
The Traveler’s Problem

D.S. Hirschberg and L.L. Larmore
University of California, Irvine

California State University, Dominguez Hills

Abstract

The Traveler’s Problem (TP) entails determining the maximum distance that can be

traversed along a road, given the locations and room rates of inns along that road, and given the

constraints of maximum distance per day and limited budget available for overnight stays at

inns. An OP(n 3
5_
(log n) 3

1_
) time algorithm is presented for the TP. An OP(n 3

5_
(log n) 3

4_
)-time

algorithm for computing a minimum height B-tree for a dictionary of length n is given, by

reducing the problem to OP(log n) instances of the TP.

1. Introduction

In this paper, we describe and solve the Traveler’s Problem. Suppose a traveler must

journey along a road on which there are located various inns, each charging different room rates.

The traveler must stop at an inn each night, and pay the cost of that inn out of his limited budget.

(He need not pay for an inn at his start or destination.) There is a further restriction on how far

the traveler can travel in one day. We assume that the inns are spaced closely enough that the

traveler can always travel from one inn to the next inn in one day. The problem is, for each

starting point, what is the farthest point down the road the traveler can reach on his limited

budget? The duration (i.e., number of intermediate stops) of the journey is not constrained. The

version of the problem we solve allows arbitrary starting points.

Besides the intrinsic interest of the Traveler’s Problem, the techniques developed in this

paper may have relevance to other problems whose solution is expressed by a dynamic

programming algorithm. In particular, we note that the ideas contained in this paper have

immediate application to a problem on B-trees. Following McCreight [M], Diehr and Faaland

Authors’ address: Department of Information and Computer Science, University of California, Irvine, CA 92717.

[DF] have given an OP(n3 log n) time algorithm for constructing a minimum height B-tree for a

given scroll of words. We show how their minimum height B-tree problem can be reduced to

OP(log n) instances of the Traveler’s Problem, and thus obtain an o(n2)-time algorithm for finding

a minimum height B-tree.

Formal definition of the Traveler’s Problem. Let w1, ... wn be non-negative weights.

(Think of wi as the cost of staying in the ith inn.) We are also given a constant B (the budget

constraint) and an array Farthest, where Farthest[i] is the greatest index j such that the traveler

can travel from the ith inn to the jth inn in one day. We assume that Farthest is monotone, i.e.,

Farthest[i+1] ≥ Farthest[i]. Without loss of generality, Farthest(i) > i for all i < n. We define a

journey from i0 to id to be a list (i0, ... id) such that ik ≤ Farthest[ik–1]. The cost of that journey is

Σ
k=1

d–1

wk, and we say that the journey is feasible if its cost does not exceed B. The output for the

problem is an array Max_Journey such that Max_Journey[i] is the greatest index j for which

there is a feasible journey from i to j.

Algorithms and their complexity. The Traveler’s Problem (TP) is a restricted version of

the all-pairs Minimum Weight Path problem for a directed graph, and hence can be solved in

O(n3) time using Floyd’s algorithm. The concavity condition of [HL] is satisfied by the TP, and

thus it reduces to the all-pairs Least Weight Subsequence problem. The concavity condition is

that if i0 < i1 < j0 < j1 are vertices of a directed acyclic graph, indexed in topological order,

wt(i0,j0) + wt(i1,j1) ≤ wt(i0,j1) + wt(i0,j1)

where wt(i,j) is the cost of an edge from i to j. In the TP, either the two sums are equal or the

right one is infinity. Thus, by the methods of [HL], the TP can be solved in O(n2 log n) time.

More recently, using [AK], Wilber [W] has developed a linear time algorithm for the

single source LWS problem, which implies an O(n2) time algorithm for the TP. In this paper, we

give a subquadratic time algorithm for the TP. It remains an open question as to whether the TP

be solved in linear time.

2. The Single Start Algorithm

- 2 -

In this section, we give a method of determining the maximum journey from any given

starting point in linear time.

