
Construction of Optimal Binary Split Treesin the Presence of Bounded Access ProbabilitiesJ. H. HesterD. S. HirschbergL. L. LarmoreDepartment of Information and Computer ScienceUniversity of California, IrvineIrvine, California 92717
AbstractA binary split tree is a search structure combining features of heaps and binary searchtrees. The fastest known algorithm for building an optimal binary split tree requires�(n4) time if the keys are distinct and O(n5) time if the keys are non-distinct. �(n3)space is required in both cases. A modi�cation is introduced which reduces a factor ofn2 in the asymptotic time to a factor of n� lg(n) when the smallest probability of accessof any key is �(n��). This yields an asymptotic improvement any time the smallestaccess probability is greater than �(n�2). The space requirement is not a�ected. Forexample, when access probabilities are distinct and the smallest access probabilityis �(1=n), the modi�ed algorithm requires only O(n3 lgn) time (as opposed to theO(n4) result mentioned above). Several natural re�nements to the basic modi�cationare presented which should improve the time within the same asymptotic order.

IntroductionA binary split tree (BST) is a structure for storing records on which searcheswill be performed, assuming that the probabilities of access are known in advance.For every subtree T in a BST, the record with the highest access probability ofall records in T is stored in the root of T . The remaining records are distributedamong the left and right subtrees of T such that the keys of all records in the leftsubtree are less than the keys of all records in the right subtree. Each node ina BST contains the key value of the record in that node and a split value whichlexically divides the values of the keys in the left and right subtrees. A simple splitvalue is the value of the largest key in the left subtree.Under the assumption of distinct access probabilities and no failed searches,for any given set of n records, the key to be put in the root is predetermined butthe split value for the root may be chosen to divide the remaining n�1 recordsbetween the left and right subtrees in any of n possible ways. If failed searches areconsidered, the split value may be any of n+2 possibilities.Binary split trees were introduced by Sheil [6], who conjectured that thearbitrary removal of nodes with high access probabilities from the lexicographicordering (for placement in roots of higher subtrees) made the normal dynamicprogramming techniques inapplicable. However, Huang and Wong [2] and Perl[5] noted that the keys missing from any given range must be the keys with thelargest access probabilities in that range of keys, thus allowing a representationof the set of keys in a subtree by specifying a range of keys and a count of thenumber of keys missing from that range. This led to �(n5) time and �(n3) spacedynamic programming algorithms to construct optimal BSTs in a manner similarto Knuth's algorithm [4] for constructing optimal binary search trees. Thesealgorithms did not handle the case of non-distinct access probabilities, but Perloutlined a method to handle this case requiring exponential time. Hester, et. al.- 2 -

[1] presented an improvement which reduced the time required by a factor of �(n),resulting in a total time of �(n4) for distinct access probabilities. Their algorithmalso constructed optimal trees in the presence of non-distinct access probabilitiesin O(n5) time.Huang and Wong [3] de�ned generalized binary split trees (GBSTs), whichrelax the constraint that the key in the root of any subtree be the key with highestaccess probability of the (remaining) keys in that subtree, and presented an O(n5)algorithm which construct optimal GBSTs. They noted that BSTs, as well asbinary search trees, are subsets of GBSTs, and showed that optimal GBSTs mayhave smaller expected search cost than optimal BSTs (which have already beenshownmay be much better than optimal binary search trees). They noted, however,that the di�erence in expected cost between optimal BSTs and optimal GBSTsappears to be small.This paper presents modi�cations to Hester, et. al.'s optimal BST algorithmwhich restrict the number of values of one of the loop variables when knowledgeabout the application is su�cient to guarantee a lower bound of �(n��) on thesmallest probability of access of keys for any data set which may arise in thatapplication. When such a bound can be guaranteed, the modi�cations reduce afactor of n2 in the algorithm's asymptotic time requirement to a factor of n� lg(n).yThus, for example, if knowledge about a given application is su�cient to show thatthere exists a constant c such that the smallest access probability cannot be lessthan c=n (for any data set consistant with that application with su�ciently large n),then the modi�ed algorithm will require only O(n3 lgn) time instead of the O(n4)time required without the modi�cations. The modi�cations do not adversely a�ectthe algorithm's asymptotic time if no lower bound on access probability can beguaranteed, thus they may be used on all data sets and, since the value of � isnot actually built into the algorithm (it is used only for analysis), asymptotic gainy lg(n) denotes the logarithm base 2 of n. - 3 -

