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ABSTRACT: A class of algorithms is presented for maintaining self-organizing
sequential search lists, where the only permutation applied is to move the accessed
record of each search some distance towards the front of the list. During searches,
these algorithms retain a back-pointer to a previously probed record in order to
determine the destination of the accessed record’s eventual move. The back-pointer
does not traverse the list, but rather it is advanced occasionally to point to the
record just probed by the search algorithm. This avoids the cost of a second
traversal through a significant portion of the list, which may be a significant savings
when each record access may require a new page to be brought into primary
memory. Probabilistic functions for deciding when to advance the pointer are
presented and analyzed. These functions demonstrate average case complexities
of measures such as asymptotic cost and convergence similar to some of the more
common list update algorithms in the literature. In cases where the accessed record
is moved forward a distance proportional to the distance to the front of the list,
the use of these functions may save up to 50% of the time required for permuting

the list.



1. INTRODUCTION

Sequential searches are performed on a list of initially unordered records. After
a record is found, the list is permuted by some algorithm in an effort to place
the more frequently accessed records closer to the front of the list, thus reducing
expected search time. One common application in which this situation arises is a
list (or lists) of identifiers maintained by a compiler or interpreter. The list cannot
be initially ordered since frequencies are unknown, but since most programs tend to
access some identifiers much more often than others, the more frequently accessed
identifiers should be nearer the front of the search list containing them. In general,
sequential searches may be useful any time the number of elements is small, the
space is severely limited, or the performance of sequential search is acceptable and
there is a desire to keep the code simple [Ben85]. In any of these cases, the extra
few lines of code required to make the list self-organizing can improve the expected
search time significantly. Interesting questions are what algorithms can be used
for this permutation, and how do they perform relative to each other in terms of

expected search time.

We propose a new class of algorithms, called JUMP, which is based on
retaining a back pointer in the list during searches to be used for determining what
reordering shall take place. We show that specific members of this class involving
probabilistic functions can be made to demonstrate the same permutations, in the
average case, as some of the more commonly proposed algorithms in the literature,

but the permutations themselves can often be accomplished more efficiently.

2. BACKGROUND

The accessed record is the record we are looking for, and the probed record is the

record we are currently looking at during the search.



For a given initial list configuration and search sequence p, the cost of a
permutation algorithm « is the average number of comparisons made per record
searched over all searches in p. To determine expected cost in a given case, it is
necessary to make some assumptions about the contents of p. The most common
assumption is that there is a fixed probability of access for each record, and that
accesses to records are independent of each other. Under this assumption the
asymptotic cost of the algorithm is the limit of the average cost per access as |p|

ncreases.

It is usually assumed that the initial list is unordered. As « permutes the list
after each access, the expected search time for the next record should decrease until
a steady state is reached where many further permutations by « are not expected
to increase or decrease the expected search time significantly. Note that this steady
state is not any single ordering of the list, or even a set of orderings, but rather a
condition where further changes are not expected to have a significant effect on the
average search time. When we say an algorithm converges on its steady state, we
mean that the effect of further permutations on the average search time decreases
as permutations are performed, and the effect should approach zero as the number
of permutations approaches infinity. Rate of convergence and asymptotic cost are

often tradeoffs in permutation algorithms.

2.1. Algorithms

The following commonly analyzed permutation algorithms will be referenced
relative to the results of this paper. The reader is directed to [Bit79, Gon81, Hes85]

for more complete lists and analyses.

Mowe-to-front moves the accessed record, when found, to the front of the list
if it is not already there. This algorithm tends to converge quickly to a steady
state, but the price of this convergence speed is a large asymptotic cost since a

record accessed only once moves all the way to the front, which increases the costs



of accesses to many other records. When the search sequence has a large degree
of locality (the searches to some records are not evenly distributed throughout the
sequence), move-to-front is quick to adjust to the changing probabilities of access

for local sections of the sequence.

