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Abstract

Several methods (independent subsamples, leave-one-out, cross-validation, and bootstrapping) have been

proposed for estimating the error rates of classi�ers. The rationale behind the various estimators and the

causes of the sometimes con
icting claims regarding their bias and precision are explored in this paper.

The biases and variances of each of the estimators are examined empirically. Cross-validation, 10-fold

or greater, seems to be the best approach; the other methods are biased, have poorer precision, or are

inconsistent. Though unbiased for linear discriminant classi�ers, the 632b bootstrap estimator is biased for

nearest neighbors classi�ers, more so for single nearest neighbor than for three nearest neighbors. The 632b

estimator is also biased for Cart-style decision trees. Weiss' loo* estimator is unbiased and has better

precision than cross-validation for discriminant and nearest neighbors classi�ers, but its lack of bias and

improved precision for those classi�ers do not carry over to decision trees for nominal attributes.



1 Introduction

The classi�cation problem is: Given a �nite set of classi�ed examples from a population, described

by their values for some set of attributes, infer a mechanism for predicting the class of any member

of the population given only its values for the attributes. Note that this problem is ill-posed (see

Wolpert [62] and Buntine [14]) | there are usually many hypotheses that will account for a given set

of observations, and for this problem in inductive reasoning we are not given su�cient information

to guide us in either hypothesis formation or hypothesis evaluation. Consequently, lacking domain-

speci�c knowledge for the problem at hand, our analysis must be (perhaps implicitly) predicated

on an assumption as to what kinds of relationships between attributes and classes we are likely to

encounter (see Wolpert [59, 61] for a rigorous treatment of these issues of generalization). Since our

knowledge of the universe is faulty, to say the least, and nature is not bound by our assumptions, no

single method for inferring a classi�er can be shown to be uniformly superior from �rst principles

(see also Scha�er [47, 48], for a discussion of generalization as a zero-sum enterprise, the `no free

lunch principle').

These caveats about generalization and algorithmic learning aside, there is abundant evidence that

there are broad classes of similar problems for which particular inference approaches appear to

work well [47, 61]. A current interest in machine learning is in characterizing problems so as to

match them to an appropriate method [4, 26, 50] and in building hybrid classi�ers [11, 35].

Many classi�er inference methods have been proposed, most falling into one of the following four

families: nearest neighbors, discriminant analyses, decision trees or symbolic concept learners, and

neural networks. Regardless of the inference method, there are three immediate questions: (1)

given a classi�er, how accurate is it? (usually, this can only be estimated), (2) given an estimate of

accuracy, how accurate and how precise is the estimate (what are its bias, variance, and con�dence

interval)?, and (3) how much con�dence can be placed in an assertion that one classi�er is more

accurate than another?

Answering these questions is just as much an ill-posed problem of inductive reasoning as the problem

of inferring classi�ers, and subject to all the di�culties raised in the articles by Wolpert and Scha�er

| no one approach to answering these questions is superior for every combination of problem data

set and classi�er inference method, i.e., methods that work well for discriminant analysis applied

to mixtures of multinormal distributions may fare poorly for a nearest neighbors approach to

similar problems [33, 36, 56]. Nontheless, there is abundant empirical evidence that methods such

as cross-validation work well for many, perhaps most, of the situations in machine learning and

pattern recognition which have been studied to date (see Scha�er [47] and Wolpert [61] for extended

analyses of the applicability of cross-validation).

In this paper we deal with the �rst question above and a portion of the second, with methods

for estimating a classi�er's accuracy and the bias and variance of the estimates obtained from

various methods. A second paper [40] deals with the remainder of the second question, con�dence

intervals, and with the third, signi�cance tests. The thesis of both papers is that \. . . the traditional

machinery of statistical processes is wholly unsuited to the needs of practical research . . . the elaborate

mechanism built on the theory of in�nitely large samples is not accurate enough for simple laboratory

data. Only by systematically tackling small sample problems on their merits does it seem possible

to apply accurate tests to practical data." | R. A. Fisher [28] (1925)

Given this thesis, it behooves us to provide guidelines as to when a sample is considered small,

and when traditional methods will su�ce. There is no hard rule here. The 150 instances in the

Iris data [5, 27], for instance, seem adequate for inferring an accurate classi�er and for estimating
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its accuracy and con�dence limits by traditional methods. In a more di�cult problem (say, one

having 16 classes and 100 attributes, contrasted to 3 classes and 4 attributes for the Iris data), a

sample of 150 would be very scanty. Scha�er's [46] notion of the sparseness of the data relative

to the concept to be learned helps to put this in perspective. Sample size is one component of

the equation, complexity of the learned classi�er another, and its error rate yet another. The

interactions of these factors are discussed in conjunction with experiments in which they arise, and

more quantitative guidelines are given in conjunction with speci�c methods.

Vapnik [53, 54] provides bounds on the error of a learning machine in terms of the ratio of the sample

size used in training to a measure (the VC-dimension) of the complexity of the set of functions it

is able to implement. The VC-dimension is a non-intuitive simplicity measure similar in concept

to Goodman and Smyth's J-measure [30] of the information content of a rule (see Wolpert [60] for

a discussion of the practical linkage between abstract and traditional measures of complexity). In

many cases, e.g., back-propagation, the VC-dimension must be measured indirectly, by examining

rates of convergence. The essential result [54] is that the error rate is only trivially bounded (i.e.,

�100%) whenever the sample size is less than half the VC-dimension. This criterion (sample size

less than half the VC-dimension) could be used to de�ne when a sample is considered small. A

more practical heuristic rule takes into consideration the fact that classi�ers form a partition of

the sample space (e.g., the leaves of a decision tree). Whenever the smallest of these partitions

contains fewer than 5 instances, traditional measures such as the �
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test of association are very

suspect [18, 19] | Vapnik's [55] conditions for uniform convergence of frequencies and Wolpert's [60]

assumption of convergence of the mean and mode of a binomial distribution are not satis�ed.

There is a substantial body of literature on estimating expected error rates, and a clear consensus

that some type of resampling technique is necessary to obtain unbiased estimates. These resampling

methods, or estimators, fall into four main families: independent subsamples for classi�er inference

and error rate estimation [9, pp. 11-12], leave-one-out and k-fold cross-validation (subsampling with-

out replacement) methods [9, pp. 12-13], bootstrap (subsampling with replacement) methods [25],

and hybrid methods, such as Efron's [24] 632b bootstrap and Weiss' loo* [58] method. The cross-

validation methods are probably the most widely used, especially when the available samples are

small, with the independent subsamples methods being preferred by some when very large sam-

ples are available. The bootstrap and hybrid methods are computationally expensive and poorly

understood and, hence, not widely used.

There are con
icting reports in the literature as to the bias and precision of the various estimators,

as well as to their power for testing di�erences between classi�ers. In addition to a tutorial review of

the various methods, this and the companion paper also present new and more extensive empirical

studies and a framework for resolving the seemingly contradictory reports.

In Section 2 of the paper, we give a short tutorial on issues relating to error rates, introduce the var-

ious methods, and de�ne terminology used in the remainder of the paper. In Section 3 we present

results of simulation studies on linear discriminant classi�ers for very simple data, which reveal

fundamental di�erences in the bias and precision of the methods. Section 4 presents a brief review

of pertinent literature which suggests that the behavior found for linear discriminant classi�ers

may not generalize to other classi�er learning methods for some of the estimators, especially when

classi�ers are over�tted (e.g., nearest neighbors and decision tree pruning). The results of simula-

tion studies on nearest neighbors classi�ers for simple continuous attribute data are presented in

Section 5, and Section 6 extends these studies to discrete attribute decision trees.

Signi�cant �ndings from the various experiments are summarized in Section 7. Only the cross-

validation (10-fold or greater) methods appear to exhibit consistent behavior across all of the
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learning situations studied here. We caution again that no method can be shown to be superior

for all situations, and that great care must be exercised when extrapolating empirical results away

from the narrow experiments in which they are obtained. However, we do feel that some methods of

statistical inference are more robust (trustworthy under departure from assumptions) than others,

and seek in this paper to shed light on these issues as they relate to estimating error rates from

small samples.

2 Error Rate Terminology and Methods

In this section we provide a tutorial on issues relevant to measuring error rates, and de�ne the

terminology used in the remainder of the paper.

For practical purposes, a population is de�ned by a set of members, a set of classes, a set of

attributes, and the procedures for measuring or assigning the classi�cation and attribute values.

Thus, any measurement errors, naming errors, inconsistencies, or omissions are characteristics of

the population, not of an inference method.

For a given population, there is a hypothetical least-error-rate classi�er, known as a Bayes' Rule for

the population. Its associated inherent minimum error rate (inherent error)

1

would ideally be zero,

but might well be non-zero because of data errors or because the given attributes are not su�cient

to fully separate the classes. This inherent error, also known as the Bayes' optimal error rate [9],

is a �xed (but unknown) quantity, not a random variable. It is of interest here as a summary value

for the population and as a reference target for classi�er inference methods.

For a given population and inference method, there is another hypothetical error rate, which is a

function of the population, sample size, and representation language (which is often implicitly tied

to the inference method). Linear discriminant and single nearest neighbor classi�ers, for instance,

represent the boundaries between classes by a series of hyperplanes. If the least-error classi�er's

boundaries are curved surfaces, methods using linear boundaries can only approximate those least-

error boundaries. The hypothetical classi�er which approximates those boundaries most closely

for a given sample size has the language-intrinsic minimum error rate (language-intrinsic error),

which is greater than the Bayes' Rule inherent error. The language-intrinsic error is a �xed (but

unknown) quantity, not a random variable. It is of interest here because it points out one reason

that di�erent inference methods can lead to classi�ers with very di�erent performance (other causes

are the various search strategies and heuristics used).