in speed will occur for bounded distributions without actually proving or evenknowing the bounds. The modi�cations are also directly applicable to Huang andWong's optimal GBST algorithm, yielding the same improvement.1. The AlgorithmOnly an outline of the algorithm su�cient to understand our modi�cationswill be presented here. The reader is directed to Hester, et. al. [1] for a fulldescription of the algorithm.We are given n records indexed from 1 to n. Each record ri has a key Key(i)such that Key(i)<Key(j) for all i<j. Each record ri also has an access probabilityp(i). In addition, to account for failed searches, we are given failure probabilitiesq(i) for 0� i� n, which are the probabilities of searching for a key K such thatKey(i) < K < Key(i+1). To complete the de�nitions of the probabilities in auniform fashion and to simplify the algorithms, p(0) = p(n+1) = 0 and Key(0)and Key(n+1) are de�ned to be, respectively, �1 and 1.The following assumes that access probabilities are distinct. The modi�ca-tions for dealing with non-distinct access probabilities are of no consequence to ourresults.De�ne a range of records i to j to be the set of records whose indices are inthe range i+1; i+2; . . . ; j. Let i; j; k refer to the sequence of probabilities�q(i); p(i+1); q(i+1); p(i+2); . . . ; q(j�1); p(j)	where the largest k access probabilities (p's) are left out of the sequence. Sincerecords are ordered by key value, the records with the k largest access probabilitiescould be anywhere in the sequence. A subtree T spans the sequence i; j; k if thesubtree contains all records whose access probabilities are in i; j; k , and containsno other records. A record r is said to be missing from a subtree T if the indexof r is in the range i to j and T spans i; j; k , but r's access probability is not in- 4 -

i; j; k . In other words, r is missing from T if it is in the range of T , but has oneof the k highest access probabilities in that range, which causes it to be placed inthe root of some higher subtree. Perl [5] gave a simple proof that the keys missingfrom any subtree T must be the keys with the largest access probabilities that Tspans, and that these keys must be stored in an ancestor of the root of T .As in [1], let COT [i; j; k] be the cost of an optimal subtree spanning i; j; k ,which is de�ned byCOT [i; j; k] =W [i; j; k] + mini<l<j8>><>>: COT�i; l;GEL(i; j; k; l)�+COT�l; j; k+1�GEL(i; j; k; l)�9>>=>>;where W [i; j; k] is the weight of a subtree (not counting the k missing nodes) andGEL(i; j; k; l) is the number of records, in the range of the left subtree of a BSTT spanning i; j; k with a split index of l, which have probability greater than orequal to that of the root of T .The following is an outline of the main portion of Hester, et. al.'s [1] dynamicprogramming algorithm for calculating an optimal BST. The interspersed orderformulas represent time required by blocks of statements that are of no consequenceto our result. - 5 -

begin�(n)for d 2 until n+ 1 dofor i 0 until n+ 1� d do beginj i+ dfor k 0 until d� 1 do begin�(1)for l i+ 1 until j � 1 do begin�(1) or O(n)end�(1)end�(1)endend Figure 1. Loop outline of split tree algorithm.The innermost block requires �(1) time (to look up the costs of optimal subtreesof a subtree spanning i; j; k and split at index l) when access probabilities aredistinct, and O(n) time otherwise (to consider distributions between left and rightsubtrees of missing records with access probabilities equal to that of the root).Huang and Wong's [3] optimal GBST algorithm conforms to this outline withthe negligible exceptions of variable names, di�erences of at most one on some ofthe loop indices, and the innermost block is replaced by two loops which take O(n)time. 2. The ModificationIntuitively, a large range of records cannot be located too low in an optimaltree due to the fact that the weight of those records, that low in the tree, wouldmake the overall expected cost of the tree too high. We note that any subtreespanning i; j; k must be at least k deep in the tree, since the k missing nodesmust be on the path from the root of the tree to the root of the subtree. We bound- 6 -