We describe an algorithm which computes, for any given i, the value of Max_Journey[i],

using the methods introduced in [HL]. The time for the SSA is linear — not just OP(n), but

actually OP(Max_Journey[i] – i). This distinction will become important, as the SSA is used as a

subroutine for the more sophisticated algorithms introduced later.

Let fP(i,j) be the minimum cost of any journey from i to j. The values of fP can be

computed using the following recurrence:

fP(i,j) = 0, if j ≤ Farthest(i)

= min {fP(i,k) + wk | j ≤ Farthest(k) }, for j > Farthest(i)

Using the above recurrence, there is a simple quadratic-time dynamic programming

algorithm which, for fixed i, computes the values of fP(i,j) in order of increasing j, starting with j

= i. Then Max_Journey(i) can be defined to be the largest j for which fP(i,j) ≤ B. (Since fP is

monotone, by Lemma 1 below, the computation may halt when fP(i,j) > B for any j.) Such an

algorithm ignores the special properties of the problem which allow speed-up by an entire order

of magnitude. Using a stack with a pointer, reminiscent of the input-restricted deque of [HL], we

can construct a linear time algorithm for the SSA.

We will assume that Farthest[i] > i, since otherwise there are no possible non-trivial

journeys. We will also assume existence of a fictitious stop at n+1.

Lemma 1. fP(i,j) is doubly monotone. That is, fP(i,j) ≤ fP(i,j+1), and fP(i,j) ≤ fP(i–1,j).

Proof. Any journey from i to j+1 gives rise to a journey from i to j of the same cost; on

the last day, the traveler simply stops at j instead of j+1. More formally, if (i0,i1, ... id–1,id) is a

journey, where i0 = i and id = j+1, then (i0,i1, ... id–1,id–1) is a journey of the same cost from i to j.

Thus, fP(i,j) ≤ fP(i,j+1). It can similarly be shown that fP(i,j) ≤ fP(i–1,j).

The function g. We now introduce the notation g(i,j) = fP(i,j) + wj, except for the special

- 3 -

case j = i, where we let g(i,i) = 0. The SSA algorithm successively computes g(i,j) for j in the

range i ≤ j ≤ Farthest(i), using the recurrence

g(i,i) = 0

g(i,j) = wj + min{g(i,k) | j ≤ Farthest(k) }

The values of fP(i,j) will be computed also in the process. Those values of g which could be of

use in computing future values of g will be saved on a stack, which will be organized in such a

way as to allow computation of each g(i,j) in OP(1) amortized time.

Lemma 2. Any value g(i,k) such that g(i,k) > g(i,k´) for some k´ > k plays no role in the

solution to the SSA.

Proof. Suppose fP(i,j) = g(i,k) for some j ≤ Farthest[k]. By Lemma 1, j ≤ Farthest[k´].

Thus fP(i,j) ≤ g(i,k´), a contradiction.

We now describe the linear time algorithm for the SSA. We let S be a stack (actually, an

output-restricted deque) of indices. We use Top and Bottom to refer to the extremities of S. We

use the operator Push (Pop) to insert (delete) the element at the top end of S and Drop to delete

the bottom element of S. At any time, S will contain all indices k for which g(i,k) has been

computed and which could possibly be used for computing fP(i,j) and g(i,j) for any future j. That

index k for which g(i,k) is minimized will always be at the bottom of the stack, and hence will be

the correct choice of k in the recurrence.

The invariant of the main loop of the algorithm is that k ≤ j ≤ Farthest[k] for all kO∈ OS, that

g(i,k) ≤ g(i,k´) for any k,k´O∈ OS such that k < k´, and that S is maximal subject to those conditions.

It follows from Lemma 1 that the choice of k such that fP(i,j) = g(i,k) is always k = Bottom.

The stack is updated in three ways. When any index (always the bottom one) is out of

range, it is dropped from the stack. When a new value of g is computed, the monotonicity of the

g(i,k) for kO∈ OS must be preserved when j is pushed onto S. Thus, all k for which g(i,j) < g(i,k)

must be removed from S. By monotonicity, these will always be the topmost zero or more items.

