
Self-Organizing Search Lists Using Probabilistic Back-PointersJ. H. HesterD. S. HirschbergUniversity of California, Irvine
ABSTRACT: A class of algorithms is presented for maintaining self-organizingsequential search lists, where the only permutation applied is to move the accessedrecord of each search some distance towards the front of the list. During searches,these algorithms retain a back-pointer to a previously probed record in order todetermine the destination of the accessed record's eventual move. The back-pointerdoes not traverse the list, but rather it is advanced occasionally to point to therecord just probed by the search algorithm. This avoids the cost of a secondtraversal through a signi�cant portion of the list, which may be a signi�cant savingswhen each record access may require a new page to be brought into primarymemory. Probabilistic functions for deciding when to advance the pointer arepresented and analyzed. These functions demonstrate average case complexitiesof measures such as asymptotic cost and convergence similar to some of the morecommon list update algorithms in the literature. In cases where the accessed recordis moved forward a distance proportional to the distance to the front of the list,the use of these functions may save up to 50% of the time required for permutingthe list.

1. INTRODUCTIONSequential searches are performed on a list of initially unordered records. Aftera record is found, the list is permuted by some algorithm in an e�ort to placethe more frequently accessed records closer to the front of the list, thus reducingexpected search time. One common application in which this situation arises is alist (or lists) of identi�ers maintained by a compiler or interpreter. The list cannotbe initially ordered since frequencies are unknown, but since most programs tend toaccess some identi�ers much more often than others, the more frequently accessedidenti�ers should be nearer the front of the search list containing them. In general,sequential searches may be useful any time the number of elements is small, thespace is severely limited, or the performance of sequential search is acceptable andthere is a desire to keep the code simple [Ben85]. In any of these cases, the extrafew lines of code required to make the list self-organizing can improve the expectedsearch time signi�cantly. Interesting questions are what algorithms can be usedfor this permutation, and how do they perform relative to each other in terms ofexpected search time.We propose a new class of algorithms, called JUMP, which is based onretaining a back pointer in the list during searches to be used for determining whatreordering shall take place. We show that speci�c members of this class involvingprobabilistic functions can be made to demonstrate the same permutations, in theaverage case, as some of the more commonly proposed algorithms in the literature,but the permutations themselves can often be accomplished more e�ciently.2. BACKGROUNDThe accessed record is the record we are looking for, and the probed record is therecord we are currently looking at during the search.- 2 -

For a given initial list con�guration and search sequence �, the cost of apermutation algorithm � is the average number of comparisons made per recordsearched over all searches in �. To determine expected cost in a given case, it isnecessary to make some assumptions about the contents of �. The most commonassumption is that there is a �xed probability of access for each record, and thataccesses to records are independent of each other. Under this assumption theasymptotic cost of the algorithm is the limit of the average cost per access as j�jincreases.It is usually assumed that the initial list is unordered. As � permutes the listafter each access, the expected search time for the next record should decrease untila steady state is reached where many further permutations by � are not expectedto increase or decrease the expected search time signi�cantly. Note that this steadystate is not any single ordering of the list, or even a set of orderings, but rather acondition where further changes are not expected to have a signi�cant e�ect on theaverage search time. When we say an algorithm converges on its steady state, wemean that the e�ect of further permutations on the average search time decreasesas permutations are performed, and the e�ect should approach zero as the numberof permutations approaches in�nity. Rate of convergence and asymptotic cost areoften tradeo�s in permutation algorithms.2.1. AlgorithmsThe following commonly analyzed permutation algorithms will be referencedrelative to the results of this paper. The reader is directed to [Bit79, Gon81, Hes85]for more complete lists and analyses.Move-to-front moves the accessed record, when found, to the front of the listif it is not already there. This algorithm tends to converge quickly to a steadystate, but the price of this convergence speed is a large asymptotic cost since arecord accessed only once moves all the way to the front, which increases the costs- 3 -

