Construction of Optimal Binary Split Trees

in the Presence of Bounded Access Probabilities

J. H. Hester
D. S. Hirschberg

L. L. Larmore

Department of Information and Computer Science
University of California, Irvine

Irvine, California 92717

Abstract

A binary split tree is a search structure combining features of heaps and binary search
trees. The fastest known algorithm for building an optimal binary split tree requires
O(n?) time if the keys are distinct and O(n®) time if the keys are non-distinct. ©(n?)
space 1is required in both cases. A modification is introduced which reduces a factor of
n? in the asymptotic time to a factor of n® Ig(n) when the smallest probability of access
of any key is ©(n~%). This yields an asymptotic improvement any time the smallest
access probability is greater than ©@(n~%). The space requirement is not affected. For
example, when access probabilities are distinct and the smallest access probability
is ©(1/n), the modified algorithm requires only O(n®lgn) time (as opposed to the
O(n*) result mentioned above). Several natural refinements to the basic modification
are presented which should improve the time within the same asymptotic order.

INTRODUCTION

A binary split tree (BST) is a structure for storing records on which searches
will be performed, assuming that the probabilities of access are known in advance.
For every subtree T in a BST, the record with the highest access probability of
all records in T is stored in the root of T. The remaining records are distributed
among the left and right subtrees of T such that the keys of all records in the left
subtree are less than the keys of all records in the right subtree. Each node in
a BST contains the key value of the record in that node and a split value which
lexically divides the values of the keys in the left and right subtrees. A simple split

value is the value of the largest key in the left subtree.

Under the assumption of distinct access probabilities and no failed searches,
for any given set of n records, the key to be put in the root is predetermined but
the split value for the root may be chosen to divide the remaining n—1 records
between the left and right subtrees in any of n possible ways. If failed searches are

considered, the split value may be any of n+2 possibilities.

Binary split trees were introduced by Sheil [6], who conjectured that the
arbitrary removal of nodes with high access probabilities from the lexicographic
ordering (for placement in roots of higher subtrees) made the normal dynamic
programming techniques inapplicable. However, Huang and Wong [2] and Perl
[5] noted that the keys missing from any given range must be the keys with the
largest access probabilities in that range of keys, thus allowing a representation
of the set of keys in a subtree by specifying a range of keys and a count of the
number of keys missing from that range. This led to ©(n’) time and ©(n?) space
dynamic programming algorithms to construct optimal BSTs in a manner similar
to Knuth’s algorithm [4] for constructing optimal binary search trees. These
algorithms did not handle the case of non-distinct access probabilities, but Perl

outlined a method to handle this case requiring exponential time. Hester, et. al.

[1] presented an improvement which reduced the time required by a factor of &(n),
resulting in a total time of ©(n?*) for distinct access probabilities. Their algorithm
also constructed optimal trees in the presence of non-distinct access probabilities
in O(n°) time.

Huang and Wong [3] defined generalized binary split trees (GBSTs), which
relax the constraint that the key in the root of any subtree be the key with highest
access probability of the (remaining) keys in that subtree, and presented an O(n>)
algorithm which construct optimal GBSTs. They noted that BSTs, as well as
binary search trees, are subsets of GBSTs, and showed that optimal GBSTs may
have smaller expected search cost than optimal BSTs (which have already been
shown may be much better than optimal binary search trees). They noted, however,
that the difference in expected cost between optimal BSTs and optimal GBSTs
appears to be small.

This paper presents modifications to Hester, et. al.’s optimal BST algorithm
which restrict the number of values of one of the loop variables when knowledge
about the application is sufficient to guarantee a lower bound of @(n™%) on the
smallest probability of access of keys for any data set which may arise in that
application. When such a bound can be guaranteed, the modifications reduce a
factor of n? in the algorithm’s asymptotic time requirement to a factor of n® lg(n).T
Thus, for example, if knowledge about a given application is sufficient to show that
there exists a constant ¢ such that the smallest access probability cannot be less
than ¢/n (for any data set consistant with that application with sufficiently large n),
then the modified algorithm will require only O(n?lgn) time instead of the O(n*)
time required without the modifications. The modifications do not adversely affect
the algorithm’s asymptotic time if no lower bound on access probability can be
guaranteed, thus they may be used on all data sets and, since the value of « is

not actually built into the algorithm (it is used only for analysis), asymptotic gain

T lg(n) denotes the logarithm base 2 of n.

in speed will occur for bounded distributions without actually proving or even
knowing the bounds. The modifications are also directly applicable to Huang and

Wong’s optimal GBST algorithm, yielding the same improvement.