The final kind of update is pushing j after g(i,j) has been computed.

- 4 -

The SSA

S ← empty stack

Push(i)

g(i,i) ← 0

j ← i

loop
j ← j+1

while j > Farthest[Bottom] loop
Drop

end while
if S is empty or g(i,Bottom) > B then Exit

g(i,j) ← g(i,Bottom) + w
j

while g(i,j) < g(i,Top) loop
Pop

end while
Push(j)

end loop
Max_Journey[i] ← j–1

Time analysis. The number of values of j which will be pushed onto S during execution

of the algorithm is Max_Journey[i] – i + 1. Each item is also removed from the stack at most

once, so the total time for the algorithm is linear in that quantity.

Best journeys. There can be multiple journeys of maximum length. Ties are resolved as

follows among feasible journeys starting between the same two indices. First, a journey of lower

cost is better. Among two journeys of the same cost, the one which is first in the lexical ordering

of lists is better. (For example, (1,4,9) is better than (1,5,9), if they have the same cost.) If an

array of backpointers is retained, the SSA not only computes Max_Journey[i] but also computes

the best journey of maximum length from i.

The TP can be solved in O(n2) time, by executing the SSA once for each i. This method

fails to make use of the overlapping work which is done by the SSA each time it is executed. In

subsequent sections, we show how to do this.

3. The Bottleneck Algorithm

- 5 -

In this section, we describe how to compute the array Max_Journey if the road contains

sufficiently many bottlenecks, i.e., long sections of road with very few inns. (The traveler must

spend at least one night somewhere in a bottleneck, and has very few choices.)

Bottlenecks. We define a bottleneck to be any interval β = [b,c] such that every journey

that starts before b and ends after c must contain a stop in β. We can think of a bottleneck as a

stretch of road that is so long that the traveler must make at least one overnight stop while

traversing that stretch. For example, [i,Farthest(i)] is a bottleneck.

If β is a bottleneck, we say that i is bottlenecked by β if every maximum length journey

from i must start, end, or contain a stop in β. It is easily seen that i is bottlenecked by β = [b,c] if

and only if [i,Max_Journey(i)]∩[b,c] is non-empty, i.e., i ≤ c and b ≤ Max_Journey(i).

Back_Journey. We define Back_Journey(j) to be the smallest i for which j ≤

Max_Journey(i). The problem of computing Back_Journey is equivalent to and also symmetric

to the problem of computing Max_Journey, hence Back_Journey(j) can be computed for a

specific j by running the SSA backwards from j.

Theorem 3. If β = [b,c] is a bottleneck of length lP, and if Back_Journey(b) ≤ r ≤ b and s =

Max_Journey(c), then Max_Journey(i) can be computed for all iO∈ O[r,c] in OP((s–r)lP) time.

Proof. Use the SSA to compute fP(k,j) for all kO∈ Oβ, taking OP((s–b)lP) time. Then use the

SSA (backwards from k) to compute fP(i,k) for all iO∈ O[r,c], taking OP((c–r)lP) time.

For kO∈ Oβ, define Max_Journey_Stopk(i) to be the largest j for which there is a feasible

journey from i to j which has a stop at k. Thus,

Max_Journey_Stopk(i) = k, if fP(i,k) ≤ B < fP(i,k) + wk

= the maximum j such that fP(i,k) + wk + fP(k,j) ≤ B, if fP(i,k) + wk ≤ B

= undefined, otherwise

Since fP is doubly monotone (Lemma 1), Max_Journey_Stopk can be computed for all

iO∈ O[Back_Journey(k),k] by the following loop.

- 6 -

j ← Max_Journey(k) (Use the SSA algorithm)

Max_Journey_Stop
k
(k) ← j

i ← k–1

while i ≥ r and fP(i,k) ≤ B loop
while j > k and fP(i,k)+w

k
+fP(k,j) > B loop

j ← j – 1

end loop
Max_Journey_Stop

k
(i) ← j

end loop

It takes OP(s–r) time to execute that loop, for each k, hence OP((s–r)lP) time to compute

Max_Journey_Stopk(i) for all k and all i. Finally, Max_Journey(i) is the maximum of

Max_Journey_Stopk(i) over all k for which it is defined. Those maxima can all be computed in

OP((s–r)lP) time. This concludes the proof of Theorem 3.