These distinctions are illustrated in Figure 1. In Figures 1a and 1b, there are two classes labeled 0

and 1, and each class consists of a single multinormal distribution on the real-valued variables x and

y, depicted by a set of contour lines of constant probability density. In this situation, the classi�er

which has least error, i.e., the inherent error, is de�ned by a curve in the xy plane along which the

probability density of class 0 equals that of class 1. When the covariance matrices of x and y for the

two classes di�er only by a multiplying constant, i.e., when the contours have the same shape and

orientation, but not necessarily the same size, this curve is a straight line, as illustrated in Figure 1a,

and linear discriminant analysis is appropriate | more generally, the classes di�er in the ratio of

the x and y variances or in their covariance, and the boundary is a quadratic curve, as illustrated

1

Throughout this paper, the terms error and error rate (meaning misclassi�cation rate) will be used interchange-

ably. The term bias (rather than error) is used to refer to a systematic di�erence between an error rate estimate

and the true error rate (non-zero average di�erence), the term precision is used to refer to the variability of such

di�erences, and the terms variance or standard deviation to refer to the variability of a particular estimate.
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Figure 1: Illustration of Language-Intrinsic Error
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in Figure 1b. In Figure 1b we also show the linear boundary which has the lowest (the language-

intrinsic) error for these data, and for both �gures we also show typical Cart-style decision tree

boundaries. Cart-style trees express the boundaries as step functions which can asymptotically

2

approximate the true boundaries here, given a su�ciently large sample and inferring a very complex

tree, but cannot exactly express the correct concept with a �nite classi�er. Linear discriminant

analysis has a �xed complexity, and cannot exactly express the correct concept in Figure 1b, nor

even approximate it closely, regardless of the sample size. Of course, there are other data sets,

especially those featuring nominal attributes, where Cart-style trees are more appropriate, and

even a quadratic discriminant cannot express those concepts well.

Figure 1c illustrates another case where ordinary discriminant analyses fail. Here, there are 3 dis-

tinct subpopulations, but only two classes. The correct boundary in this particular case is a pair of

parallel lines (the correct concept here is class=0 if jy�xj�c, else class=1). This case is super�cially

similar to that in Figure 1a, but the correct boundary cannot be found or even closely approxi-

mated by the usual discriminant analyses because these data violate the fundamental assumption

underlying those techniques | namely, that each class is homogeneous, closely approximated by a

2

Gordon and Olshen [31, 32] showed that nonparametric recursive partitioning (e.g., decision tree) methods

asymptotically converge to the Bayes' rule rate. For small samples, these asymptotic results are irrelevant. Also,

methods of �xed complexity, such as linear discriminant analysis, cannot be shown to so converge.
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single multinormal distribution. The best that a discriminant classi�er can do in this case is to set

the boundary as a single line perpendicular to the correct boundary lines and outside the range of

the data, i.e., to default to the rule of always guessing the more frequent class. Here, even though

the decision tree boundaries are a poor approximation, they are a signi�cant improvement over the

usual discriminants (i.e., a Cart-style tree actually has less language-intrinsic error).

These examples illustrate the fact that, in choosing to use a particular learning algorithm (inference

method), we are implicitly making assumptions about the population (the nature and distribution

of the attributes and classes) and the language of a correct, minimum error classi�er. As in all

problems of statistical inference, probably the most crucial step is correctly matching these premises

or underlying assumptions to the problem at hand.

References are frequently found in the literature, e.g., in the classic Cart text [9, pp. 13-17,269-

271], to a Bayes' rule or Bayes' or Bayesian classi�er or rate. As de�ned by Cart [9, pp. 13-14], the

Bayes' optimal error rate is synonymous with the inherent error, in that any other classi�er has at

least this error rate. This Bayes' nomenclature is confusing, for two reasons: (1) the term Bayes'

rule is sometimes used in the context of a particular kind of classi�er (e.g., a Cart-style decision

tree), of a \no data optimal rule" [9, pp. 178,186,190], or of �nding a Bayes' optimal classi�er for a

partition [9, pp. 269-271] | these are references to the language-intrinsic error, not to the inherent

error (i.e., the ideal Cart-style decision tree is not necessarily the best possible classi�er), and

(2) these terms are easy to confuse with Bayes' Theorem and Bayesian statistical analysis | they

might be misconstrued as any classi�er inferred using Bayesian techniques [12, 13, 16, 37, 39], or

as only those classi�ers.

Given a population, a sample of N items from the population (the sample is here de�ned to be all

data currently available for inference and testing), and a classi�er inferred from the sample by some

means, that classi�er has a true error rate | the fraction of items that would be misclassi�ed if

the entire population could be tested. For any deterministic classi�er, the true error rate is a �xed

(but unknown) quantity, a function of the population and classi�er, and not a random variable.

If only a random subset of Q items from the sample is used to infer the classi�er (a training set, the

unused items forming a test set), there is usually a very large number

3

of distinct possible train-

ing/test splits. Since the training set is random, the inferred classi�er is random| if the splitting is

repeated, a di�erent result will probably be obtained due simply to the random resampling variance.

Under random resampling, although the true error of the particular classi�er is a �xed quantity,

it is more appropriate to speak of the true error rate of the resampling estimator | the expected

(mean) value of the true error rates of these individual splits' inferred classi�ers, averaged over

all possible splits. The true error of a particular split's classi�er, or the average of the true error

rates over several splits, is only an estimate of that expected value, and is a random function of

the population, sample, and inference method. Since the sample is not the entire population, the

true error of any particular classi�er can only be estimated from this sample data by some method.

When random resampling is used in obtaining the particular classi�er(s), this becomes a process

of estimating the value of an estimate.

When more than one training/test split is used and estimated errors averaged, a troublesome

question arises: to exactly what classi�er does this averaged error rate correspond? When the

classi�ers are decision trees, for example, there is no practical notion of what it would mean to

average the classi�ers. To answer this question note that (as shown later, see Table 4) for any

3

N ! = Q! (N � Q)! if Q is �xed, otherwise S(2;N) = 2

N�1

� 1 (a Stirling number of the second kind [1]).
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inference method, the classi�er whose true error is closest to the language-intrinsic error is usually

4

to be obtained by using the entire sample for classi�er inference. Then, the solution is fairly clear:

infer a classi�er using all available data and some inference method, and estimate that classi�er's

true error using one or another estimator. One set of criteria for evaluating an estimator are the

bias and precision with which it estimates that whole-sample true error, measured by the average

and rms

5

values of (est { ter) over a wide range of populations and sample sizes (where est is

the estimated and ter the true error).

Note that bias and precision are not �xed properties of an estimator, but depend on the classi�er

inference method being used, on the characteristics of the population, and on the sample size. For

inference methods which allow classi�ers of di�erent complexities to be inferred, e.g., by pruning

a decision tree, bias and precision may also vary with the complexity of the classi�er. Good

experimental practice would dictate that the bias and precision be established for the experimental

conditions at hand by simulation of known populations with characteristics similar to those believed

to obtain for the problem population at hand (this inevitably involves some guesswork, as it is the

structure of the problem population that we are trying to uncover in inferring a classi�er). A more

practical policy would dictate use of error estimators that have been shown by such studies to be

robust under fairly general conditions, and to avoid estimators that are known not to be robust.

As noted in the introduction, various estimators have been proposed:

� Apparent error rate | The fraction of items misclassi�ed when testing on the same items

used to infer the classi�er (the training set), sometimes called the resubstitution estimate [9,

p. 11]. The apparent error is known to be biased (optimistic). In simple nearest neighbors,

for instance, every training item is its own nearest neighbor, resulting in an apparent error

of zero if the data are consistent. This problem is sometimes solved by �nding the nearest

non-identical neighbor, which can be extended to other classi�er types as the leave-one-out

method (see below).

� Independent subsamples | The sample is randomly split into a training set from which the

classi�er is inferred and a test set from which the estimated error rate is later determined.

Typically either one-half, one-third, or one-fourth of the sample is used for the test set. This

process can be iterated many times (random subsampling [58], repeated subsampling [36], or

repeated learning-testing [17]) and the results averaged to reduce the variance.

� k-fold cross-validation | The sample is randomly divided into k approximately equal-size

subsets. For each of the subsets, the remaining k�1 subsets are combined to form a training

set and the resulting classi�er's error rate estimated on the reserved subset. A weighted

average of the k error rate estimates is used, weighted for the test set size. For k � N ,

the entire procedure may be iterated many (typically 100) times and those results averaged.

When k equals the sample size, N , the leave-one-out (loo) estimate is obtained. In the

statistical literature, the term cross-validation often is used for leave-one-out [23, 24, 62],

rather than in a generic sense. Occasionally, leave-one-out is referred to as ordinary [17] or

complete cross-validation. Kohavi [36] de�nes complete k-fold cross-validation more generally

as the average over all of the possible training/test splits of the sample for test sets of size N=k

(leave-one-out is necessarily complete). Iterating cross-validation approximates a complete

k-fold cross-validation, which is frequently not practical.

4

See Aha [3] and Kohavi [36] for some exceptions to this rule.
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Root-mean-squared,

p

P

(est { ter)

2

=N
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� Bootstrapping | A training set of size N is chosen randomly with replacement. Thus, each

item in the size N sample may appear 0, 1, or more times in the training set. For large N ,

an average of (1�1=e)=63:2% of the items will be used in the training set. Only those items

which do not appear in the training set are used for the test set, and only once each. This

procedure is iterated many (typically 200) times and the error rates averaged. Efron [24, 25]

refers to this estimator as e0, distinguishing it from older de�nitions of the bootstrap which

use a di�erent test set.

� Hybrid methods | Various combinations of the preceeding estimators have been proposed,

such as Efron's [24] 632b bootstrap and Weiss' [58] loo* method. The principal advantage

claimed for the 632b estimator is that, though biased, it has lower variance than the other

estimators

6

. 632b is a weighted combination of the e0 bootstrapping error (boot) and the

apparent error (app), 632b = 0:632 boot+ 0:368 app. Weiss' loo* estimator is

loo* =

8

>

<

>

:

632b, if loo < 632b

2-cv*, if 2-cv* < loo and 632b � loo

loo, otherwise

where 2-cv* is 2-fold cross-validation iterated 100 times.