Transpose moves the accessed record, if not at the front of the list, up one
position by changing places with the record just ahead of it. Thus a record only
approaches the front of the list if it is accessed frequently. The slower record
movement gives transpose slower convergence, but the resultant stability tends to
keep the expected cost of its steady state lower than that of mowve-to-front for

search sequences having a small degree of locality.

Mowve-ahead-k, a compromise between the relative extremes of mowve-to-front
and transpose, moves the record forward k positions where k can be a constant
or a function of n and/or the location of the accessed record. Adjusting the
value of k allows the system to be tuned to obtain a good tradeoff of asymptotic
cost vs. convergence. No formal techniques currently exist for this tuning, but a
decent improvement should be possible by empirically observing the effect of small

adjustments.

Due to the tradeoff between convergence rate and asymptotic cost, Bitner
[Bit79] proposed hybrid algorithms that initially use an algorithm with fast conver-
gence (such as mowve-to-front) until that algorithm approaches its steady state and
then switching to an algorithm with a better asymptotic cost (such as transpose)

for further searches.

2.2. Data Structure

A standard assumption is that the list is linked. This allows moving a single record
in constant time by relinking, once the record is found and the destination of the
move has been determined. Move-to-front and transpose determine where to move

the record in constant time, since a pointer to the front of the list is available, and



the last record probed can easily be remembered. However, algorithms that move
the record any non-constant distance forward may spend time proportional to the

distance of the move searching for the destination of the move.

We also assume that all records that will be searched for are in the list, and
we can therefore ignore failed searches. If this assumption is false, we merely add
detection of the end of the list to the search algorithm and append the record to
the end of the list. In this case, whatever permutation is normally called for would

be applied as usual.

3. THE JUMP FUNCTION

We wish to find record . Our algorithm initially sets a back-pointer b to the first
record in the list, and then begins searching. Each time a record p is probed and is
not x, a boolean function [ is evaluated. If 3 is true, bis advanced to p. The search
then continues. When « is found, x is moved just ahead of b, unless b is « (which
is true if and only if x is at the front of the list). Note that  can cause a record to
move forward any distance between 1 and the full distance to the front of the list.
The evaluation of 3 after a failed probe at the first record in the list will have no
effect because the initial value of b is already pointing to this record. Otherwise,
the back-pointer always points at least 1 record behind the probed record. The

following simplified search algorithm illustrates the use of the function:



function search( searchkey, listhead )
begin
b « listhead
p «— listhead
while KEY [p] # searchkey do begin
if 3 then b« p
p— NEXTIp]
end
remove p from list
re-insert p in front of b
return p
end

The main advantage of this algorithm is that it allows moving a record forward
a distance other than one place or all the way to the front of the list without
requiring a second search through the list looking for the place to move to. This
provides the ability to tune the system without paying the cost of (up to) doubling
the traversal time that was required by mowve-ahead-k. If the keys are extremely
large or (more likely) there are a large number of small records (as with object lists
in LISP, for example), then each access will have a good chance of requiring access
to slower secondary memory. The dynamic (linked) nature of the list prevents
simple attempts to keep records that are close to each other (in terms of their
logical location in the list) on the same physical page of memory as searches and

permutations progress.

More efficient search structures are often advisable in these cases, but a simple
linear list may be advisable when space is at a premium, or when the efficiency of
linear search good enough to desire avoiding complicated additions to the code.
Bentley and McGeoch [Ben85] provide a list of other situations in which self-
organizing sequential search is useful. JUMP can provide for a significant constant

speedup in any of these cases without adding much complexity to the code.

f may be any function desired. Thus we have defined a class of algorithms

rather than a single one. J may take any parameters desired, such as the location



of the probed record, the location of the record pointed to by the back-pointer,
the number of accesses previously performed, the length of the list, etc. These
potential parameters, however, require space proportional to the log of the number

of records or the log of the number of accesses.

We define JUMP(p,b) as a class of 3 functions that take as parameters the
locations of the current record being probed and the current back-pointer. We will
give analyses of the use of various JUMP functions.

