otherwise, if that testM = 0, then Fp = v, since Fp = v would
have caused testM = 1.

We have determined the values of defectives D, E, and F for all positions. For
each position, only a constant amount of work is required to determine the assignment
of digit values. Therefore, we have proven the following theorem.

Theorem 4. A 3-separable matrix that has a time-optimal analysis algorithm
can be constructed with t = 2q2 − 2q and n = 2q, for any positive integer q.

Comparison of the number of tests required for the d = 3 method. The general d
algorithm due to Hwang and Sós [11] requires fewer tests than does the Du–Hwang
(DH) algorithm for d = 3 suggested in [6]. For n < 1010, our (d = 3) algorithm
requires even fewer tests and our general (Chinese remainder sieve) algorithm the
fewest. However, asymptotically the algorithm of Hwang and Sós uses the fewest
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Table 4.3

Comparing t(n) for d = 3.

(d = 3) 100 104 106 108 1010 1020 1030

Our bktrk 60 168 321 513 738 2350 4777
Our genl 77 197 381 568 791 2584 5117
Our d = 3 84 364 760 1404 2244 8844 19800
HS 838 1442 2046 2649 3253 6271 9289
DH 840 3444 7080 12960 20604 80400 179400

tests. We note that, unlike these other efficient algorithms, our (d = 3) algorithm
is time-optimal. Table 4.3 lists the number of tests required by these algorithms for
some small values of n.

Appendix A. Pseudocode listings.

def eratosthenes():
”””Generate the sequence of prime numbers via the sieve of Eratosthenes.”””
D = {} # map composite integers to primes witnessing their compositeness
q = 2 # first integer to test for primality
while True:

if q not in D:
yield q # not marked composite, must be prime
D[q∗q] = [q] # first multiple of q not already marked

else:
for p in D[q]: # move each witness to its next multiple

D.setdefault(p+q,[]).append(p)
del D[q] # no longer need D[q], free memory

q += 1

def search(primes,maxpow,target):
”””
Backtracking search for exponents of prime powers, each at most maxpow,
so that the product of the powers is at least target and the sum of the
nonunit powers is minimized. Returns the pair [sum,list of exponents].
”””
if target <= 1: # all unit powers will work?

return [0,[0]∗ len(primes)]
elif not primes or maxpow∗∗len(primes) < target:

return None # no primes supplied, no solution exists
primes = list (primes) # list all but the last prime for recursive calls
p = primes.pop()
best = None # no solution found yet
i = 0
while p∗∗i <= maxpow: # loop through possible exponents of p

s = search(primes,maxpow,(target + p∗∗i − 1)//p∗∗i)
if s is not None:

s [0] += i and p∗∗i
s [1]. append(i)
best = min(best,s) or s

i += 1
return best

Fig. A.1. Subroutines for construction based on prime factorization.
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def prime cgt(n,d):
”””Find a CGT for n and d and output a description of it to stdout.”””

# collect primes until their total product is large enough
primes = []
product = 1
for p in eratosthenes ():

primes.append(p)
product ∗= p
if product > n∗∗d:

break

# now find good collection of powers of those primes...
result = search(primes,primes[−1],n∗∗d)
powers = result[1]

# output results
print ”n =”,n,”d =”,d,”:”,
for i in range(len(primes)):

if powers[i ] == 1:
print primes[i ],

elif powers[i ] > 1:
print str(primes[i ]) + ”ˆ” + str(powers[i ]),

print ”total tests :”, sum([primes[i]∗∗powers[i ] for i in range(len(primes))
if powers[i ]])

if name == ” main ”:
for d in range(2,6):

for x in range(6,16):
prime cgt(1<<x,d)

print

Fig. A.2. Construct tests based on prime factorization.

if test1(0) = 0 then return there are no defective items
p∗ ← −1
for p ← 0 to q − 1 do

if test1(p) = 1 then
Dp ← Ep ← the value v such that testB(p, v) = 1

else // test1(p) has value 2
Let v1, v2 be the two values of v such that testB(p, v) = 1
if p∗ < 0 then

p∗ ← p
v∗1 ← Dp ← v1

v∗2 ← Ep ← v2

else
if testC(p∗, p) = 1 and ( v∗1 = v1 or v∗2 = v2 ) then

Dp ← v1

Ep ← v2

else
Dp ← v2

Ep ← v1

if p∗ < 0 then
return there is one defective item D

else
return there are two defective items D and E

Fig. A.3. Analysis algorithm for up to two defectives.
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if test1(0) = 0 then return there are no defective items
P ← ∅
for p ← 0 to q − 1 do

if test1(p) = 1 then
Dp ← Ep ← Fp ← the value v such that testB(p, v) = 1

else P ← P ∪ {p}
if P = ∅ then return there is one defective item D
if test2(p1, p2) = 2 for all p1, p2 ∈ P then

p∗ ← −1
for p ∈ P do

if p∗ < 0 then
p∗ ← p
v∗ ← Dp ← 0

else if testM (p∗, p, v∗, 0) = 1 then
Dp ← 0

else Dp ← 1
Ep ← 1 −Dp

return there are two defective items D,E
else

Let p1, p2 be positions such that test2(p1, p2) = 3
Let v1, v2 be values such that testM (p1, p2, v1, v2) = 0
Dp1 ← v1

Fp1 ← Ep1 ← 1 − v1

Ep2 ← v2

Fp2 ← Dp2 ← 1 − v2

for p ∈ P − {p1, p2} do
if testM (p1, p, v1, 0) = 1 then

Dp ← 0
else Dp ← 1
if testM (p2, p, v2, 0) = 1 then

Ep ← 0
else Ep ← 1
v ← Ep

if testM (p1, p, 1 − v1, 1 − v) = 1 then
Fp ← 1 − v

else Fp ← v
return there are three defective items D,E, and F

Fig. A.4. Analysis algorithm for up to three defectives.

Appendix B. We would like to thank George Lueker and Dennis Shasha for
several helpful discussions related to the topics of this paper.
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