All of these resampling methods would bene�t (in terms of reduced variance) from strati�cation [36]

| for instance, grouping all the data from the same class and partitioning each class separately so as

to keep the class proportions in each partition nearly equal to those in the whole sample. This may

increase the sensitivity of certain comparisons, but at the risk of distorting the variance estimate.

We typically assume that our whole sample is drawn randomly from the parent population, not in

a strati�ed fashion, and a strati�ed resampling will tend to underestimate the sample-to-sample

variation (the sampling variance) of the population. The Iris data [5, 27] can be used to illustrate

an interesting point about sampling . . . the whole sample is almost certainly strati�ed (it is doubtful

that the 3 species were equally prevalent on the Gasp�e peninsula or, if they were, that a random

sampling would have produced exactly 50 
owers of each species), and the reported error rates are

distorted to the extent that this strati�cation has distorted the proportions

7

. Strati�cation is a

two-edged sword, and can easily lead to mis-interpreted results.

The iterated, bootstrapped, and hybrid methods are computationally expensive. Efron [23] refers

to this as `thinking the unthinkable' (i.e., that one might be willing to perform 500,000 numeric

operations in analyzing a sample of 16 data items), in discussing the impact of computers on

statistical theory. Of course, one of the original motivations for using k-fold cross-validation (k-

cv) rather than leave-one-out (loo) was the high computational cost of loo (for sample sizes

greater than 200, even 200 bootstrap iterations may be less expensive than loo). Even k-cv

may be considered expensive at times [9, p. 42], and how large k needs to be to give a close

approximation to loo was an important question for early classi�er learning research [9, p. 78].

The intent [24, 58] of iterating k-cv or bootstrapping is to reduce the variance of the estimates in

6

The precision of a biased estimator (b) is

p

bias

2

+variance(b), while for an unbiased estimator (u) the precision

is

p

variance(u). If variance(b) < variance(u) and bias

2

< variance(u)�variance(b) then the biased estimator b is less

likely to stray too far from the truth (in the sense of the squared error loss) than is the unbiased estimator u. This is

a question of the con�dence interval, the interval within which, given the value of the estimate, we expect with high

con�dence to �nd the true error rate. These issues are addressed more fully in the companion paper [40]. In these

cases, a tradeo� might be made, trading increased cost and perhaps a slight bias to gain improved precision.

7

Most of the errors occur in distinguishing between two of the species, the other is easily distinguished, and the

error rate on future, randomly sampled instances will depend crucially on the true proportions of the species.
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Figure 2: A Simple Classi�er
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order to make comparisons of competing classi�ers more reliable, even at the expense of possibly

accepting a small bias in the estimates and greatly increasing the computation cost (the hybrid

methods aim at correcting for the bias). Whether the bias is acceptable and the extra cost justi�ed

can only be decided in the context of a particular problem | sometimes one is willing to pay,

sometimes not.

3 Experimental

Some essential properties of these various estimators

8

can be shown using very simple data and a

simple kind of classi�er, as illustrated in Figure 2. The data population consists of two equally

likely classes (labeled 0 and 1), each normally distributed on a single real-valued attribute (x), with

di�erent means (�

0

and �

1

, �

0

��

1

) but a common variance �

2

(assume �

2

=1:0, without loss of

generality). From a sample of size N , the inferred classi�er is:

C(t; a; b) � if (x � t) then class = a else class = b

where the threshold, t, and predicted class labels, (a; b), are determined from the training set of

size Q �N using a simple linear discriminant procedure [34]. The least-error classi�er for these

data would be C � C(T; 0; 1), where T = (�

0

+�

1

)=2 is the point where the two classes' density

functions cross, as shown in Figure 2. The inherent error is equal to the shaded area in Figure 2,

provided that the two distribution curves are normalized so that their combined area is unity. For

this model, several things can go wrong:

1. The estimated threshold t can di�er from T , as shown in Figure 3a, so that the induced

classi�er C(t; 0; 1) has a true error greater than the inherent error of C=C(T; 0; 1).

2. The training set's mean values for classes 0 and 1 might be reversed, as shown in Figure 3b.

The true error of such a reversed, C(t; 1; 0), classi�er is 50% when �

1

= �

0

, and increases as

�

1

��

0

increases, asymptotically approaching 100%. However, the likelihood of such a reversal

8

We caution again that the results presented in this section are illustrative, and may not generalize to other kinds

of classi�ers or to very complex problem domains (see Section 4 and references [36] and [56]).
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Figure 3: Sampling Errors
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decreases rapidly as �

1

��

0

increases. The expected e�ect of a reversed classi�er (the product

of these competing e�ects) peaks, typically in the range 0:25 < �

1

��

0

< 0:5, or 55-60% true

error. A detailed analysis of this case in given in the Appendix.

3. All of the items in the training set could be from the same class. For equally frequent classes,

this is unlikely (the probability of this happening in a random sample of size Q is 0:5

Q�1

). If

one of the classes is rare, this can be a real problem even for large Q, and special sampling

techniques may be needed. In these cases, the classi�er always predicts whichever class is

observed in the training set, the true error is 50%, and the apparent error is zero.

4. The class means in the training set might be equal. This is rare, but may happen when the

x data are rounded with few signi�cant digits. In these cases, the classi�er always predicts

whichever class is more frequent in the training set, the true error is 50%, and the apparent

error is the proportion of the other class in the training set.

Though conditions 2 through 4 are rare, all of these conditions were encountered in these simula-

tions. Let this be a warning that the naive assumption that random sampling somehow guarantees

a `representative' sample may not hold when the sample is small. Vapnik's [55] results make such

a guarantee only in the asymptotic case, and then only if certain regularity properties hold. Even

a sample of 1,000 instances may under-, over-, or atypically-represent a small (e.g., less than 1%)

subpopulation. Strati�ed sampling would be of great bene�t in these cases, but is generally not

feasible for observational studies.

Table 4 summarizes the mean bias and precision (averages over 4,000 samples) of the various

estimators, and their approximate 95% con�dence intervals. The samples represent 100 iterations

each of 40 di�erent sample size/inherent error combinations. Five sample sizes (10, 20, 30, 50, 100)

and eight inherent error rates (50, 40, 25, 10, 5, 2, 1, and 0.1%) were used for these simulations.

For each sample, the linear discriminant classi�er was calculated using the entire sample, and

its true error rate was directly computed from our knowledge of the population's normality and

its characteristics (�

0

, �

1

, and �). The various resampling estimators

9

were determined for each

9

Iterating independent subsamples (iss) is very similar in spirit and in its results to iterating cross-validation [17],

and the iss methods were not iterated here.

9



Estimator Bias Precision (rms)

Independent sub- iss k=2 1:33� :38% 12:41� :27%

samples, test set iss k=3 :64� :40% 12:85� :28%

size N=k iss k=4 :72� :44% 14:37� :32%

Apparent error app (k=1) �1:58� :24% 7:94� :17%

k-fold cross- 2-cv 1:10� :29% 9:46� :21%

validation 5-cv :32� :25% 8:20� :18%

k-cv 10-cv :31� :25% 7:96� :18%

loo (N -cv) :21� :25% 8:05� :18%

Iterated k-cv 2-cv � 100 1:24� :21% 6:81� :15%

and the e0 boot � 200 :84� :20% 6:55� :14%

bootstrap 5-cv � 100 :35� :22% 7:01� :15%

10-cv � 100 :27� :24% 7:59� :17%

Hybrids 632b �:05� :20% 6:32� :14%

loo* :29� :20% 6:44� :14%

Table 4: Overall Results

sample. The bias and precision in Table 4 were calculated from the paired di�erence between the

estimate est and the true error ter for each sample.

The bias con�dence intervals are �1:96s=

p

4000, where s is the standard deviation of the paired

di�erence (est { ter) for all 4,000 experiments. The rms precisions' con�dence intervals are, for

practical purposes, �2:2% of the rms value

10

.

For these experiments, loo and 632b appear to be unbiased on the whole (the small pessimistic bias

for loo is not signi�cantly di�erent from zero at the 95% level). The other resampling estimators

all appear to have a slight positive (pessimistic) bias. The relatively larger rms precision values

indicate that all of the estimators may be far from the true error rate in individual cases, with

relatively high probability. For these simple discriminant analyses, 632b had the least bias and the

best precision of the various estimators.

Two of the bias results (loo and 632b) are surprising, in light of Efron's �ndings that 632b had a

moderate optimistic bias [24, p322] and loo was nearly unbiased [24, p318] under similar circum-

stances. Efron's 632b conclusions [24] were based on only 5 experiments, all at very low sample

sizes (N = 14 or 20), high inherent error (about 40%, only 0:5� separation of the classes), and mul-

tivariate normal distributions. Recent work by Davison and Hall [21] and by Fitzmaurice, et al. [29]

showed that the di�erences in bias and variability emerge strongly only when the populations are

very close or the samples very small. Jain, et al. [33, p631] reported no consistent di�erence in

bias for either method. Cart [9, p77] and Burman [17] have reported that loo and k-cv should

be pessimistically biased (though Cart [9, p41] reports `fairly adequate results' for k � 10). Bur-

man [17] quanti�es the expected bias in k-fold cross-validation as O(p)=(k�1)N , where p is the

complexity of the classi�er (in the present experiments p is �xed). Table 5 gives a closer look at

these two estimators as a function of sample size and population inherent error. Corresponding

10

Note that rms

2

�bias

2

= s

2

, the variance. Con�dence intervals for this variance are governed by the F-distribution

which, for � degrees of freedom, gives approximately s

2

(1�1:96

p

2=�) as the variance interval for large � (i.e.,�4:4%

for � = 4000). The bias

2

correction is negligible for all cases in Table 4, giving (1 � :022)rms as the approximate

interval for the rms estimates.