the values of k which need be considered for a given range of records by eliminatingany values which would result in too great a cost being contributed to the tree. Inthis section we present the basic modi�cations in simple form and an analysis ofthe time gained, and then in the next section we discuss some re�nements alongthe same lines.Sheil [6] de�ned a median split tree where, by always choosing a split valuesuch that the number of records in the left and right subtrees are equal (or nearlyso), an almost complete tree results. Since this is a valid split tree and has a worstcase cost of lg(n) probes, therefore lg(n) is an upper bound on the expected costof any optimal split tree. Consequently lg(n) is an upper bound for the sum of theweighted path lengths (weight of a node multiplied by its depth in the tree) in anyoptimal split tree. Thus, any subtree whose weight multiplied by the depth of itsroot is greater than lg(n) cannot be part of any optimal split tree.Referring to Figure 1, for a given d (= j � i), we can determine a range ofvalues of k for which any subtree spanning i; j; k cannot be a part of an optimalBST, and which therefore need not be considered. Assume that, before beginningthe algorithm, we search the list of records to determine s, the value of the smallestaccess probability among the records. The cost contributed to the entire tree byany subtree spanning i; j; k is at least W [i; j; k].(the depth of the subtree). Sincek is a lower bound on the depth of the subtree, and it contains (d� k) nodes eachof which weighs at least s, the subtree must contribute a cost of at least ks(d� k)to the split tree. This is greater than lg(n) for k in the rangeBADk = 8<:d�qd2 � 4s lgn2 < k < d+qd2 � 4s lgn2 9=;Thus, values of k in the range BADk need not be considered. Note that this boundis only de�ned for d � p(4=s) lg n. For smaller values of d, BADk is the emptyrange. Removing the BADk range from the \k" loop of the algorithm constitutes- 7 -

the majority of our modi�cation. The only other modi�cation that needs to bemade is in the innermost loop, when costs of subtrees are looked up in the COTarray. A check must be made to see if these subtrees were not considered, (i.e., ifks(d � k) > lgn). If so, their weight was not previously computed, but should beconsidered to be in�nite so as to eliminate possibility of their use.
The analysis is straightforward. Assume that the access probability of thesmallest record is �(n��) (i.e., s = cn�� for some constant value c). Substitutingthis value into the de�nition of BADk we �nd that, for values of d greater thanf(n) = p(4=c)n� lgn, the number of values of k which can be ignored is at leastpd2 � (4=c)n� lgn. Thus the number of values of k which need to be consideredin this case is no more than d �pd2 � (4=c)n� lgn. For smaller values of d, thede�nition of BADk yields no improvement to the old upper bound on the numberof values of k which need to be considered, which is d.
Since the number of values of the inner loop variables i, k, and l are allbounded by the value of the outer loop variable d (i will have no more than n� dvalues, k will be bounded as described above, and l will have no more than dvalues), an upper bound on the asymptotic time required by the algorithm can beexpressed as a sum of the products of these bounds:- 8 -

f(n)Xd=2(n � d).d.d+ n+1Xd=f(n)+1(n � d)�d�qd2 � (4=c)n� lgn� d< f(n)Xd=2 nf2(n) + n n+1Xd=f(n)+1d�d�qd2 � (4=c)n� lgn�< nf3(n) + n n+1Xd=f(n)+1d0@d�sd2 � 4n� lgnc +�2n� lgncd �2 +s�2n� lgncd �21A� nf3(n) + n n+1Xd=f(n)+1d0@d�s�d� 2n� lgncd �2 +s�2n� lgncd �21A= nf3(n) + n n+1Xd=f(n)+1d�d� �d� 2n� lgncd �+ 2n� lgncd �� nf3(n) + n n+1Xd=1 4cn� lgn= n �4cn� lgn�32 + n(n + 1)4cn� lgn= O �n 32�+1 lg 32 n+ n�+2 lgn�Since the algorithm for distinct access probabilities never takes more thanO(n4) time, (3=2)�+1 � �+2 for all 1 � � � 2, and the additional loop to handlenon-distinct access probabilities adds at most a factor of n to the asymptotic time,the modi�ed algorithm has an upper bound ofO �minfn4; n�+2 lgng� for distinct access probabilitiesO �minfn5; n�+3 lgng� for non-distinct access probabilitiesThus the algorithm's asymptotic time is decreased whenever � < 2.Since we ignored any possible improvement on the innermost O(n) loopwhich deals with non-distinct access probabilities, we can similarly assume noimprovement (and certainly no degradation) on the corresponding additional loopsin Huang and Wong's [3] optimal GBST algorithm. Thus the same modi�cationand analysis are possible for their algorithm, leading to the same improvement.- 9 -