The Bottleneck Algorithm. We define an lP-bottleneck to be a bottleneck of length at most

lP. We say that an index i is lP-bottlenecked if there exists some lP-bottleneck β such that i is

bottlenecked by β.

Theorem 4. Max_Journey(i) can be computed for all indices which are lP-bottlenecked in

OP(nlP) time.

We first construct a list β1, ... βM of selected lP-bottlenecks such that every lP-bottlenecked

index is bottlenecked by some selected lP-bottleneck. That is, the list must satisfy the following

condition: If j is an lP-bottlenecked index then there is a selected bottleneck β such that

β∩[j,Max_Journey(j)] is non-empty.

The set of all lP-bottlenecks can be easily identified by scanning the array Farthest. In

particular, b is the left endpoint of an lP-bottleneck if and only if b = 1 or Farthest[b–1] ≤ b+lP–1.

Let Β be the set of all left endpoints of lP-bottlenecks. The selected lP-bottlenecks are chosen by

the following loop:

b
1

← 1

m ← 1

loop

- 7 -

c
m

← min{n,b
m

+lP–1}

β
m

← [b
m

,c
m

]

if c
m

= n then Exit

m ← m+1

j ← Max_Journey(c
m–1

) (Use the SSA)

if Β ∩ [b
m–1

+1,j] not empty then
b

m
← maximum element of Β ∩ [b

m–1
+1,j]

else
b

m
← minimum element of Β ∩ [j+1,n]

end if
end loop
M ← m

Lemma 5. Every index i which is lP-bottlenecked is bottlenecked by some βm.

Proof. If iO∈ Oβm, then it is bottlenecked by βm. Assume that cm–1 < i < bm. If

Max_Journey(i) ≥ bm, then i is bottlenecked by βm. Otherwise, by monotonicity of

Max_Journey, Max_Journey(cm–1) ≤ Max_Journey(i) < bm. By the definition of bm, this implies

that Β ∩ [i,Max_Journey(i)] = ∅ , i.e., i is not lP-bottlenecked.

For any m, define rm = max{Back_Journey(bm),cm–1} and sm = Max_Journey(cm).

Lemma 6. Σ
m=1

M

(sm – rm) ≤ 3n.

Proof. For any 1 < m < M, bm+1 > sm–1 = Max_Journey(cm–1), since otherwise it would

contradict the definition of bm as the maximum element in Β ∩ [cm–1,sm–1]. Thus the sums of

the even and odd terms of Σ
k=1

M

(sm – cm) are both at most n. The sum Σ
m=1

M

(cm – rm) clearly does

not exceed n. The result follows.

We now return to the proof of Theorem 4. We first need to show that it takes linear time

to select all βm. All parts of the loop which does this task are clearly linear, except for the part

which computes j. But the SSA can be executed in linear time, and thus all executions of this

step take OP(n) time by Lemma 6. By Theorem 3, Max_Journey(i) can be computed for all

indices in the range [rm,cm] in OP(sm – rm) time. By Lemma 5, every lP-bottlenecked index lies in

[rm,cm] for some m and so, by Lemma 6, Max_Journey(i) can be computed for all i which are lP-

- 8 -

bottlenecked in OP(nlP) time.

4. The Limited Duration Algorithm

In this section, we show how Max_Journey can be computed faster if it is known in

advance that the maximum length journey takes at most d stops for some fixed d.

We introduce the LDA algorithm, which has one parameter d. LDA(d) computes

Max_Journey(i) for all indices i, under the assumption that there is a maximum length journey

from i of duration no greater than d. (We define the duration of a journey to be the number of

steps, this is actually the usual definition of length of a path.)