10



Table 5: A Closer Look at loo and 632b

Inherent Sample Size

Error % 10 30 100

a. (loo { ter) %

0.1 :2� :4 :1� :1 �:0� :1

1 :9� 1:0 �:4� :4 * :0� :3

2 1:1� 1:3 :4� :6 �:0� :3

5 :4� 1:6 �:4� :7 :4� :5

10 1:0� 2:3 �:1� 1:1 :2� :6

25 3:2� 3:8 �:0� 2:0 �:7� :9

40 �:2� 3:5 1:4� 2:6 :0� 1:5

50 2:0� 3:1 1:5� 2:3 �:5� 1:3

b. (632b { ter) %

0.1 :7� :3 :1� :1 �:0� :0

1 1:1� :8 * �:4� :3 * :0� :1

2 1:2� :9 * :2� :6 �:0� :3

5 :8� 1:5 �:3� :7 :3� :4

10 1:2� 2:2 �:1� 1:0 :2� :6

25 :9� 2:7 :4� 1:6 �:3� :8

40 �2:4� 2:6 �:5� 1:6 :2� 1:0

50 �1:4� 2:5 1:3� 1:5 �:4� :8

c. (loo { 632b) %

0.1 �:5� :7 �:0� :0 :0� :0

1 �:3� :4 �:0� :1 �:0� :0

2 �:1� :7 :1� :2 :0� :1

5 �:4� :9 �:1� :2 :1� :1

10 �:2� 1:2 �:0� :4 :0� :1

25 2:3� 2:0 * �:4� 1:1 �:4� :2 *

40 2:4� 2:5 1:9� 1:6 * �:2� 1:0

50 3:4� 2:1 * :2� 2:0 �:1� 1:2

* Signi�cant at the 95% Con�dence Level

d. Correlation Coe�cients

Inherent loo vs. ter 632b vs. ter 632b vs. loo

Error % N = N = N =

10 30 100 10 30 100 10 30 100

0.1 :07 �:12 �:02 :15 �:11 �:02 .81 .97 .99

1 �:03 �:04 �:08 �:09 �:07 �:04 .92 .95 .98

2 :42 �:04 �:02 :35 �:03 �:02 .87 .96 .96

5 :76 �:09 :02 :69 �:05 :01 .95 .95 .98

10 :65 :05 :16 :59 :07 :19 .92 .94 .98

25 :51 :67 :00 :65 :70 :06 .89 .92 .97

40 :35 :33 :62 :52 :57 :77 .76 .81 .86

50 .74 .51 .48
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table entries for each estimator present results for the same 100 simulated samples | the given

con�dence intervals are 2s=

p

100, where s is the standard deviation of the 100 simulated di�erences.

The bias results in Tables 5a and 5b are very uncertain | the only striking di�erence being at

sample size N = 10 and inherent error � 25%, where loo seems to have a positive bias while

632b has a negative bias. The di�erences in behavior are clearer in Table 5c, paired di�erences

between the two estimators, where the average di�erence for N = 10 is small and negative for

inherent error � 10% but large and positive for inherent error � 25%. The di�erence in Table 5c

is typically less variable than the bias of either estimator, suggesting that the estimators are more

strongly correlated with one another than with the true error. This suggestion is con�rmed by

the correlation coe�cients shown in Table 5d. loo and 632b (and, in fact, all of the resampling

estimators) tend to respond to sample-to-sample di�erences in the same way, but this is largely

independent of the sample-to-sample di�erences in the true error rates of the inferred classi�ers.

This large variance and lack of predictive correlation from sample-to-sample has important impli-

cations for the use of these resampling estimates to compare competing classi�ers for a problem

population. This will be explored more fully in the second paper, but deserves noting here: di�erent

investigators using identical inference methods and estimators but di�erent small random samples

from the same population will likely infer slightly di�erent classi�ers, with di�erent estimates of

their predictive error | for these simple discriminants, the di�erence between the two estimates has

little, if anything, to do with the di�erence in the true error rates of the two classi�ers. Iterating the

training/test splits or bootstrapping reduces the sampling variance, as is evident from Tables 5a and

5b; but, apparently, not su�ciently to result in the desired strong correlation between an estimate

and the true error. There is currently much research [7, 8, 15, 38, 51, 62, 63] in machine learning

and statistics on more robust procedures for selecting a classi�er (cross-validating, bootstrapping,

`stacking', or `bagging' the entire inference procedure).

The methods illustrated in Figure 6 were used to explore the variation of bias with sample size and

true error. Figure 6a is a scatter plot of the 2-cv* estimator vs. true error (ter) for samples of

size N = 10. The 800 data points represent the 100 simulated samples from each of 8 populations

(inherent error 0.1, 1, 2, 5, 10, 25, 40, and 50%). The data tend to cluster on the ter axis near

the population inherent error rates, but there are some outliers from each experiment.

It is evident in Figure 6a that 2-cv* tends to be optimistically biased for true error rates larger

than 60%, while the overall pessimistic bias of 2-cv* is less evident, except perhaps near 25% true

error. The points at the extreme right-hand side of Figure 6a bear some explaining. When the

two sub-populations coincide (50% inherent error), the true error rate of any partitioning will be

50% | if fraction p of class 0 lies to the right of the threshold (see Figures 2 and 3), fraction

(1�p) of class 1 lies to its left, giving a true error of 0:5p + 0:5(1�p) = 50% for all p. Thus, it

might seem that a true error higher than 50% is not possible. However, if the two sub-populations

are separated only slightly (say 40% inherent error), then the kind of class-reversal error shown

previously in Figure 3b can occur, resulting in a very high true error (i.e., it can happen that the

mean value of x for class 0 in the sample is higher than that for class 1, which is the reverse of the

relationship of the sub-population means

11

).

11

Such atypical samples are relatively rare (46 of the 800 observations in Figure 6a, or about 6%), and the likelihood

decreases rapidly with increasing sample size, but these rare events do occur. It is a mistake to think that a random

sampling plan guarantees a representative sample | at best, it merely guarantees an unbiased sample. Strati�ed

sampling plans can ensure that the sample is representative (at least for the characteristics which are controlled),

but these approaches assume knowledge of the very same unknown population characteristics which we are trying to

infer from the sample.
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Figure 6: A Method for Estimating Bias vs. True Error Rate

a.   Scatter Plot and Windowing
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b.   Window Averages and Smoothing
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c.   Repeated Window Averages
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d.   Repeated Splines
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Bias is an average property, which may be obscured by the large y-axis variance of the scatter plot

(and 2-cv* has a relatively low variance among the various estimators). To get a better picture of

the bias, the data were partitioned by narrow vertical windows, such as that shown in Figure 6a, and

the observations within each window were averaged (the windows used were (2i� 1%); i = 0 . . .50,

chosen so as to keep intact the natural clustering of the data).

The locations of the resulting window averages are shown in Figure 6b, with vertical bars repre-

senting the approximate 95% con�dence intervals for the averages. Obviously, some of the windows

are relatively dense, and others quite sparse. The con�dence intervals re
ect this is the usual way,

i.e., that the standard error of the window average is the standard deviation of the individuals

in the window divided by the square root of the number of individuals averaged. However, it is

not possible to estimate the standard error for windows which contain only one observation, and

the estimates obtained for windows containing fewer than 5 observations are very unreliable

12

. To

obtain more reliable estimates for the sparse windows, we assumed that each single observation

had a standard error equal to that of the 100 observations of this sample size from this same

12

Though the formula

P

n

i=1

(x

i

� �x)

2

=(n�1) is an unbiased estimator, these standard error estimates are highly

variable for small n. For n = 5, for instance, two estimates di�ering by a ratio of 2.5 : 1 are not signi�cantly di�erent

at the 95% con�dence level (using the F-test).

13



population

13

. For windows with multiple observations, these assumed standard errors (se

i

) were

`pooled' (se = rmsfse

i

g=

p

n) to obtain the estimated standard error (se) of the window average.

The con�dence intervals shown in Figure 6b are simply the �2se limits.

The smooth curve shown in Figure 6b is a smoothing least-squares cubic spline �tted using the

procedure given by Dierckx [22]

14

. In this format, the pessimistic bias of 2-cv* when the true

error (ter) is less than 50% is evident, as is the optimistic bias above 50% ter. Examination

of similar plots showed that the pessimistic bias below 50% ter decreases with increasing sample

size (approximately as N

�1=2

), but the optimism above 50% ter is little a�ected by sample size,

although the frequency of such atypical results and the highest ter observed do decrease. The bias

curves for un-iterated 2-cv were essentially the same as for 2-cv*.

We note that there are two levels of smoothing in our experiments: averaging over the window

width and the smoothing factor used in �tting the spline. If narrower windows are used, the result

is more data points to be �tted, wider con�dence limits for each point, and a �tted curve which

is less smooth, though generally following the path shown in Figure 6b | the clustering on the

x axis constrains all the �tted curves to pass very nearly through the cluster means, due to their

higher weights. A lower smoothing factor likewise results in a curve which is less smooth. Given

the relatively high variance of all of the error rate estimators, we believe that such short term


uctuations in the estimated bias have neither practical nor statistical signi�cance.

The experiments shown in Figures 6a and 6b were repeated six more times, using a di�erent seed

for the random number generator on each repeat. The resulting window averages are shown in

Figure 6c, compared to the con�dence intervals obtained in Figure 6b (the intervals shown in

Figure 6c are identical to those in Figure 6b) | the +'s and O's in Figure 6c show the 6 iterations'

equivalent averages for each window, the di�erence being that the O's are judged to be outside the

con�dence intervals, while the +'s are judged to be within the intervals

15

. Ten of the 216 window

averages (4.6%) fell outside those intervals, suggesting that those intervals are a very good overall

approximation to the 95% con�dence intervals for these experiments. The resulting smoothing

splines are virtually identical, as shown in Figure 6d.

Figure 7 compares the bias of 10-fold cross validation (10-cv) and the 632b bootstrap estimator for

sample sizes of 10, 20, and 50. The results for the leave-one-out (loo) estimator (not shown) are

practically the same as those for 10-cv. Below 50% ter, cross-validation has a slight pessimistic

bias for sample size N = 10 which decreases rapidly with sample size and is negligible for N � 50.