of accesses to many other records. When the search sequence has a large degreeof locality (the searches to some records are not evenly distributed throughout thesequence), move-to-front is quick to adjust to the changing probabilities of accessfor local sections of the sequence.Transpose moves the accessed record, if not at the front of the list, up oneposition by changing places with the record just ahead of it. Thus a record onlyapproaches the front of the list if it is accessed frequently. The slower recordmovement gives transpose slower convergence, but the resultant stability tends tokeep the expected cost of its steady state lower than that of move-to-front forsearch sequences having a small degree of locality.Move-ahead-k , a compromise between the relative extremes of move-to-frontand transpose, moves the record forward k positions where k can be a constantor a function of n and/or the location of the accessed record. Adjusting thevalue of k allows the system to be tuned to obtain a good tradeo� of asymptoticcost vs. convergence. No formal techniques currently exist for this tuning, but adecent improvement should be possible by empirically observing the e�ect of smalladjustments.Due to the tradeo� between convergence rate and asymptotic cost, Bitner[Bit79] proposed hybrid algorithms that initially use an algorithm with fast conver-gence (such as move-to-front) until that algorithm approaches its steady state andthen switching to an algorithm with a better asymptotic cost (such as transpose)for further searches.2.2. Data StructureA standard assumption is that the list is linked. This allows moving a single recordin constant time by relinking, once the record is found and the destination of themove has been determined. Move-to-front and transpose determine where to movethe record in constant time, since a pointer to the front of the list is available, and- 4 -

the last record probed can easily be remembered. However, algorithms that movethe record any non-constant distance forward may spend time proportional to thedistance of the move searching for the destination of the move.We also assume that all records that will be searched for are in the list, andwe can therefore ignore failed searches. If this assumption is false, we merely adddetection of the end of the list to the search algorithm and append the record tothe end of the list. In this case, whatever permutation is normally called for wouldbe applied as usual.
3. THE JUMP FUNCTIONWe wish to �nd record x. Our algorithm initially sets a back-pointer b to the �rstrecord in the list, and then begins searching. Each time a record p is probed and isnot x, a boolean function � is evaluated. If � is true, b is advanced to p. The searchthen continues. When x is found, x is moved just ahead of b, unless b is x (whichis true if and only if x is at the front of the list). Note that � can cause a record tomove forward any distance between 1 and the full distance to the front of the list.The evaluation of � after a failed probe at the �rst record in the list will have noe�ect because the initial value of b is already pointing to this record. Otherwise,the back-pointer always points at least 1 record behind the probed record. Thefollowing simpli�ed search algorithm illustrates the use of the function:- 5 -

function search(searchkey, listhead)beginb listheadp listheadwhile KEY [p] 6= searchkey do beginif � then b pp NEXT [p]endremove p from listre-insert p in front of breturn pendThe main advantage of this algorithm is that it allows moving a record forwarda distance other than one place or all the way to the front of the list withoutrequiring a second search through the list looking for the place to move to. Thisprovides the ability to tune the system without paying the cost of (up to) doublingthe traversal time that was required by move-ahead-k . If the keys are extremelylarge or (more likely) there are a large number of small records (as with object listsin LISP, for example), then each access will have a good chance of requiring accessto slower secondary memory. The dynamic (linked) nature of the list preventssimple attempts to keep records that are close to each other (in terms of theirlogical location in the list) on the same physical page of memory as searches andpermutations progress.More e�cient search structures are often advisable in these cases, but a simplelinear list may be advisable when space is at a premium, or when the e�ciency oflinear search good enough to desire avoiding complicated additions to the code.Bentley and McGeoch [Ben85] provide a list of other situations in which self-organizing sequential search is useful. JUMP can provide for a signi�cant constantspeedup in any of these cases without adding much complexity to the code.� may be any function desired. Thus we have de�ned a class of algorithmsrather than a single one. � may take any parameters desired, such as the location- 6 -

of the probed record, the location of the record pointed to by the back-pointer,the number of accesses previously performed, the length of the list, etc. Thesepotential parameters, however, require space proportional to the log of the numberof records or the log of the number of accesses.We de�ne JUMP(p; b) as a class of � functions that take as parameters thelocations of the current record being probed and the current back-pointer. We willgive analyses of the use of various JUMP functions.Note that move-to-front can be implemented by having JUMP always evalu-ate to false, and transpose can be implemented by having JUMP always evaluateto true. By using a non-constant JUMP function, we are able to move x forwardby various distances without the need of additional searching to �nd where to movex. Since JUMP is calculated once for every record probed, the total time spentis of the same order as the time needed to perform a linear search to �nd whereto move x, but calls to a simple JUMP function may have a trivial cost whencompared with accesses to secondary memory.Although b and p are pointers to records, we will occasionally refer to themas integer values corresponding to the logical distance from the front of the list tothe record to which they point. Thus, if we say that a record at p is expected tomove forward :5p, we mean that the record pointed to by the search probe willmove halfway to the front of the list from its current location.3.1. Fixed JumpsThis set of jump functions is based on the idea that the locations at which thebackpointer is advanced are predetermined, or �xed. An unfortunate side-e�ect ofthese �xed ranges is a di�culty with predicting average distances which recordswill move once they begin to be somewhat ordered, as this biases the probability ofthe record being at various locations within a range. This problem will be solvedby the probabilistic functions of the next section; the functions of this section are- 7 -