We define Max_Journeyd(i) to be the maximum value of j for which there is a feasible

journey from i to j of length exactly d. We also define fPd(i,j) to be the minimum cost of any

journey from i to j of duration d. If no such journey exists, fPd(i,j) = ∞. Finally, we define g0(i,i)

= 0 and, for i < j, gd(i,j) = fPd(i,j) + wj.

The values of fPd and gd may be jointly defined by the following recurrence:

g0(i,i) = 0

g0(i,j) = ∞, for j ≠ i

fPd(i,j) = min{ gd–1(i,k) | j ≤ Farthest(k) }, for d > 0

gd(i,j) = fPd(i,j) + wk, for d > 0

It is now possible to compute all fPd(i,j) in OP(n2d) time, and hence to compute

Max_Journeyd(i) for all i. Unfortunately, that time exceeds that of the simple quadratic time

algorithm for Max_Journey obtained by applying the SSA for each index. We will show how to

use the techniques of [HL] and the previous sections to compute the entire array Max_Journeyd

in OP(ndPlogPn) time.

Definitions. Fix d and i. We define Ji,d to be the best feasible journey of duration d,

starting from i. For eO∈ O[0,d], define xi,d,e to be the eth vertex of Ji,d.

- 9 -

Lemma 7. If it is known that ae ≤ xi,d,e ≤ be for all eO∈ O[1,d] then Ji,d can be computed in

OP(Σ
e=1

d

(be–ae+1)) time.

Proof. We reduce the problem to an instance of the TP. Let X be the rectangle

[0,d]×[0,n], which we consider to be linearly ordered using row-major order. We define a new

instance of the TP as follows:

1. The points are the elements of X in row-major order.

2. w(〈r,i〉) = wi + D, where D > B is constant.

3. The budget is B + (d–1)D.

4. Farthest(〈r,i〉) = 〈r+1,Farthest(i)〉

We define a journey in this new problem to be regular if it starts in the 0th row, has

duration d, and advances by one row each step. There is a one-to-one correspondence between

feasible journeys of duration d in the original problem and feasible regular journeys in the new

problem: the journey (i0, ... i) corresponds to (〈0,i0〉 , ... 〈d,id〉). Furthermore, any maximal length

journey starting from the 0th row must be regular. Thus finding the optimal journey from 〈0,i〉 in

the new problem is equivalent to finding the optimal journey of duration d from i in the original

problem. Using the SSA, this can be done in OP(nd) time, which is not as good as what the

theorem claims. However, by the hypothesis of the lemma, we need only consider a certain

subset of X, namely

Y = {〈r,j〉 | rO∈ O[0,d], jO∈ O[ar,br]}

Applying the SSA to this subset of X yields the claimed bound.

Lemma 8. For any fixed d, and for i < j, xi,d,e ≤ xj,d,e for all eO∈ O[0,d].

Proof. Let J´ be the journey of length d whose eth stop, for all e, is min{ xi,d,e, xj,d,e } and

let J´́ be the journey whose eth stop is max{ xi,d,e, xj,d,e }. Now J´ is a journey from i to

Max_Journeyd(i) and J´́ is a journey from j to Max_Journeyd(j). The combined cost of those

two journeys equals the combined cost of Ji,d and Jj,d, which are both of minimum cost. Either

J´ is better than Ji,d or J´́ is better than Jj,d or J´ = Ji,d and J´́ = Jj,d. The first two of those three

choices are impossible, since Ji,d and Jj,d are defined to be best. The statement of the lemma

follows immediately.

- 10 -

Lemma 9. Suppose that we are given a subinterval I⊆ [0,n], and intervals Ir =

[ar,br]⊆ [0,n] for all rO∈ O[1,d] such that, for each iO∈ OI, xi,d,rO∈ OIr. Then Ji,d can be computed for all

iO∈ OI in OP((1+log|I|) Σ
r=1

d

|Ir|) time.