The 632b bootstrap bias in this region is smaller, and is negligible for N � 20. Above 50% ter,

both estimators show a pessimistic bias which may be stronger for 632b than for cross-validation

at the smallest sample size. All of the estimators appear to be optimistically biased near or above

13

It is likely that this assumption slightly understates the variance of the isolated data points in Figure 6a, which

are typically outliers for one of the experiments. For the denser windows, the resulting estimates of se were virtually

identical to those calculated directly from the observations. Empirical results from further experiments which will

be discussed later in connection with Figures 6c and 6d indicate that the assumption leads to a very good overall

approximation of the 95% con�dence intervals for these experiments.

14

Each data point (residual deviation from the �tted curve) was weighted by the inverse of its estimated standard

error, and the smoothing factor (the targeted weighted sum-of-squares of residuals) was taken to be the number of

data points (non-empty windows), m. (Reinsch [45] recommends m�

p

2m when the weights are the inverses of the

estimated standard errors, re
ecting the fact that such a weighted sum-of-squares has approximately a chi-square

distribution, further approximated as a normal distribution with mean m and standard deviation

p

2m.) The choice

of a cubic spline is that recommended by Dierckx [22].

15

In a few cases, there was no corresponding interval from Figure 6b because that experiment had no data in the

particular window. In those cases, a datum was judged to be or not be an outlier subjectively, by comparison to

other data and intervals at nearby x-axis values.

14



Figure 7: Estimated Bias of 10-cv and 632b

a.  10-Fold Cross-Validation  (N=10)
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b.  632b Bootstrap Estimator  (N=10)

0% 20% 40% 60% 80% 100%

True Error Rate  (TER)

0%

20%

40%

60%

80%

100%

63
2b

  E
st

im
at

e
c.  10-Fold Cross-Validation  (N=20)
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d.  632b Bootstrap Estimator  (N=20)
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e.  10-Fold Cross-Validation  (N=50)
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f.  632b Bootstrap Estimator  (N=50)
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50% estimated error, but this is of little practical consequence since classi�ers with such high error

rates are not useful.

For these simple linear discriminant cases, 632b appears to be less biased than 10-cv or loo,

though their bias is small, and also to have lower variance. If this behavior carries over to other

classi�er types and populations, the improved variance of 632b would o�er an advantage in choosing

between competing classi�ers for a problem. There is, of course, a computational price to be paid

for the improved variance. For discriminant analysis and other structurally simple methods, the

extra computational time may be mitigated by storing intermediate results and similar methods

for rapid updating. For structured classi�ers, such as decision trees, the structure itself may be

unstable to perturbations of the training set (e.g., the choice of split attribute at the root of the tree

may change, which a�ects every node in the tree and possibly some node additions and deletions)

and updating costs may be very high. ITI trees [52] reduce updating costs signi�cantly compared

to constructing a new tree, at the expense of perhaps greatly increased storage. Whether the extra

cost is justi�ed will be dictated by circumstances and the use to be made of the estimates.

4 Over�tting, Non-independence, and Generality

The apparent error can be made arbitrarily low by considering very complex, ad hoc classi�ers.

This is called over�tting [49], which is described by Cart [9] as inferring classi�ers that are larger

than the information in the data warrant, and by ID3 [43] as increasing the classi�er's complexity

to accomodate a single noise-generated special case.

Weiss' loo* estimator is motivated by empirical results indicating that the bias and precision

relationships for cross-validation and bootstrapping shown in Tables 4 and 5 do not hold for single

nearest neighbor (1-nn) classi�ers [56], especially for small samples. These di�culties are absent

or strongly mitigated in three nearest neighbors (3-nn) classi�ers, suggesting that the problems are

due to the extreme over�tting which is characteristic of 1-nn. This same degree of over�tting is

found in Cart-style decision trees when every numeric attribute cut-point is used.

Burman [17] gives the bias of k-cv as O(p)=(k�1)N , where p is the number of parameters estimated,

as in logistic regression analysis [2]. From this result, we argue that a fairly large bias is likely for

cross-validation when classi�ers are over�tted (e.g., p = N). There is a very strong analogy between

1-nn, decision trees using every numeric cut-point, and �tting a saturated

16

model.

Nearest-neighbor and decision tree methods are non-parametric, and it is di�cult to quantify an

equivalent of p for these methods. However, we note that saturated and over-saturated models

are rote memorizers [48, 61] of their training data, as are 1-nn and unpruned decision trees with

many continuous, irrelevant, or noisy redundant attributes. The classi�ers are equivalent to look-

up tables for the training data, and do not generalize in Scha�er's [48] and Wolpert's [61] strict

sense. Kohavi [36] and Jain [33] discuss the breakdown of the 632b bootstrap in these cases |

when app is zero, as for a rote memorizer, the linear trade-o� of the optimistic bias of app and the

pessimistic bias of the e0 bootstrap which is implicit in 632b [24] fails, in that a slightly di�erent

classi�er might also have zero app but a higher e0 value.

16

In empirical model selection and �tting, a model is said to be saturated [2] with respect to the training data if

the number of adjustable components in the model is equal to the number of training cases. Usually, such a model

will reproduce its training data exactly, the data are not free to deviate from the model predictions, and the apparent

error will be trivially zero. If the data are noisy (contain errors), such a model would certainly be over�tted. We

will use the term over-saturated to denote a model with more adjustable components than training instances, e.g., a

typical back-propagation network.
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Post-pruning strategies (e.g., cost-complexity [9] and reduced-error [44] pruning) begin with an

over�tted tree and seek a most accurate and least complex pruned version of that tree. Error

rate estimates for the series of candidate trees generated during post-pruning are subject to all the

di�culties of 1-nn classi�ers, and to the additional di�culty that the trees and their error rates are

not independent. Among other purposes, Breiman, et al. [9, pp. 79,307-310], adopted the heuristic

expression for SE used in their 1-SE rule (in a series of pruned trees, choose the simplest tree whose

10-cv error rate is no more than 1 \standard error" (SE) greater than that of the tree having

the lowest 10-cv rate) to deal with the lack of independence. Weiss & Indurkhya [57] recommend

a novel form of iterated (10�) 2-fold cross-validation for cost-complexity pruning. Breiman and

Spector [10] report that 10-cv is more e�ective than loo for selecting a pruned tree and estimating

its error rate.

Weiss' [56] results for nearest neighbors classi�ers raise serious questions as to whether conclusions

drawn from experiments on one type of classi�er, as in our and Efron's [24] discriminant analyses,

are generally applicable. Similar questions are raised by Kohavi's [36] example of the failure of loo

for a majority inducer on the Iris data

17

, Crawford's [20] �ndings for Cart that 632b is strongly

biased (in our discriminant analyses, the bias is low), and by Bailey & Elkan's [6] similar �ndings

for the symbolic concept learner Foil. Though Crawford and Bailey & Elkan show similar results

for the bias and variance of 632b, they reach di�erent conclusions | Crawford recommends 632b

because of its low variance, while Bailey & Elkan recommend against 632b because its bias is

inconsistent (pessimistic when the true error is low, but optimistic when the true error is > 30%)

and because it has poor correlation with ter whereas 10-cv seems to correlate well with ter.

Problems such as these are, in a certain sense, inevitable given Scha�er's conservation law for gen-

eralization [48] (the `no free lunch principle', see also [47, 62]). However, Scha�er [47], Wolpert [62],

and Breiman & Spector [10] have all found that cross-validation usually performs well for model

selection, i.e., is fairly robust, and Scha�er [47] argues that it is fairly safe (can greatly reduce the

risk of choosing a poor classi�er) and reasonable when we lack problem-speci�c knowledge.

5 Experiments on Nearest-Neighbors Classi�ers

In Figure 8 we illustrate nearest neighbors classi�ers derived from a small sample from a population

similar to those used in our discriminant examples. In Figures 8a and 8b we show the population

density function and, above that, the location along the x-axis of the elements of a sample of 10

items from that population (`O' denoting a class 0 and `X' a class 1 item) | the population and

sample are the same in both cases. We also show the class predictions and boundaries, and the true

error (shaded area) for two nearest neighbors classi�ers, single nearest neighbor (1-nn) in Figure 8a

and three nearest neighbors (3-nn) in Figure 8b.

We note the following features in the �gures: (1) 3-nn may make di�erent predictions for adjacent

sample items which have the same class, as is also the case in discriminant analysis, while 1-nn

cannot do this; (2) 1-nn is sensitive to outliers (isolated instances near the extremes of a class

distribution), which can lead to a very high error rate for a small sample, while 3-nn smoothes

these 
uctuations in the sample density; and (3) 1-nn is a rote memorizer (a saturated model), and

17

The problem generalizes to any maximum-entropy, no-information data set (one where the classes are equally

frequent and independent of the attributes). Combining this with our results for ter � 50% in Figures 6 and 7, we

conjecture that the problem is common to resampling estimators when the classes are nearly equally frequent and

the estimated error near or above that of the majority inducer. As noted earlier, this has little practical signi�cance,

since classi�ers with such high error rates are not useful.
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Figure 8: Nearest Neighbor Classi�ers and Equivalent Trees
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tends to over�t the sample, i.e., to infer an overly complex classi�er, while 3-nn does not (it may

over�t, under�t or, as in Figure 8b, be about right, depending on the sample and population).

In Figures 8c and 8d we show decision trees corresponding to the nearest neighbors classi�ers of

Figures 8a and 8b, respectively. Note that Figure 8d is not merely a pruned version of Figure 8c.

Also note that the pair of classi�ers depicted in Figures 8a and 8c are entirely equivalent, as are the

pair in Figures 8b and 8d. For mutually exclusive classes, any deterministic classi�er, in whatever

form, can also be expressed as a decision tree or as a set of rules in disjunctive normal form (DNF),

provided that the decision nodes may test arbitrary functions of several variables and noting that

the translation may be non-trivial. The tree shown in Figure 8c is equivalent to that which would

be inferred by Cart or ID3 using the usual method of placing cut-points for continuous variables

midway between adjacent items having di�erent classes | a slightly di�erent tree would be inferred

using C4.5's [44] method of placing cut-points only at one of the values occuring in the sample.

The tree shown in Figure 8d is not equivalent to that which would be inferred by Cart or ID3

using the usual methods, but could be inferred by these algorithms if 3-nn's method for placing

cut-points were substituted.