given primarily to demonstrate the di�culties of analyzing simple non-probabilisticjump functions.3.1.1. Constant MovesLet JUMP(p; b) = (p � b + 2c) for any �xed integer c. Assuming records are inany location with equal probability, advancing the backpointer every 2c steps willclearly result in records moving an average of about c logical positions forward inthe list.The assumption that records are equally likely to be in any of the relativelocations between jump points may be valid initially, when the list is assumed tobe unordered, but the e�ects of JUMP over many calls will, on the average, causethe elements with higher probabilities to be located closer to the front of the searchlist. This means that it is not clear what the average p as a function of b will be,since the records which are closer to the front of the list will be more likely to befound than records which are further from the front. Even knowing the averagevalue of p may not be su�cient, since the distribution of weights may a�ect theaverage move distance.It appears that the e�ect of this could be predicted only by making furtherassumptions about the values of the probabilities; however, we can predict that theaverage moves would be less than those predicted by the formula derived above,since the heavier weights would be nearer the backpointer. This might be lookedupon as a desirable attribute, since we would like quick convergence when the listis unordered, with a better asymptotic cost as the list becomes more ordered. Itwould demonstrate a behavior similar to the hybrid algorithms proposed by Bitner[Bit79] for similar results. Proving this and determining the magnitude of thedecreasing move, if any, is an open question we choose not to pursue due to thesuperior analysis permitted by probabilistic backpointers.- 8 -

3.1.2. Fractional MovesLet JUMP(p; b) = (p=b � c) for any �xed c > 1. Intuitively, the backpointer willbe advanced every time the probe reaches a power of c, but this turns out to bethe case only when c is integer. For non-integer values of c, the points at whicha jump takes place are still �xed, but the cumulative e�ect of the cuto�s in theboolean relation cause the true jump points to diverge from powers of c. For anygiven backpointer location b (b is any of a predetermined set) the average fractionof p that a record will move, in terms of c (assuming an equal probability that plies anywhere in the range from b + 1 to dbce), is1dcbe � b dbceXp=b+1 p� bp = 1� bdb(c � 1)e �Hdcbe �Hb�This can be approximated as= 1� bdb(c� 1)e �lndcbe � ln b+�� 1dcbe����1b��For su�ciently large values of b, this is approximated by1� ln cc� 1This approximation may be solved for c numerically to obtain average moves of anydesired fractional quantity. The following table gives examples of some c values fordesired moves, and the lowest value of b after which the true average from b+1 todbce di�ers from the approximation by no more than .5%:desired move c lowest b:10p 1:23 150:25p 1:73 102:50p 3:51 40:75p 10:35 14:90p 37:15 4As in the case of constant moves, this analysis breaks down as the recordsbegin to be ordered by probability of access. We again expect this to reduce the- 9 -

average move distances, but the amount of that reduction is predictable only byassuming a function for the distribution of accesses.The accuracy of the formula above is also a�ected by the fact that the sizeof the list is probably not such that a jump point happens to fall at the end. Thismeans that the records in the last range will contribute a shorter average fractionalmovement than other ranges. This di�erence is severe when a larger average moveis desired. For example, if we used c = 3:5 in order to obtain an average move of:5p, then about 7=11 of all of the records are in this last range. These records willcontribute low fractional moves to the overall average, which will not be properlyo�set by the non-existent records in the higher portion of that range. Thus, thetrue average move may still be shorter than expected, without even taking intoaccount the eventual ordering of records.It should be possible to reduce this error by assuming that the end of the listoccurs midway in a range, or by leaving the size of the list as a variable to be �lledin when it is known. Although this would lead to a more accurate result for thismodel, we do not pursue it since the following algorithms serve the same purposeand may be analyzed more accurately.3.2. Probabilistic JumpsThe primary di�culty with the methods described above is that the eventualordering of the records biases the average movement within a given range, makinganalysis di�cult. The following probabilistic functions remove the �xed rangesbetween jumps, thus allowing calculation of the expected distance from any givenrecord to the backpointer without worrying about where in a given range thatrecord may be.In the following, the de�nitions of JUMP are independent of the value of band thus will be denoted simply as JUMP(p) rather than JUMP(p; b).- 10 -