Proof. By induction on |I|. If |I| = 1, the result follows directly from Lemma 7. Suppose

then that |I| > 1. Write |I| as the disjoint union of equal (or nearly so) subintervals |I´| and |I´́ |,

and let j be the endpoint of I´ that divides I´ from I´́ . By Lemma 7, we can compute Jj,d in OP(

Σ
r=1

d

|Ir|) time. Let cr = xj,d,r, let I´r = [ar,cr] and I´́ r = [cr,br]. By Lemma 8, xi,d,rO∈ OJr for all iO∈ OJ

and xi,d,rO∈ OJ´r for all iO∈ OJ´. By the inductive hypothesis, Ji,d can be computed for all iO∈ OI´ in OP(

(1+log|I´|) Σ
r=1

d

|Ir|) time and for all for all iO∈ OI´́ in OP((1+log|I´́ |) Σ
r=1

d

|I´́ r|) time. The claimed

bound follows.

Corollary 10. The values of Max_Journeyd(i) can be computed for all i in OP(ndPlogPn)

time.

Corollary 11. The values of Max_Journeye(i) can be computed for all i and all e ≤ d in

OP(nd2PlogPn) time.

5. The Hybrid Algorithm

In this section, we use the methods of the previous two sections in combination to solve

the TP in subquadratic time in the worst case. The basic idea is this: the Bottleneck and Limited

Duration algorithms are both subquadratic under certain favorable conditions. But these

conditions are in some sense ‘‘opposite:" if there are no bottlenecks, then we know the traveler

can make the longest journey in few stops. We do not need the hypotheses of the BA or the

LDA to hold over the entire road. The Hybrid Algorithm instroduced in this section basically

uses the BA to compute Max_Journey over the portion of the range which is affected by

bottlenecks, and the LDA for the remaining portion. The net result is a subquadratic general

algorithm.

- 11 -

Consider integers lP and d such that lP(d+1) ≥ 2n.

Theorem 12. Any maximum length journey of minimum cost for its length is either lP-

bottlenecked or has duration no greater than d.

Proof. Let J = i0, ... iT be a maximum length journey of minimum cost for its length, and

assume that i0 is not lP-bottlenecked. Consider three consecutive stops of J, namely it–1, it, and

it+1. If it+1 – it–1 < lP, then it can be eliminated from the journey, because i0 is not lP-bottlenecked.

This contradicts the hypothesis that J has minimum cost. Thus, the length of J must be at least

lPI 2
T__K, but which of course cannot exceed n. It follows that T ≤ d.

Theorem 13. The TP can be solved in O(n 3
5_
(log n) 3

1_
) time.

Proof. Pick lP = n 3
2_
(log n) 3

1_
and pick d = I lP

2n__K. Then lP(d+1) ≥ 2n. Compute

Max_Journey(i) for every i which is lP-bottlenecked in OP(nlP) time, by Theorem 4. By Corollary

11, the limited duration algorithm computes Max_Journeye(i) for all i and for all e≤d in OP(nd2

log n) time. If Max_Journey(i) was not computed by the bottleneck algorithm, its value will be

the least of the Max_Journeye(i), by Theorem 12. Thus, Max_Journey(i) is computable for all i

in OP(n 3
5_
(log n) 3

1_
) time.

6. B-Trees

Suppose we wish to construct a dictionary for a set of n words of varying length in the

form of a B-tree. We define a B-tree to be an ordered tree where all leaves have the same depth.

Each node has a fixed capacity, enabling it to store varying numbers of words, depending on the

lengths of those words, and the internal nodes contain enough information to guide the search for

a desired word. One design (which we call the ‘‘guide prefix" case) stores all words in the

leaves. The internal nodes, in this case, contain only pointers to other nodes and prefixes of

words from the dictionary, only long enough to guide the search. For example, if the contents of

an internal node consisted of

(p0,‘b’,p1,‘br’,p2)

- 12 -

then that node would have three children, accessed through the pointers p0, p1, p2. The words in

the subtree accessed by p0 would all be less than ‘b’, the words in the subtree accessed by p1

would be at least ‘b’ but less than ‘br’, and the words in the subtree accessed by p2 would be at

least ‘br’. An alternative design is for actual words to be used as guides in the internal nodes,

these words then need not appear in the leaves. We call this the ‘‘guide word" design. In either

case, the problem is to build a B-tree of minimum height, subject to a given node size. (The

internal nodes must allow space for pointers.) We will assume that the words are not so large as

to make construction of a B-tree impossible.