1. THE ALGORITHM

Only an outline of the algorithm sufficient to understand our modifications
will be presented here. The reader is directed to Hester, et. al. [1] for a full
description of the algorithm.

We are given n records indexed from 1 to n. Each record r; has a key Key(¢)
such that Key(1) < Key(j) for all : <j. Each record r; also has an access probability
p(7). In addition, to account for failed searches, we are given failure probabilities
q(1) for 0 <i¢<n, which are the probabilities of searching for a key K such that
Key(i) < K < Key(t+1). To complete the definitions of the probabilities in a
uniform fashion and to simplify the algorithms, p(0) = p(n+1) = 0 and Key(0)
and Key(n+1) are defined to be, respectively, —oo and oo.

The following assumes that access probabilities are distinct. The modifica-
tions for dealing with non-distinct access probabilities are of no consequence to our
results.

Define a range of records ¢ to j to be the set of records whose indices are in

the range i+1,71+2,...,7. Let <, J, k) refer to the sequence of probabilities

{q(8), p(i+1),q(i+1), p(i+2), ..., q(j—1),p(j)}

where the largest k access probabilities (p’s) are left out of the sequence. Since
records are ordered by key value, the records with the k largest access probabilities
could be anywhere in the sequence. A subtree T spans the sequence <z, j, k) if the
subtree contains all records whose access probabilities are in <z, J, k), and contains
no other records. A record r is said to be missing from a subtree T if the index

of r is in the range ¢ to j and T spans {, j, k», but r’s access probability is not in

i, j, ky. In other words, r is missing from T if it is in the range of T, but has one
of the k highest access probabilities in that range, which causes it to be placed in
the root of some higher subtree. Perl [5] gave a simple proof that the keys missing
from any subtree T must be the keys with the largest access probabilities that T

spans, and that these keys must be stored in an ancestor of the root of T

As in [1], let COTYi,j, k] be the cost of an optimal subtree spanning <, j, k),
which is defined by

COT[i.I, GEL(i.j.k.1)]
COTij, 1] = Wi j, k] + min ¥
1<l<y
COT[L,j. k+1— GEy(i,j. k.1)]

where Wi, j, k] is the weight of a subtree (not counting the & missing nodes) and
GEr(i,j,k,1) is the number of records, in the range of the left subtree of a BST

T spanning <z, j, ky with a split index of [, which have probability greater than or
equal to that of the root of T'.

The following is an outline of the main portion of Hester, et. al.’s [1] dynamic
programming algorithm for calculating an optimal BST. The interspersed order
formulas represent time required by blocks of statements that are of no consequence

to our result.

begin
O(n)
for d «— 2 until n4+1 do
for i «— 0 until n+1—d do begin
jei+d
for £ — 0 until d—1 do begin
O(1)
for /<~ i+ 1 until j—1 do begin
O(1) or O(n)
end
O(1)
end
O(1)
end
end

Figure 1. Loop outline of split tree algorithm.

The innermost block requires ©(1) time (to look up the costs of optimal subtrees
of a subtree spanning {, j, k) and split at index [) when access probabilities are
distinct, and O(n) time otherwise (to consider distributions between left and right

subtrees of missing records with access probabilities equal to that of the root).

Huang and Wong’s [3] optimal GBST algorithm conforms to this outline with
the negligible exceptions of variable names, differences of at most one on some of
the loop indices, and the innermost block is replaced by two loops which take O(n)

time.

2. THE MODIFICATION

Intuitively, a large range of records cannot be located too low in an optimal
tree due to the fact that the weight of those records, that low in the tree, would
make the overall expected cost of the tree too high. We note that any subtree
spanning {i, j, ky must be at least k deep in the tree, since the & missing nodes

must be on the path from the root of the tree to the root of the subtree. We bound

the values of k which need be considered for a given range of records by eliminating
any values which would result in too great a cost being contributed to the tree. In
this section we present the basic modifications in simple form and an analysis of
the time gained, and then in the next section we discuss some refinements along
the same lines.