Thus, we must be careful not to over-generalize conclusions from experiments involving di�erent

induction algorithms, as in making assertions that X is true for decision trees, but not for nearest

neighbors. As we have illustrated, decision trees and nearest neighbors are not inherently di�erent
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kinds of classi�ers

18

. We emphasize that observed di�erences in behavior are the result of di�erences

in the induction algorithms and estimators and interactions between them, and not due to the

format in which the classi�er is represented. Di�erences in induction algorithms may express

themselves in either or both of two ways:

1. Through di�erences in the language (not the format) which the algorithm uses to express

concepts. Cart, for instance, uses DNF where the elements (individual propositions) are

assertions about the value of a single attribute, whereas linear discriminant analysis utilizes

a single assertion about the value of a linear function of all of the attributes. There is a very

signi�cant qualitative di�erence between (p�q) < 0:5 and (p < 0:5) _ [(p > 1) ^ (q < 0:5)],

and there are concepts which can be expressed correctly in the language used for the �rst

example, but not the language used for the second, and vice-versa.

2. Through di�erences in the search patterns of algorithms when the language is the same.

These di�erences are illustrated in our single real-valued attribute examples. All of these

classi�ers consist of a set of n cut-points and class predictions (t

1

; p

1

) � � �(t

n

; p

n

) where the

prediction rule is: predict class p

i

for t

i�1

<x� t

i

where t

0

=�1 and t

n+1

=+1. Though

the language is identical, the set of potential values of the t

i

for a �xed given sample di�ers

from one algorithm to another, both in the number of cut-points allowed and in the permitted

values. Linear discriminant analysis allows only one cut-point, 1-nn considers all (x

j

+x

j�1

)=2

in the sample as potential values for t

i

with a maximum n=N�1, and 3-nn considers all

(x

j

+x

j�3

)=2 in the sample as potential values for t

i

with a maximum n=N�3.

A series of experiments was conducted to explore the behavior of 1-nn and 3-nn classi�er error

rates for populations similar to that shown in Figure 8 | 20 random samples each of various sizes

(N=10; 20; 30; 50; 100) for populations with di�erent inherent error (0.1, 1, 2, 5, 10, 25, 40, 50%).

Both a 1-nn and a 3-nn classi�er were calculated from each sample, and ter, app, loo, 10-cv,

632b, and loo* error rates calculated for each classi�er.

In Figure 9 we show the mean of each estimator plotted vs. the mean ter for each of the 40

experiments. loo and 10-cv give virtually the same results, and only 10-cv is shown | both are

unbiased but have high variability for both 1-nn and 3-nn. The app and 632b results are less

variable than loo or 10-cv, but they are biased and their biases are di�erent for 1-nn than for

3-nn. loo* is approximately unbiased for these classi�ers, but highly variable. The 632b variances

are essentially the same for both 1-nn and 3-nn, and lower (by about 40%) than the loo variances.

loo* has roughly the same precision as loo overall, but has a lower variance for small samples

and high error rates.

Detailed examination of the data shown in Figure 9 con�rms Weiss' [56] �ndings that the lack of

bias and improved precision of 632b for linear discriminants do not carry over to nearest neighbors,

especially to 1-nn (see also [33, 36]). The loo and 10-cv results, their lack of bias and relatively

high variance, however, apparently do carry over. Weiss' loo* estimator, developed for nearest

neighbors, appears to be approximately unbiased for both discriminant and nearest neighbors clas-

si�ers. In our experiments, loo* had about the same variance as 632b for discriminant classi�ers,

but loo* has a higher variance than does 632b for nearest neighbors.

18

Although decision tree algorithms may be able to deal with nominal attributes for which there are no meaningful

a priori concepts of order or interval. We can always translate a nearest neighbors classi�er into an equivalent decision

tree, but the converse is not always true.
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Figure 9: Mean Error Rates of 3-nn and 1-nn Classi�ers
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6 Experiments on Decision Tree Induction

The discriminant and nearest neighbors results were all derived from continuous attributes. To

explore the behavior of resampling estimators for non-numeric attributes in other inference envi-

ronments, a series of experiments was conducted using the contact lens prescription data set [42].

In this arti�cial problem, patients are classi�ed into 3 categories (hard, soft, none) based on the

values of 4 attributes (1 tertiary and 3 binary). The 24 instances given cover all cases and are noise

free. Figure 10 shows a correct decision tree

19

for this problem (other correct trees, permuting the

order of the splits, are possible | the 9 leaves are necessary and su�cient).

What is the error rate of this tree? Since the 24 sample items are the entire population and the

tree classi�es all 24 items correctly, the true error rate (ter) is zero. The apparent error is also

zero and, thus, is not biased in this particular case. Leave-one-out estimates 20.8% error, and is

biased in this case. The other resampling estimators are all also biased in this case (summarized

by the average and standard deviation of 6 repetitions for each estimator using di�erent train/test

splits and random number seeds on each repetition) | 10-cv: 22:2% � = 3:4;

632b: 17:6% � = 0:5; 2-cv*: 29:5% � = 0:9; loo*: 20:8% � = 0.

19

This and other decision trees in this section were inferred using Quinlan's ID3 algorithm [43], without stopping

or pruning the trees.
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Figure 10: A Correct Decision Tree for Contact Lens
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Table 11: Contact Lens Resampling Decision Trees

Sampling with Replacement Error Rate (%)

N=24 N=48 N=72 N=96

�x � �x � �x � �x �

ter 12.5 8.7 2.8 3.4 0 0

app 0 0 0 0

loo 5.6 6.8 4.2 2.9 .5 .7 .5 .6

10-cv 5.6 6.3 3.8 2.4 .9 1.7 .5 .6

632b 10.0 3.9 5.3 1.5 2.0 .4 1.1 .4

2-cv* 21.8 6.6 11.1 3.6 5.6 .6 3.2 .4

loo* 10.6 4.6 6.1 1.4 2.0 .4 1.1 .4

It is interesting that, in this case, the apparent error is correct, while the various resampling

estimates all show a strong pessimistic bias. These techniques are not applicable for this data set

because two of the key assumptions underlying the methods do not hold; namely, that the data set

is a random sample from a large population and that the apparent error is biased. These results

underscore the important point that estimation of error rate is a statistical inference, working from

a set of observations and premises (a priori assumptions, many of which are implicit in the methods

but not explicitly stated) | the results of applying a method may be nonsensical if its premises

are not satis�ed.

But, suppose that the assumption that this is a random sample of 24 items from an in�nite

population

20

does hold and that, by chance, we happened to draw a minimal complete sample.

Table 11 shows the results for random samples of various sizes from this in�nite population (i.e.,

simply sampling the 24 distinct items with replacement). Each entry in Table 11 is the average

and standard deviation of 6 repeats of the experiment.

20

That there are only 24 distinct combinations of the attributes need not limit the population size, it merely

dictates that there are many duplicates. If each of the 24 combinations is equally likely, then sampling the in�nite

population is equivalent to sampling the 24 distinct items with replacement. They need not be equally likely, but we

will assume that they are.
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In each case, a tree was inferred from the entire simulated sample, and the true error rate (ter)

determined by testing the inferred tree on the 24 distinct cases (i.e., on the entire population). The

various estimated rates were determined from the training/test splits of each sample. Since there is

no noise in the data, the apparent error was zero in every case, which is biased for the smaller sample

sizes, but unbiased for larger samples

21

. For samples of N = 24 items, 2-cv* was pessimistically

biased, while all of the other estimates were optimistic. For N�48, all of the resampling estimates

were pessimistically biased in these experiments. We emphasize that these data were noise free,

and that the variance of the results is purely a consequence of sampling variance.

The dimensionality of the attribute vector space (only 24 distinct items) is arti�cially small for this

illustrative example. It does, however, demonstrate clearly that the behavior of these error rate

estimators can change dramatically as a function of sample size (e.g., the switch from optimistic

to pessimistic bias), at least when the data are noise free.

Our simple discriminant analysis study (Table 5) showed a relatively poor correlation between

estimated error and true error for repeated samples of the same size from the same population.

The correlation coe�cients for the six repeats in the current experiment were:

Correlation with ter

loo 10-cv 632b 2-cv* loo*

N = 24 {.47 {.63 {.76 {.74 {.64

N = 48 .35 .35 {.63 {.61 {.33

632b and 2-cv* appear to be more strongly correlated with true error than loo and 10-cv. How-

ever, these correlations are negative, which is undesirable in the sense that the estimators diverge

from the true error. Note that the change from optimistic to pessimistic bias for loo and 10-cv

between N=24 and N=48 is accompanied by a change in the sign of the correlation.

One argument for 632b and loo* is that, though they may have a greater bias than 10-cv or

loo, they have a lower variance and may, therefore, be more powerful for distinguishing between

competing classi�ers. We address this question more fully in the companion paper [40], but the

data in Table 11 raise some interesting points:

1. 632b and loo* are not always more biased than loo and 10-cv. Also note that loo and 10-

cv are optimistic forN=24, but pessimistic forN�48, while 632b and loo* are consistently

pessimistic.

2. Minimal variance alone is not the proper criterion. app has the least variance of any of the

estimators, yet it has no ability to distinguish among the various trees (it predicts a zero error

rate for every tree inferred from these data).

3. What we want is an estimator that is correlated with ter, i.e., that a di�erence in the estimate

implies a corresponding di�erence in ter. On this basis, the limited data in Table 11 suggest

that 632b or 2-cv* might be better for smaller samples. The negative sign of the correlation

is troubling, however, as this implies that, having concluded that the ter's of two classi�ers

are di�erent, the one with the higher estimated error rate will actually perform better.