Note that move-to-front can be implemented by having JUMP always evalu-
ate to false, and transpose can be implemented by having JUMP always evaluate
to true. By using a non-constant JUMP function, we are able to move z forward
by various distances without the need of additional searching to find where to move
x. Since JUMP is calculated once for every record probed, the total time spent
is of the same order as the time needed to perform a linear search to find where
to move x, but calls to a simple JUMP function may have a trivial cost when

compared with accesses to secondary memory.

Although b and p are pointers to records, we will occasionally refer to them
as integer values corresponding to the logical distance from the front of the list to
the record to which they point. Thus, if we say that a record at p is expected to
move forward .5p, we mean that the record pointed to by the search probe will

move halfway to the front of the list from its current location.

3.1. Fixed Jumps

This set of jump functions is based on the idea that the locations at which the
backpointer is advanced are predetermined, or fixed. An unfortunate side-effect of
these fixed ranges is a difficulty with predicting average distances which records
will move once they begin to be somewhat ordered, as this biases the probability of
the record being at various locations within a range. This problem will be solved

by the probabilistic functions of the next section; the functions of this section are



given primarily to demonstrate the difficulties of analyzing simple non-probabilistic

jump functions.

3.1.1. Constant Moves
Let JUMP(p,b) = (p > b+ 2¢) for any fixed integer ¢. Assuming records are in
any location with equal probability, advancing the backpointer every 2¢ steps will

clearly result in records moving an average of about ¢ logical positions forward in

the list.

The assumption that records are equally likely to be in any of the relative
locations between jump points may be valid initially, when the list is assumed to
be unordered, but the effects of JUMP over many calls will, on the average, cause
the elements with higher probabilities to be located closer to the front of the search
list. This means that it is not clear what the average p as a function of b will be,
since the records which are closer to the front of the list will be more likely to be
found than records which are further from the front. Even knowing the average
value of p may not be sufficient, since the distribution of weights may affect the

average move distance.

It appears that the effect of this could be predicted only by making further
assumptions about the values of the probabilities; however, we can predict that the
average moves would be less than those predicted by the formula derived above,
since the heavier weights would be nearer the backpointer. This might be looked
upon as a desirable attribute, since we would like quick convergence when the list
is unordered, with a better asymptotic cost as the list becomes more ordered. It
would demonstrate a behavior similar to the hybrid algorithms proposed by Bitner
[Bit79] for similar results. Proving this and determining the magnitude of the
decreasing move, if any, is an open question we choose not to pursue due to the

superior analysis permitted by probabilistic backpointers.



3.1.2. Fractional Moves

Let JUMP(p,b) = (p/b > ¢) for any fixed ¢ > 1. Intuitively, the backpointer will
be advanced every time the probe reaches a power of ¢, but this turns out to be
the case only when ¢ is integer. For non-integer values of ¢, the points at which
a jump takes place are still fixed, but the cumulative effect of the cutoffs in the
boolean relation cause the true jump points to diverge from powers of ¢. For any
given backpointer location b (b is any of a predetermined set) the average fraction
of p that a record will move, in terms of ¢ (assuming an equal probability that p

lies anywhere in the range from b+ 1 to [bc]), is
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For sufficiently large values of b, this is approximated by
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This approximation may be solved for ¢ numerically to obtain average moves of any
desired fractional quantity. The following table gives examples of some ¢ values for
desired moves, and the lowest value of b after which the true average from b+ 1 to

[bc| differs from the approximation by no more than .5%:

desired move c lowest b
10p 1.23 150
25p 1.73 102
.50p 3.51 40
T5p 10.35 14
.90p 37.15 4

As in the case of constant moves, this analysis breaks down as the records

begin to be ordered by probability of access. We again expect this to reduce the



average move distances, but the amount of that reduction is predictable only by

assuming a function for the distribution of accesses.