3.2.1. Constant MovesLet the probability that JUMP(p) evaluates to true be 1=c for any �xed c � 1.Recall that, unless a record is found in the �rst location of the list, it will moveforward at least one position. It will move further only if JUMP(p�1) evaluatedto false, which happens with probability 1�1=c. In this case, the record will movethe single space to the previous position in the list plus the expected move distancefrom that position. This gives the following recurrence for the expected distance arecord found at location r will move forward:MC (r; c) = (0 r = 11 + (1� 1=c)MC(r � 1; c) r > 1Although this could be solved as a non-homogeneous �rst-order �nite di�erenceequation, a simple solution can be obtained for r > 1 by noting that the equationis equivalent to a �nite geometric series and simplifying:MC(r; c) = r�2Xi=0 �1� 1c�i= c� c�1� 1c�r�1Note that this result also satis�es the function for r = 1.For c << r, c is a good approximation of the expected move distance MC .For c� r, MC � r(1�1=e) � :63r. For c>>r, MC approaches r�1 from below.This will only be signi�cant if something more is known about the probabilities ofaccesses for records such that most of the accesses are expected to be to positionsnot much larger than c. In cases like this (where c implies desired moves equal toor greater than the expected distance to the front), move-to-front is a better choicefor an algorithm.3.2.2. Fractional MovesSleator and Tarjan [Sle85] extended amortized results by Bentley andMcGeoch [Ben85] to prove that the search time resulting from moving a record- 11 -

forward a fraction of the distance to the front is no worse than a constant timesthe optimal o�-line algorithm. They further showed that the constant is 2 formove-to-front and is inversely proportional to the fraction moved. Althoughmove-to-front has the best bound by this measure, moving a smaller fraction of thefull distance may be pro�table if the search sequence has a small degree of locality.The following function allows movement of any desired fraction in the average case.Let the probability that JUMP(p) evaluates to true be de�ned asPr(JUMP(p) evaluates to true) = �c=p1 p � cp < cfor some constant c>0. The expected distance a record located at location r willmove forward will beMF (r; c) =8>><>>: 0 r = 11 r > 1; c � r � 11 +�1� cr � 1�MF (r � 1; c) r > 1; c � r � 1We again have a non-homogeneous �rst-order �nite di�erence equation, but thistime the non-constant coe�cient complicates matters. Fortunately we can boundthe solution fairly easily, obtaining a formula which is acceptably accurate.First note that, for c 2 N and c � r � 1, simple induction shows thatMF (r; c) = r=(c + 1). This immediately gives us the ability to set c to obtainsimple moves less than or equal to :5p. For non-integer values of c greater than 1,the value of MF can probably be bounded acceptably, but the following step willmake this unnecessary.If we wish to move records forward more than :5p, it is necessary to �nd outwhat happens when 0 < c < 1. Unfortunately, simple induction on natural valuesof c does us no good here. We prove that MF (r; c) = r=(c + 1) for all c in thisrange, with an error of at most one. Our proof includes, as a bonus, all values ofc > 1 (non-integer as well as integer). - 12 -

To prove: for all c > 0 and p � bc+ 1c,rc+ 1 � 1 �MF (r; c) � rc+ 1 + 1Proof by induction on r.Basis: r = bc+ 1c.Case 1: 0 < c < 1Since r = bc+ 1c = 1, MF (r; c) = 0 by de�nition.In this case, 1=2 � r=(c + 1) � 1.We then know that rc+ 1 � 1 �MF (r; c) � rc+ 1 � 12Case 2: c � 1Since r = bc+ 1c � c+ 1 and r � 2, MF (r; c) = 1 by de�nition.In this case, 0 � r=(c + 1) � 1.We then know that rc+ 1 �MF (r; c) � rc+ 1 + 1Combining these two cases we see that, for all c > 0, when r = bc+ 1c,rc+ 1 � 1 �MF (r; c) � rc+ 1 + 1Inductive step:Assume, for all c > 0 and for some r � bc+ 1c,rc+ 1 � 1 �MF (r; c) � rc+ 1 + 1It is necessary to prove thatr + 1c+ 1 � 1 �MF (r + 1; c) � r + 1c+ 1 + 1- 13 -