However, we caution that conclusions drawn from the data in Table 11 may not generalize well,

since the population for these data is free of attribute or class errors (the data are correct, but

21

A sample of N = 24 will contain instances of about 15 of the 24 distinct items on the average. This increases to

21 for N = 48 and 23 for N = 72. A correct tree can be inferred for many, but not all, samples of size N � 72.
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Figure 12: True Error Rate vs. Sample Size & Noise Level
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highly variable because of random resampling variation). Additional experiments were conducted,

simulating attribute and class errors in a manner such that the inherent error of the population

was controlled | let p be the desired inherent error, then let each of the 24 possible attribute

value combinations be equally likely but let the class labels in our in�nite population be randomly

assigned as follows:

class label =

(

correct label; with probability 1�p

correct label modulo 3 + 1; with probability p

Note that this treatment simulates attribute errors as well as class errors, since there is no way

to distinguish whether a tuple such as (11111) is the result of an error in the class label or in the

values of one or more attributes.

We simulated 6 samples each of several sizes from populations with di�erent inherent error rates.

In these experiments, ter is calculated using the 24 base cases, as follows (where class

i

is the true

class of the i

th

case and prediction

i

is the tree's prediction for the case):

ter =

1

24

24

X

i=1

(

p; if class

i

= prediction

i

1�p; if class

i

6= prediction

i

In Figure 12 we show the mean ter's of the various populations and sample sizes. ter approaches

the inherent error asymptotically from above. The smooth curves shown in Figure 12 capture a

general behavior which has great practical signi�cance: (1) larger training samples tend to yield

more accurate classi�ers, (2) if the problem is ill-suited for the inference method, we may not be

able to infer a good classi�er, regardless of the sample size

22

, and (3) the larger the intrinsic error of

the population and inference method, the more slowly does ter approach its asymptotic value as

the sample size increases (the greater the noise level or the more ill-suited the problem and inference

method, the greater the sample size required to achieve a near-asymptotic error). Similar curves

for the means of app and loo are shown in Figure 13. Note that app approaches its asymptotic

level from below, while ter, loo, and the other resampling estimates approach from above.

22

ter is bounded below by the inherent error. In most cases, ter is limited by the language-intrinsic error (see

Section 2, Figure 1). Here, the inherent and language-intrinsic error rates are the same.
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Figure 13: Estimators vs. Sample Size & Noise Level
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The relationship of the various estimators' means to the mean true error for various noise levels and

sample sizes in these experiments is shown in Figure 14. loo and 10-cv are apparently unbiased

and have about the same precision. 632b is pessimistically biased for low (< 10%) error rates,

and optimistically biased for higher error rates, as was also reported by Bailey & Elkan [6]. The

standard deviation (vertical spread) of 632b is lower than that of loo or 10-cv. For these decision

trees, 2-cv* and loo* are biased and highly variable.

The charts in Figure 14 show a fairly strong positive correlation between the various estimators'

means and the mean ter. However, there is no such correlation of the individual estimates and

ter's within a replicated experiment, as shown in Table 15 | though the estimators correlate with

one another, they do not correlate well with ter and the weak correlation with ter appears to be

negative for small samples and low noise levels. An additional set of experiments was conducted

to verify these results by simulating 200 samples each of sizes 24 and 96 from a population with an

inherent error of p= 0:01 (also summarized in Table 15 as the linear regression coe�cients, with

r denoting the correlation). The weak correlations of 10-cv vs. ter and 632b vs. ter are not

signi�cant, while the correlation of 632b vs. 10-cv is signi�cant.

Thus, it appears that the expected value est of repeated sampling for any of our estimators

is correlated with the expected true error ter for the trees inferred from these samples, i.e.,

est � k

0

+ k

1

ter, where k

0

= 0 and k

1

= 1 would be an unbiased estimator. However, it also

appears that, for the i

th

individual estimate est

i

, the di�erence �

i

= est

i

�est is a random

variable, and that �

i

is independent of the random variable �

i

= ter

i

�ter which is of interest

(i.e., E(�

i

�

i

) = 0). This means that, for sample i, est

i

might be above average and ter

i

below

average, while for another sample j of the same size from the same population, est

j

might be below

average and ter

j

above average. This has important consequences regarding the signi�cance of

observed di�erences between estimates, which are explored in the companion paper [40].

In these experiments, the time T required to infer a tree increased with increasing sample size N

or tree complexity � (the number of nodes in the inferred tree), T � k

0

+(k

1

+k

2

�)N . The tree

complexity increased with increasing sample size or noise level, nearing saturation (�= 46, or 24

leaves) for the most noisy data and largest sample. In most situations, � is limited by the sample

size (� < 2N , if empty leaves are forbidden), rather than by the saturation level (the number

of distinct possible attribute-value vectors) which either grows exponentially with the number of
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Figure 14: Mean Estimated Error vs. Mean True Error

a.  Apparent vs. True Error
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b.  LOO vs. True Error
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c.  10-CV vs. True Error
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d.  632b vs. True Error
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e.  2-CV* vs. True Error
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f.  LOO* vs. True Error
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Table 15: Correlation of Repeated Sample Estimates

Six Samples of Each Size and Inherent Error

p = 0.01 0.05 0.10 0.25 0.01 0.05 0.10 0.25 0.01 0.05 0.10 0.25

10-cv 632b loo*

Correlation with ter

N = 24 {.65 .54 .69 {.06 {.38 .47 .75 .17 {.38 .47 .75 .17

48 {.77 .55 .84 .49 {.68 .45 .89 .45 {.74 .45 .89 .45

72 .88 .35 .83 {.17 .75 .11 .48 .11 .58 .07 .48 .11

96 .44 .21 .55 .40 .58 .37

144 .49 .44 .11 .53 .34 .21 .49 .33 .18

192 .18 .08 .11

Correlation with 10-cv

N = 24 .70 .99 .92 .93 .70 .99 .92 .93

48 .72 .90 .98 .92 .68 .90 .98 .92

72 .95 .87 .80 .76 .80 .87 .80 .76

96 .54 .83 .98 .87 .53 .80 .93 .85

144 .99 .93 .85 .98 .96 .94 .81 .98

192 .99 .99 .93 .96 .94 .99 .92 .95

p is the population inherent error

Correlation of 200 Samples' Estimates for p=0:01

N = 24 N = 96

10-cv = 15.6 { 0.19(ter) r = �:19 10-cv = 2.0 + 0.06(ter) r = +:05

632b = 14.0 { 0.16(ter) r = �:28 632b = 2.7 + 0.03(ter) r = +:03

632b = 6.6 + 0.42(10-cv) r = +:78 632b = 1.4 + 0.66(10-cv) r = +:80
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attributes or is in principle

23

unbounded for continuous attributes. This O(N

2

) time bound can

easily be achieved for noisy data when there are many irrelevant or redundant attributes. For

continuous attributes the bound is O(N

2

lgN) due to sorting costs [44], and it is readily achieved

for noisy data when the trees are not pre-pruned (stopped). Since this limit corresponds to a tree

with N leaves (a saturated model), such a tree is certainly over�tted if the data are noisy.

This potentially large cost (and the cost of pruning has not been taken into account) may be a

matter of concern as problem domains are expanded beyond the current, relatively simple, data sets

to large, real-world databases with scores of noisy attributes and thousands of instances, especially

for the iterated and bootstrap methods, which must infer several hundred classi�ers for each sample.

Techniques for updating trees rather than iterating the entire process, such as ITI trees [52], can

reduce the time required in such cases, but their increased storage costs may become prohibitive.

7 Conclusions and Recommendations

We remind readers that speci�c simulation results from very simple populations such as those used

in our experiments may not generalize to more complex situations, and that no single method for

estimating classi�er error rates will perform best in every situation. Those caveats notwithstanding,

we conclude and recommend as follows:

1. Leave-one-out (loo) and 10-fold cross-validation (10-cv) were the only estimators that uni-

formly had little or no bias in our experiments. 10-cv appears to be the safest method for

estimating classi�er error rates. Its bias is usually small, and its precision appears to be

equivalent to that of loo, at lower cost. In addition, Breiman and Spector [10] report that

10-cv is more e�ective than loo for pruning.

2. The single independent subsamples (iss) method results in a classi�er with poorer expected

accuracy and signi�cantly greater variance than 10-cv.

3. Iterating k-fold cross-validation reduces its variance, but the e�ect is small for k � 10. Cross-

validation is pessimistically biased for k < 10, and iteration does not a�ect the bias.

4. The 632b bootstrap has lower variance than 10-cv (its standard deviation averages 80% that

of 10-cv, but at greater computational cost). However, its bias may be di�erent for di�erent

learning algorithms, and according to whether a classi�er is over�tted. For that reason, 632b

may not be suitable for comparing 1-nn and 3-nn classi�ers, nor for comparing pruned and

unpruned decision trees.

5. loo* was approximately unbiased for discriminant functions and nearest neighbors, and had

lower variance than loo or 10-cv for these classi�ers. This lack of bias and improved precision

did not carry over to nominal attribute decision trees, and loo* is not recommended for those

applications.

6. Extreme over�tting, as in the 1-nn classi�er and unpruned decision trees, can a�ect both

the bias and precision of cross-validation and bootstrapping. More complex methods may be

necessary when classi�ers are over�tted.

23

Real measurements are always discrete (�nite resolution) and have a bounded range | the statistician's practical

distinction between discrete and continuous attributes is one between variables which have only a few possible values

and those which have a great many possible values.
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7. The estimated error rates of classi�ers inferred from di�erent random samples of the same size

from the same population are poorly correlated (and sometimes negatively correlated) with

the classi�ers' true error rates. This appears to be true for all of the resampling estimators,

regardless of the inference method, sample size, or population inherent error. This means

that small di�erences in estimated error rates, such as might be expected when incrementally

pruning a decision tree, may have little or nothing to do with the di�erence in the true error

rates of the classi�ers being compared. The magnitudes and even the signs of the di�erences

may be di�erent for di�erent samples or even for a di�erent choice of training/test splits of a

single sample.
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A Appendix: Analysis of the Class Reversal Problem

Given that the population is a mixture of two classes labeled 0 and 1, in unknown proportions and

that each class is normally distributed on a single real-valued attribute x with possibly di�erent

class means (�

�

0

and �

�

1

, respectively) but a common standard deviation, �

�

:

Let p

�

denote the fraction of class 0 items in the population and C(t; a; b) a classi�er: predict class

a if x � t, else predict class b. Without loss of generality, we assume that �

�

0

� �

�

1

and �

�

= 1.