Sheil [6] defined a median split tree where, by always choosing a split value
such that the number of records in the left and right subtrees are equal (or nearly
so0), an almost complete tree results. Since this is a valid split tree and has a worst
case cost of lg(n) probes, therefore lg(n) is an upper bound on the expected cost
of any optimal split tree. Consequently lg(n) is an upper bound for the sum of the
weighted path lengths (weight of a node multiplied by its depth in the tree) in any
optimal split tree. Thus, any subtree whose weight multiplied by the depth of its
root is greater than lg(n) cannot be part of any optimal split tree.

Referring to Figure 1, for a given d (= j — ¢), we can determine a range of
values of k for which any subtree spanning <i, j, k> cannot be a part of an optimal
BST, and which therefore need not be considered. Assume that, before beginning
the algorithm, we search the list of records to determine s, the value of the smallest
access probability among the records. The cost contributed to the entire tree by
any subtree spanning <, j, k) is at least Wi, j, k]+(the depth of the subtree). Since
k is a lower bound on the depth of the subtree, and it contains (d — k) nodes each
of which weighs at least s, the subtree must contribute a cost of at least ks(d — k)

to the split tree. This is greater than lg(n) for k in the range

d—q/dz—%lgn d+1/d2—§1gn
BADE = 5 <k< 5

Thus, values of k in the range BA Dk need not be considered. Note that this bound
is only defined for d > /(4/s)lgn. For smaller values of d, BADEk is the empty

range. Removing the BADE range from the “k” loop of the algorithm constitutes

the majority of our modification. The only other modification that needs to be
made is in the innermost loop, when costs of subtrees are looked up in the COT
array. A check must be made to see if these subtrees were not considered, (i.e., if
ks(d — k) > lgn). If so, their weight was not previously computed, but should be

considered to be infinite so as to eliminate possibility of their use.

The analysis is straightforward. Assume that the access probability of the
smallest record is ©(n™%) (i.e., s = cn™® for some constant value ¢). Substituting
this value into the definition of BADk we find that, for values of d greater than
f(n) = /(4/c)n1gn, the number of values of k which can be ignored is at least
\/d* — (4/c)n®1gn. Thus the number of values of &k which need to be considered

in this case is no more than d — \/d? — (4/c)n®lgn. For smaller values of d, the
definition of BA Dk yields no improvement to the old upper bound on the number

of values of k& which need to be considered, which is d.

Since the number of values of the inner loop variables ¢, k, and [are all
bounded by the value of the outer loop variable d (¢ will have no more than n — d
values, k will be bounded as described above, and [will have no more than d
values), an upper bound on the asymptotic time required by the algorithm can be

expressed as a sum of the products of these bounds:

f(n) n+1
dd—|—Zn— (d—\/dz—(él/c)n“lgn)d
d:2 d=f(n
n+1
<an2 —|—nZd< —\/dz—(ﬁl/c)n“lgn)
d=2 d=f(n

3 s, dn®lgn 2n%lgn 2 2n%lgn 2
<nfin)y+nd d|d—|d - - +< - >+ (-)
d=f(n)+1
n+1 2 2
2ne1 2ne1
oo+ - Ji- ncdgn]+¢(ncdgn))
d=f(n

n—l—l
21 21
— nf3(n) +n d(d—[d— ”cdg”]Jr ”cdg”>
d=f(n)+1

n+1
< nfg(n) + nz %nalgn

=n (%na lg n)g +n(n + 1)%71& lgn
=0 <n%a+1 lg% n+nt’lg n>
Since the algorithm for distinct access probabilities never takes more than
O(n4) time, (3/2)a+1 < a+2for all 1 < « < 2, and the additional loop to handle

non-distinct access probabilities adds at most a factor of n to the asymptotic time,

the modified algorithm has an upper bound of

) (min{n4, n"*lg n}) for distinct access probabilities

O (min{n’, n***1gn}) for non-distinct access probabilities
Thus the algorithm’s asymptotic time is decreased whenever a < 2.

Since we ignored any possible improvement on the innermost O(n) loop
which deals with non-distinct access probabilities, we can similarly assume no
improvement (and certainly no degradation) on the corresponding additional loops
in Huang and Wong’s [3] optimal GBST algorithm. Thus the same modification

and analysis are possible for their algorithm, leading to the same improvement.

3. NATURAL REFINEMENTS

The above modification was the simplest possible. Several natural improve-

ments may be made which may speed the algorithm up by constants.

First, the cost of lg(n) used as a limit for the cost of the subtrees may be
improved by precalculating the expected cost of a median split tree for the given
records. A few nodes with high access cost can make this limit much lower than

lg(n), and thus further reduce the number of values of k& that need be considered.