We now show how the minimum height B-tree problem can be reduced to the Traveler’s

Problem. Let x1, ... xn be the (alphabetically ordered) list of words and let y1, ... yn be the list of

potential guides, either words or prefixes. It is helpful in the discussion to include fictitious

guides y0 and yn+1.

Define a boolean function fP(h,i,j) for all h ≥ 0 and 0 ≤ i < j ≤ n+1, as follows. fP(h,i,j) is

true if and only if it is possible to construct a B-tree of height h holding the portion of the

dictionary consisting of the words found between the guides yi and yj, i.e., words lexically at

least yi but less than yj. The height of the minimum height B-tree for the entire dictionary is thus

the minimum h for which fP(h,0,n+1) holds. Since fP is monotone, i.e., fP(h,i,j) fP(h,i,j–1), the

information represented by fP is equivalent to that represented by the two parameter integer

function FP(h,i) = the largest j for which fP(h,i,j).

Lemma 14. All values of FP(0,i) can be computed in OP(n) time.

Proof. See Diehr and Faaland [DF]. The guide word and guide prefix cases must be

treated slightly differently, but only at this level. In the guide word case, FP(0,i) is the largest j

such that Σ
k=i+1

j–1

|xk| ≤ maximum leaf size. In the guide prefix case, FP(0,i) is the largest j such that

Σ
k=i

j–1

|xk| ≤ maximum leaf size. In either case, the Diehr-Faaland algorithm solves the problem in

linear time.

Lemma 15. If all values of FP(h,i) are known, all values of FP(h+1,i) can be computed by

- 13 -

solving one instance of the Traveler’s problem.

Proof. Let P be the amount of space occupied by one pointer, and let N be the amount of

space in one internal node. We reduce the problem to an instance of the TP as follows.

Let wi = |yi| + P, B = N – P, and Farthest(i) = FP(h,i). Then Max_Journey(i) will be the

correct value of FP(h+1,i) for all i. A journey from i to j corresponds to a B-tree of height h+1 for

the list of all words between yi and yj. The stops of the journey correspond to the guides that

appear in the root node. Each guide takes up space consisting of its own length plus P. The root

must also contain one extra pointer, thus the budget is decreased by P. A step in the journey

from k to lP corresponds to existence of a B-tree of height h consisting of those words between yk

and ylP.

Corollary 16. The minimum height B-tree problem can be solved in

OP(n 3
5_
(log n) 3

4_
) time.

Proof. The height of the B-tree cannot exceed log n.

References

[AK] Aggarwal, A., M. Klawe, S. Moran, P. Shor, R. Wilber. Geometric applications of a

matrix searching algorithm. Algorithmica 2 (1987), 195-208.

[DF] Diehr, G. and B. Faaland. Optimal pagination of B-trees with variable-length items.

Comm. ACM 27, 3 (March 1984), 241-247.

[HL] Hirschberg, D.S. and L.L. Larmore. The least weight subsequence problem. SIAM J.

Comp. 16, 4 (Aug. 1987), 628-638.

[LH] Larmore, L.L. and D.S. Hirschberg. Efficient optimal pagination of scrolls. Comm. ACM

28, 8 (Aug. 1985), 854-856.

- 14 -

[M] McCreight, E.M. Pagination of B*-trees with variable-length records. Comm. ACM 20,

9 (Sept. 1977), 670-674.

[S] Szwarcfiter, J.L. Optimal multiway search trees for variable size keys. Acta Informatica

21, (1984), 49-60.

[W] Wilber, R. The concave least weight subsequence revisited. Preprint (1987).

[Y] Yao, F.F. Efficient dynamic programming using quadrangle inequalities. Proc. 12th

Annual ACM Symp. on Theory of Comput. (April 1980), 429-435.

- 15 -