Note that, by de�nition,M(r + 1; c) = 1 + �1� cr�MF (r; c)Substituting this into the inductive hypothesis, we obtain1 + �1� cr�� rc+ 1 � 1� �MF (r + 1; c) � 1 + �1� cr�� rc+ 1 + 1�r + 1c+ 1 � 1 + cr �MF (r + 1; c) � r + 1c+ 1 + 1� crSince r and c are both positive, it is seen that c=r > 0 and thereforer + 1c+ 1 � 1 �MF (r + 1; c) � r + 1c+ 1 + 1Solving for c, it is seen that a move of any fraction f of p may be attained bysetting c = 1=f �1. Thus we have shown that JUMP may be used to move recordsforward by a distance which is within 1 of any desired fraction of the distanceto the front of the list, without need of re-reading records to determine the movedestination either during or after the search.Note that this result is similar to the �xed jump, but is independent of thefact that the records will become partially ordered over time.4. SUMMARY AND OPEN QUESTIONSWe have presented a method of employing probabilistic back-pointers to implementself-organizing lists for sequential search. This method can be used to implementmany of the permutation rules that involve moving only the accessed record somedistance forward in the list. In the case where each record is large and requires asigni�cant amount of time to read, this method avoids re-reading a large numberof records. Examples showed how constant and fractional moves could be achievedon the average. - 14 -

For initially random lists, the functions for probabilistic jumps achieve thesame average behavior as the functions for �xed jumps. As the lists become ordered,the behavior of the �xed jump functions changes in a manner which may be di�cultto analyze. The probabilistic functions maintain consistent behavior independentof the permuting of the list.All of the random JUMP functions presented here have decreasing probabil-ities as p increases. We have not considered functions for which the probabilitiesincrease with time, or where the di�erence between p and b is used instead of justp. We conjecture that, in both of these cases, the resultant move-up would be aconstant, and therefore would not be of utility since we already have a randomfunction giving constant moves. Nevertheless, it might be worthwhile to pursuethese cases and verify their behavior.There may be useful strategies that move records forward other than a con-stant amount or a fraction of the distance to the front. It might be interestingto search for these, and determine whether a JUMP function can be made toimplement them.Acknowledgments. Our thanks to the referees, whose comments on earlierdrafts led to enhancements in accuracy and completeness.REFERENCES1. Bentley, J.L., and McGeoch, C.C. Amortized Analyses of Self-OrganizingSequential Search Heuristics Commun. ACM 28, 4 (Apr. 1985), 404{411.2. Bitner, J.R. Heuristics that Dynamically Organize Data Structures. SIAM J.Comput. 8, 1 (Feb. 1979), 82{110.3. Gonnet, G.H., Munro, J.I., and Suwanda, H. Exegesis of Self-Organizing LinearSearch. SIAM J. Comput. 10, 3 (Aug. 1981), 613{637.4. Hester, J.H., and Hirschberg, D.S. Self-Organizing Linear Search. ComputingSurveys, 17, 3 (Sept. 1985) 295{311.5. Sleator, D.D., and Tarjan, R.E. Amortized E�ciency of List Update and PagingRules. Commun. ACM 28, 2 (Feb. 1985) 202{208.- 15 -

CR Categories and Subject Descriptors: D.4.2 [Operating Systems]:Storage Management|swapping; E.1 [Data]: Data Structures|lists; tables; F.2.2[Analysis of Algorithms and Problem Complexity]: NonnumericalAlgorithms and Problems|sorting and searching; G.3 [Mathematics ofComputing]: Probability and Statistics|Probabilistic algorithmsGeneral Terms: Algorithms, TheoryAdditional Key Words and Phrases: linear search, self-organizing,move-to-front, paging.

Biographical SketchesJ. H. Hester is a Ph.D. student in the Department of Information andComputer Science at the University of California, Irvine. His research interestsinclude data structures and the design and analysis of algorithms.D. S. Hirschberg is the Associate Chair of Graduate Studies in the departmentof Information and Computer Science at the University of California, Irvine. Hisresearch interests include the design and analysis of combinatorial algorithms forserial and parallel systems.