3. Natural RefinementsThe above modi�cation was the simplest possible. Several natural improve-ments may be made which may speed the algorithm up by constants.First, the cost of lg(n) used as a limit for the cost of the subtrees may beimproved by precalculating the expected cost of a median split tree for the givenrecords. A few nodes with high access cost can make this limit much lower thanlg(n), and thus further reduce the number of values of k that need be considered.The other half of the analysis used a lower bound of s(d � k) for the totalweight of a subtree. During the loop through the values of k which have not beenruled out by the lower bound on cost, the true weight of each subtree is known andmay be consulted to recognize further subtrees which are too heavy to contributeto any optimal tree. This test should also be substituted in the innermost loop forthe test which checks to see if a given subtree's cost was previously calculated.The lower bound on the expected cost contributed by a subtree can be furtherre�ned by noting that, for a subtree at depth (at least) k, there must be k nodesalong the path from the root of the tree to the root of the subtree. These nodes allhave weight at least that of the root of the subtree and, since they must lie on apath from the root of the tree to the root of the subtree, their contributed cost isat least (and possibly much more than) p�R[i; j; k]�k(k + 1)=2 �where R[i; j; k] isthe index of the root of the subtree spanning i; j; k �. A more accurate value maybe obtained by taking the k largest weights in the range and calculating the exactcost they would contribute (the heaviest would be at depth 1, the next heaviest atdepth 2, etc.). All such sums may be computed in a dynamic programming fashionwhich will increase time and space only by constant factors.Finally, for any subtree spanning d nodes there are n � d nodes in the restof the tree which are all at a depth of at least one, and therefore contribute anexpected cost of at least s(n�d). A more accurate bound, which is no more di�cult- 10 -

to calculate, is 1 � (the weight of the subtree and all nodes in the path from theroot of the subtree to the root of the tree).These re�nements lead to the formulakW [i; j; k] + kXx=1 xp�R[i; j; x � 1]�+ �1�W [i; j; 0]� � Cmwhere p�R[i; j; x]� is the weight of the root of an optimal subtree spanning i; j; kand Cm is the expected cost of a median split tree for the records. An analysis,using the lower bounds W [i; j; k] � s(d � k) (as before) and p�R[i; j; x]� � s,indicates no asymptotic improvement.From a practical standpoint, the �rst and third terms of the left side of theinequality above are inexpensive and can only decrease the expected number ofsubtrees which are considered. Although the sum on the left and Cm on the rightboth appear to contribute strong bounds, they each require su�cient additionalwork �O(n2) to calculate costs of all paths from subtree roots to the root of thetree, and O(n lg n) to calculate the cost of a median split tree� that it may bebetter to use the less accurate but less expensive bounds of R[i; j; k]k(k+1)=2 andlg(n). These decisions are probably best made empirically.Conclusions and Open QuestionsA modi�cation to an algorithm for constructing optimal binary split treeshas been presented which reduces a factor of n2 in the asymptotic time to a factorof n� lg(n) when the smallest access probability of records is �(n��). In the bestcase, when the smallest access probability is known to be O(1=n), a factor of n inthe required time is reduced to a factor of lg(n). These bounds on probabilitiesneed not be known to achieve the improvement: the algorithm may be run withoutasymptotic loss of speed (relative to the unmodi�ed algorithm) on all data sets, andimprovements will occur whenever the data sets are bounded. It is likely that, for- 11 -

unbounded data, the algorithm will still prune enough loops to o�set the constantfactor of extra work it performs.It would be interesting to determine, either theoretically or empirically, whate�ect the re�nements have on the run-time of the algorithm.It seems unlikely that the lower bound on the algorithm is di�erent from theupper bound we provided, but this is yet to be shown.Other methods of expressing our bounds may lead to more accurate analysesSimilarly, di�erent bounds may lead to di�erent (and better) modi�cations (oralgorithms). References1. J. H. Hester, D. S. Hirschberg, S.-H. S. Huang and C. K. Wong,Faster construction of optimal binary split trees,J. Algorithms, to appear.2. S.-H. S. Huang and C. K. Wong, Optimal binary split trees,J. Algorithms 5 (1984) 69{79.3. S.-H. S. Huang and C. K. Wong, Generalized binary split trees,Acta Informatica 21 (1984) 113{123.4. D. E. Knuth, \The Art of Computer Programming," Vol. 3, \Sorting andSearching," pp. 433{439, Addison{Wesley, Reading, Mass., 1973.5. Y. Perl, Optimum split trees, J. Algorithms 5 (1984) 367{374.6. B. A. Sheil, Median split trees: A fast lookup technique for frequentlyoccurring keys, Comm. ACM 21 (1978) 947{958.- 12 -