For a size N sample containing n class 0 items, our linear discriminant inference function is:

InferClassi�er(x; class; N; n)

if n = 0 then return C(�1; 0; 1);

if n = N then return C(+1; 0; 1);

p  n = N ;

�x

0

 

P

fx[i] : class[i] = 0g = n;

�x

1

 

P

fx[i] : class[i] = 1g = (N�n);

s

2

 

�

P

x[i]

2

� n�x

2

0

� (N�n)�x

2

1

�

= (N�2);

t  (�x

0

+ �x

1

) = 2;

if �x

0

= �x

1

then

if N = 2n then return C(t; 0; 1);

if n < N=2 then return C(�1; 0; 1);

else return C(+1; 0; 1)

�t  s

2

ln[n=(N�n)] = (�x

1

� �x

0

);

t  t+ �t;

z

0

 (t� 0:1� �x

0

) = s; (* evaluate both classes to *)

z

1

 (t� 0:1� �x

1

) = s; (* the left of the threshold t *)

if p exp(�z

2

0

=2) � (1�p) exp(�z

2

1

=2)

then return C(t; 0; 1);

else return C(t; 1; 0); (*** a class reversal ***)

The model (probability density function, f(�)) we are using here is:

f(x; p

�

; �

�

0

; �

�

1

; �

�

) = p

�

g(x; �

�

0

; �

�

) + (1�p

�

) g(x; �

�

1

; �

�

)

where

g(x; �; �) =

1

�

p

2�

exp

 

�

1

2

�

x� �

�

�

2

!

The true values of the parameters (p

�

; �

�

0

; �

�

1

; and �

�

) are unknown, and we substitute the em-

pirical estimates (p

�

� n=N , �

�

0

� �x

0

, �

�

1

� �x

1

, �

�

� s) when they exist, where �x

0

and �x

1

are the

sample means for classes 0 and 1, respectively, s is the `pooled' estimate of �

�

,

s

2

=

n s

2

0

+ (N � n) s

2

1

N � 2

and s

2

0

and s

2

1

are the sample variances for classes 0 and 1, respectively.
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The true error, �(t; 0; 1), of classi�er C(t; 0; 1) is

�(t; 0; 1) = p

�

Z

+1

t

g(x; �

�

0

; �

�

)dx + (1�p

�

)

Z

t

�1

g(x; �

�

1

; �

�

)dx

Equating the derivative d�(t; 0; 1)=dt to zero at t = T , the population's least-error threshold T

(corresponding to the inherent error) is the solution of p

�

g(T; �

�

0

; �

�

) = (1�p

�

) g(T; �

�

1

; �

�

). The

empirical threshold estimate t is found by solving p g(t; �x

0

; s) = (1�p) g(t; �x

1

; s).

A class reversal occurs if

p g(x; �x

0

; s) < (1�p) g(x; �x

1

; s) for x < t

In our inference function on the previous page, we evaluate this condition at x = t� 0:1; subject to

the limitations of numeric precision, any x < t would do as well as t� 0:1 because the bell-shaped

curves cross at most once.

The true error, �(t; 1; 0), of the reversed classi�er C(t; 1; 0) is

�(t; 1; 0) = p

�

Z

t

�1

g(x; �

�

0

; �

�

)dx + (1�p

�

)

Z

+1

t

g(x; �

�

1

; �

�

)dx = 1� �(t; 0; 1)

Restricting our attention to the case p

�

= 0:5; �

�

= 1,

�(t; 0; 1) = 0:5 [1� �(t� �

�

0

) + �(t� �

�

1

)]

�(t; 1; 0) = 0:5 [1� �(t� �

�

1

) + �(t� �

�

0

)] = 1� �(t; 0; 1)

�(T; 0; 1) = inherent error = 1� �(

�

�

1

� �

�

0

2

)

where T = (�

�

0

+ �

�

1

)=2, �(z) =

R

z

�1

g(x; 0; 1)dx is the cumulative standard (zero mean, unity

variance) normal distribution, and �(�z) = 1� �(z).

The threshold, t, is a random variable, a function of the random variables p, �x

0

, �x

1

, and s:

t(N; n; �x

0

; �x

1

; s) =

�x

0

+ �x

1

2

+

s

2

ln(p=(1�p))

�x

1

� �x

0

(1)

This function is moderately complex, and its probability distribution is extremely complex.

Since t is random, the error of a reversed classi�er, �(t; 1; 0) is also random and, owing to the com-

plexity of t(�) and �(�), the distribution of �(t; 1; 0) is extremely complex. We have not attempted

an exact solution, but instead relied on Monte Carlo techniques.

In the experiments in Section 3, we generated N simulated observations for every sample. Here,

where we are not resampling, we make use of the following sampling distributions for the empirical

parameters to speed the simulations:

� n is binomial(0:5; N).

� For a given n: �x

0

is normal(�

�

0

; �

�

=

p

n ), and �x

1

is normal(�

�

1

; �

�

=

p

N�n )

� (N�2)s

2

is chi-squared(N�2).
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Figure 16: Distribution of True Error Rate
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b.  Mean Distance 2.0,  Sample Size 10
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c.  Mean Distance 0.5,  Sample Size 20
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d.  Mean Distance 2.0,  Sample Size 20
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Figure 16 shows the distribution of the true error rates of 10,000 simulated samples for each of two

sample sizes (N = 10; 20) and two mean distances (�

1

��

0

= 0:5; 2:0). Only those samples having

at least one instance of each class were included. For the unreversed classi�ers, the true error tends

to cluster slightly above the inherent error rate, with a fairly long tail up to a `spike' at 50%

24

.

For the reversed classi�ers, the frequencies are much lower and the distribution is a rough mirror

image of the tail of the unreversed distribution. The reversed cases are less frequent as either the

sample size or the distance between the class means increases.

Only the tail of the distribution is likely to be reversed. In order for the reversed error rate to be

near 100% � inherent error, the threshold t must be near its optimal position T = (�

�

0

+ �

�

1

)=2.

From the formula (Equation 1) for t, this would require a relatively unlikely combination of the

empirical values for p, �x

0

, and �x

1

in addition to the reversal of the means: either (1) p � 0:5 and �x

0

and �x

1

are approximately equidistant from T , or (2) s

2

ln(p=(1�p))=(�x

1

� �x

0

) almost exactly o�sets

the distance from (�x

0

+ �x

1

)=2 to T . The reversal is far more likely when the empirical proportion

p is very unbalanced, as this leads to an imprecise estimate of either �x

0

or �x

1

. Other things being

equal, imbalance in p also corresponds to the threshold t being relatively far from T , i.e., to the

tail of the distribution.

24

The y-axes in Figure 16 are logarithmic, so that the tail is clear; the clustering near the inherent error rate would

be even more apparent on a linear scale.
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Figure 17: Summary of Reversed Classi�ers

a.  Mean Error of a Reversed Classifier
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b.  Effect of Class Reversal
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c.  Likelihood of a Reversed Classifier

0 1 2 3 4
Distance Between Peaks

0

0.1

0.2

Fr
eq

ue
nc

y 
of

 R
ev

er
sa

l

N=5

N=50

d.  Likely Effect of Class Reversal

0 1 2 3 4
Distance Between Peaks

0

0.01

0.02

0.03

0.04

(A
vg

. E
ff

ec
t)

  (
Pr

ob
. R

ev
er

se
d) N=5

N=50

In a more thorough experiment, we simulated 10,000 samples each for 10 di�erent sample sizes

(N = 5i; i = 1 . . .10) and 16 distances between the class means (�

1

� �

0

= 0:25i; i = 1 . . .16).

The results of these experiments are summarized in Figure 17. In Figure 17a, we show the mean

true error of the reversed classi�ers as a function of sample size and class mean separation. In

Figure 17b, we show the mean di�erence between the true errors of the reversed and unreversed

classi�ers. In Figure 17c, we show the likelihood that a reversal occurs. And in Figure 17d, we

show the expected increase in the overall mean true error due to the reversals (i.e., the product of

the curves in Figures 17b and 17c).

The mean true error in Figure 17a is well �t by the model

avg. true error = 1� I � (k

0

+ k

1

=N)(0:5� I)

k

2

+k

3

=N

p

I

where I is the inherent error of the population, k

0

� 0:6, k

1

� 6, k

2

� 0:75, and k

3

� 2. That is,

the true error of a reversed classi�er appears to be 1� I �O(N

�1

).

The mean di�erence in Figure 17b is well �t by a similar model

avg. di�erence = 1� 2I � (k

0

+ k

1

=N)(0:5� I)

k

2

+k

3

=N

p

I

where k

0

� 0:6, k

1

� 9:5, k

2

� 0:7, and k

3

� 2. That is, the di�erence appears to be 1�2I�O(N

�1

).
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The likelihood in Figure 17c is well �t by the model

likelihood = k

0

exp(�k

1

z � k

2

z

2

) +

k

3

(N�2)

2

�

z

1+z

�

k

4

where z = (�

1

� �

0

)

p

N � 2, k

0

� 0:26, k

1

� 0:1, k

2

� 0:05, k

3

� 2:7, and k

4

� 18.

We note that the coe�cient k

0

in the likelihood model is the average likelihood when �

1

= �

0

,

and di�ers from 0.5 because the sample proportions of the two classes vary. When the sample

proportions are 1:1, the likelihood at �

1

= �

0

is 50%, but when the sample proportions are 49:1,

the likelihood is near zero. k

0

is the average over the various sample proportions.

The second term in the likelihood model is O(N

�2

), and is insigni�cant for N � 20. We attach no

particular signi�cance to the [z=(1+z)]

k

4

form; other increasing, asymptotically 
at functions of z

�t these data about equally well.

Note that the product in Figure 17d is nearly independent of the sample size at �

1

� �

0

= 0:25.

As a consequence, the location of the peak in these plots tends to converge to a point between

�

1

��

0

= 0:25 and �

1

��

0

= 0:5 (40-45% inherent error) as N increases. The location of the peak

and the height of the peak change very slowly for N > 25.
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