The accuracy of the formula above is also affected by the fact that the size
of the list is probably not such that a jump point happens to fall at the end. This
means that the records in the last range will contribute a shorter average fractional
movement than other ranges. This difference is severe when a larger average move
is desired. For example, if we used ¢ = 3.5 in order to obtain an average move of
.5p, then about 7/11 of all of the records are in this last range. These records will
contribute low fractional moves to the overall average, which will not be properly
offset by the non-existent records in the higher portion of that range. Thus, the
true average move may still be shorter than expected, without even taking into

account the eventual ordering of records.

It should be possible to reduce this error by assuming that the end of the list
occurs midway in a range, or by leaving the size of the list as a variable to be filled
in when it 1s known. Although this would lead to a more accurate result for this
model, we do not pursue it since the following algorithms serve the same purpose

and may be analyzed more accurately.

3.2. Probabilistic Jumps

The primary difficulty with the methods described above is that the eventual
ordering of the records biases the average movement within a given range, making
analysis difficult. The following probabilistic functions remove the fixed ranges
between jumps, thus allowing calculation of the expected distance from any given
record to the backpointer without worrying about where in a given range that

record may be.

In the following, the definitions of JUMP are independent of the value of b
and thus will be denoted simply as JUMP(p) rather than JUMP(p,b).
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3.2.1. Constant Moves

Let the probability that JUMP(p) evaluates to true be 1/¢ for any fixed ¢ > 1.
Recall that, unless a record is found in the first location of the list, it will move
forward at least one position. It will move further only if JUMP(p—1) evaluated
to false, which happens with probability 1—1/¢. In this case, the record will move
the single space to the previous position in the list plus the expected move distance
from that position. This gives the following recurrence for the expected distance a

record found at location r will move forward:
0 r=1
Mc(r,c) =
1+(1-1/¢)Mc(r —1,¢) r>1
Although this could be solved as a non-homogeneous first-order finite difference
equation, a simple solution can be obtained for r > 1 by noting that the equation
is equivalent to a finite geometric series and simplifying:

Me(r,e) = i (1 - %)

1=0

1 r—1
:c—c<1——>
c

Note that this result also satisfies the function for r = 1.

For ¢ << r, ¢ is a good approximation of the expected move distance M¢.
For e~r, Mc ~r(1—1/e) ~ .63r. For ¢ >>r, Mo approaches r—1 from below.
This will only be significant if something more is known about the probabilities of
accesses for records such that most of the accesses are expected to be to positions
not much larger than ¢. In cases like this (where ¢ implies desired moves equal to
or greater than the expected distance to the front), move-to-front is a better choice

for an algorithm.

3.2.2. Fractional Moves
Sleator and Tarjan [Sle85] extended amortized results by Bentley and

McGeoch [Ben85] to prove that the search time resulting from moving a record

- 11 -



forward a fraction of the distance to the front is no worse than a constant times
the optimal off-line algorithm. They further showed that the constant is 2 for
move-to-front and is inversely proportional to the fraction moved. Although
move-to-front has the best bound by this measure, moving a smaller fraction of the
full distance may be profitable if the search sequence has a small degree of locality.

The following function allows movement of any desired fraction in the average case.

Let the probability that JUMP(p) evaluates to true be defined as

>
Pr(JUMP(p) evaluates to true) = {C/p p=c

1 p<c
for some constant ¢>0. The expected distance a record located at location r will
move forward will be
0 r=1
Mp(r,e) =<1 r>1, ¢>r—1

1—|—<1—L1>MF(T—1,C) r>1, e<r—1
r —

We again have a non-homogeneous first-order finite difference equation, but this
time the non-constant coefficient complicates matters. Fortunately we can bound

the solution fairly easily, obtaining a formula which is acceptably accurate.

First note that, for ¢ € N and ¢ < r — 1, simple induction shows that
Mp(r,¢) = r/(c+ 1). This immediately gives us the ability to set ¢ to obtain
simple moves less than or equal to .5p. For non-integer values of ¢ greater than 1,
the value of M can probably be bounded acceptably, but the following step will
make this unnecessary.