The other half of the analysis used a lower bound of s(d — k) for the total
weight of a subtree. During the loop through the values of & which have not been
ruled out by the lower bound on cost, the true weight of each subtree is known and
may be consulted to recognize further subtrees which are too heavy to contribute
to any optimal tree. This test should also be substituted in the innermost loop for

the test which checks to see if a given subtree’s cost was previously calculated.

The lower bound on the expected cost contributed by a subtree can be further
refined by noting that, for a subtree at depth (at least) k, there must be & nodes
along the path from the root of the tree to the root of the subtree. These nodes all
have weight at least that of the root of the subtree and, since they must lie on a
path from the root of the tree to the root of the subtree, their contributed cost is
at least (and possibly much more than) p(R[i,j, k])k(k +1)/2 (Where R[i, 7, k] is
the index of the root of the subtree spanning <i, j, k>> A more accurate value may
be obtained by taking the k largest weights in the range and calculating the exact
cost they would contribute (the heaviest would be at depth 1, the next heaviest at
depth 2, etc.). All such sums may be computed in a dynamic programming fashion

which will increase time and space only by constant factors.

Finally, for any subtree spanning d nodes there are n — d nodes in the rest
of the tree which are all at a depth of at least one, and therefore contribute an

expected cost of at least s(n—d). A more accurate bound, which is no more difficult

- 10 -

to calculate, is 1 — (the weight of the subtree and all nodes in the path from the

root of the subtree to the root of the tree).

These refinements lead to the formula

where p(R[i,j, :1;]) is the weight of the root of an optimal subtree spanning <, j, k>
and Cy, 1s the expected cost of a median split tree for the records. An analysis,
using the lower bounds Wi, j, k] > s(d — k) (as before) and p(R[i,j,:L']) > s,
indicates no asymptotic improvement.

From a practical standpoint, the first and third terms of the left side of the
inequality above are inexpensive and can only decrease the expected number of
subtrees which are considered. Although the sum on the left and Cy, on the right
both appear to contribute strong bounds, they each require sufficient additional
work (O(nz) to calculate costs of all paths from subtree roots to the root of the
tree, and O(nlgn) to calculate the cost of a median split tree) that it may be
better to use the less accurate but less expensive bounds of R[¢, j, k]k(k+1)/2 and

lg(n). These decisions are probably best made empirically.

CONCLUSIONS AND OPEN QUESTIONS

A modification to an algorithm for constructing optimal binary split trees
has been presented which reduces a factor of n? in the asymptotic time to a factor
of n®lg(n) when the smallest access probability of records is ©(n™). In the best
case, when the smallest access probability is known to be O(1/n), a factor of n in
the required time is reduced to a factor of lg(n). These bounds on probabilities
need not be known to achieve the improvement: the algorithm may be run without
asymptotic loss of speed (relative to the unmodified algorithm) on all data sets, and

improvements will occur whenever the data sets are bounded. It is likely that, for

- 11 -

unbounded data, the algorithm will still prune enough loops to offset the constant
factor of extra work it performs.

It would be interesting to determine, either theoretically or empirically, what
effect the refinements have on the run-time of the algorithm.

It seems unlikely that the lower bound on the algorithm is different from the
upper bound we provided, but this is yet to be shown.

Other methods of expressing our bounds may lead to more accurate analyses
Similarly, different bounds may lead to different (and better) modifications (or

algorithms).

REFERENCES

1. J. H. HESTER, D. S. HIRSCHBERG, S.-H. S. HuanG AnD C. K. WoNG,
Faster construction of optimal binary split trees,

J. Algorithms, to appear.

2. S.-H. S. Huvuang AND C. K. WoNG, Optimal binary split trees,
J. Algorithms 5 (1984) 69-79.

3. S.-H. S. Huvuanag anNDp C. K. WoONG, Generalized binary split trees,
Acta Informatica 21 (1984) 113-123.

4. D. E. KnutH, “The Art of Computer Programming,” Vol. 3, “Sorting and
Searching,” pp. 433-439, Addison—Wesley, Reading, Mass., 1973.

5. Y. PERL, Optimum split trees, J. Algorithms 5 (1984) 367-374.

6. B. A. SHEIL, Median split trees: A fast lookup technique for frequently
occurring keys, Comm. ACM 21 (1978) 947-958.

- 12 -