If we wish to move records forward more than .5p, it is necessary to find out
what happens when 0 < ¢ < 1. Unfortunately, simple induction on natural values
of ¢ does us no good here. We prove that Mp(r,¢) = r/(c + 1) for all ¢ in this
range, with an error of at most one. Our proof includes, as a bonus, all values of

¢ > 1 (non-integer as well as integer).
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To prove: for all ¢ > 0 and p > [e+ 1],

7

+1

—1<M <
c+1 - F(r7c)_c—|—1

Proof by induction on r.

Basis: r = [+ 1].

Case 1: 0 <c< 1
Since r = ¢+ 1] =1, Mp(r,¢) = 0 by definition.
In this case, 1/2 <r/(c+1) < 1.
We then know that

7

_1<M < -
o1 1sMrlne) s T g

Case 2: ¢ >1
Sincer = e+ 1] <c¢+1and r > 2, Mp(r,¢) =1 by definition.
In this case, 0 <r/(c4+1) < 1.

We then know that

7

< MF(T, C) <

1
c+1 _c—|—1+

Combining these two cases we see that, for all ¢ > 0, when r = [¢+ 1],

—-1<M < 1
c+1 - F(r7c)_c—|—1+
Inductive step:
Assume, for all ¢ > 0 and for some r > |[e¢+ 1],
r
—-1<M < 1
c+1 - F(r7c)_c—|—1+
It is necessary to prove that
r+1 r+1
—-1< M 1,e) < 1
c+1 - F(r—l_ 7c)_c—l—l—l_
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Note that, by definition,
M(r+1,¢)=1+ <1 — E) Mp(r,c)
r
Substituting this into the inductive hypothesis, we obtain

C T C T
1 <1——> 1) <M 1e)<1 <1——> 1
+ 7 (c—l—l >_ F(r—l_ c)_ + 7 c—|—1+

r+1
c+1

r—l—l_l_l_f

c+1 7

—1—|—E§MF(T—|—1,C)§
r
Since r and ¢ are both positive, it is seen that ¢/r > 0 and therefore

1 1
T —1§MF(T—|—1,C)§T+1—I—1

c+1 c

Solving for ¢, it is seen that a move of any fraction f of p may be attained by
setting ¢ = 1/ f —1. Thus we have shown that JUMP may be used to move records
forward by a distance which is within 1 of any desired fraction of the distance
to the front of the list, without need of re-reading records to determine the move
destination either during or after the search.

Note that this result is similar to the fixed jump, but is independent of the

fact that the records will become partially ordered over time.

4. SUMMARY AND OPEN QUESTIONS

We have presented a method of employing probabilistic back-pointers to implement
self-organizing lists for sequential search. This method can be used to implement
many of the permutation rules that involve moving only the accessed record some
distance forward in the list. In the case where each record is large and requires a
significant amount of time to read, this method avoids re-reading a large number
of records. Examples showed how constant and fractional moves could be achieved

on the average.
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For initially random lists, the functions for probabilistic jumps achieve the
same average behavior as the functions for fixed jumps. As the lists become ordered,
the behavior of the fixed jump functions changes in a manner which may be difficult
to analyze. The probabilistic functions maintain consistent behavior independent
of the permuting of the list.

All of the random JUMP functions presented here have decreasing probabil-
ities as p increases. We have not considered functions for which the probabilities
increase with time, or where the difference between p and b is used instead of just
p. We conjecture that, in both of these cases, the resultant move-up would be a
constant, and therefore would not be of utility since we already have a random
function giving constant moves. Nevertheless, it might be worthwhile to pursue
these cases and verify their behavior.

There may be useful strategies that move records forward other than a con-
stant amount or a fraction of the distance to the front. It might be interesting
to search for these, and determine whether a JUMP function can be made to
implement them.
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