
Self-Organizing Lists on the Xnet

Lynn M. Stau�er

University of California, Irvine

Irvine, CA 92717

stau�er@ics.uci.edu

Daniel S. Hirschberg

University of California, Irvine

Irvine, CA 92717

dan@ics.uci.edu

Technical Report 92-81

September 28, 1992

Abstract

We present the �rst parallel designs for implementing self-organizing

lists on the Xnet interconnection network. Self-organizing lists permut

the order of list entries after an entry is accessed according to some

update heuristic. The heuristic attempts to place frequently requested

entries closer to the front of the list. This paper outlines Xnet systems

for self-organizing lists under the move-to-front and transpose update

heuristics. Our novel designs can be used to achieve high-speed lossless

text compression.



1. Introduction

We describe the �rst parallel designs for self-organizing lists on the Xnet in-

terconnection network. Self-organizing lists permute the order of list entries after

an entry is accessed, attempting to place more frequently requested entries closer

to the front of the list. Previous work in the parallel domain is limited to the

implementation of self-organizing lists on the systolic array. This paper provides

Xnet designs for self-organizing lists under the move-to-front and transpose permu-

tation heuristics. These high-speed architectures can be used to perform lossless

text compression.

The list organizing strategies of interest in this paper are move-to-front and

transpose (see [HH85] for a survey of self-organizing linear search). The move-to-

front strategy moves the accessed record to the front of the list, shifting all records

previously ahead of it back one position. The transpose heuristic permutes the list

by exchanging the accessed entry with the one immediately before it in the list.

After reaching a steady state, where many further search requests are not expected

to signi�cantly impact the expected search time, the expected access cost is less for

transpose than for move-to-front, but the convergence time or number of accesses

required to reach a steady state is greater for transpose than for move-to-front

[HH85]. There are applications for which move-to-front and transpose outperform

each other. For any particular application, simulations are necessary to determine

the superior heuristic.

The model of parallel computation used in this work is the data parallel Xnet.

The Xnet interconnection network provides a modi�ed mesh-connected structure

suitable for rapid communication among neighboring processing elements (PEs).

Switches, located between each pair of PEs, permit vertical, horizontal, or diagonal

connections. The connections wrap around meaning that switches are located

between the top and bottom row of the mesh and between the extreme left and right

1



output

PE 1 PE 2 PE 3 PE 4

5 6 7 8

9

14

10 11 12

161513

input

Figure 1

Xnet interconnection network with switches set North-to-South

columns. During each system cycle, the switches are identically set throughout the

system and computation proceeds synchronously. Each PE is connected to two

of its nearest neighbors and communication proceeds in a single direction. For

instance, if the switches are set to provide North-to-South connections, a single PE

receives input from the processor above it in the mesh and transmits data to the

processor below it. Each PE has its own local memory and is assigned a unique

identi�cation number. An Xnet on 16 processors (4 by 4 mesh) with the switches

set North-to-South is pictured in Figure 1. The wrap around connections in each

column link the bottom PE to the top PE. For the systems described in this paper,

input enters the Xnet at PE 1 and output exits at PE N

2

(assuming an Xnet of

dimensions N by N).

Our Xnet architectures for self-organizing lists can be used to obtain high-

speed text compression systems. Text compression attempts to remove redun-

dancy from data and thereby increases the density of transmitted or stored data.

Traditionally, there has been a tradeo� between the bene�ts of employing compres-

sion versus the computational costs related to encoding and decoding. Parallelism

2



represents a means for increasing the speed of performing compression. Move-to-

front and transpose compressionmaintain a dynamic list of words (to be encoded by

their list position) using the move-to-front and transpose self-organizing list strate-

gies, respectively [BSTW86, E87, R87, HC87]. Systolic array implementations for

transpose and move-to-front compression have been described [SH92, TW89].

Related work on systolic array architectures for self-organizing lists is pre-

sented in the next section. Our Xnet systems for move-to-front and transpose

are given in Sections 3 and 4. Text compression and the application of our Xnet

systems is discussed in Section 5. Section 6 proposes areas for further investigation.

2. Related Work on the Systolic Array

Previous work on parallel implementations of self-organizing lists is limited

to the systolic array model [SH92, TW89]. A systolic array consists of a linearly-

connected collection of synchronous rudimentary processing elements (PEs). VLSI

implementation issues regarding input/output pin requirements have forced the

investigation of two major algorithmic variants. The simpler procedure permutes

a byte-level �xed-length list of symbols and the other approach permits arbitrary-

length list entries. Arbitrary-length list entries that must be communicated among

PEs force an arbitrary number of input/output pins on each PE.

Thomborson and Wei investigate systolic array implementations of move-

to-front [TW89]. For the simpler byte-level �xed-length scheme, each PE stores

a single character. The input stream enters the pipe and matches are detected

between the input characters and the bytes stored in the PEs. For the arbitrary-

length scheme, Thomborson and Wei examine various alternatives, such as placing

a limit on the length of words and hashing.

Systolic array architectures for transpose have also been described for both

the byte-level and arbitrary-length variants which operate at speeds commensurate

3



with the move-to-front systems [SH92]. An design combining systolic arrays with

trees improves the through delay from linear to logarithmic.

These systolic systems for move-to-front and transpose can be used to perform

high-speed lossless text compression. Sequential compression systems operate at

data rates ranging from 10 to 30 Kbytes/second. Systolic schemes operate at much

higher data rates of roughly 40 Mbytes/second.

3. Self-Organizing Lists of Fixed-Length Entries on the Xnet

As pointed out in the previous section, a parallel implementation may have

di�culty allowing non-�xed length words to travel between processing elements

because of the potentially unreasonable pin requirements. Xnet systems for self-

organizing lists which permute a list of �xed-length list entries are described in this

section. Approximations for the more general list of arbitrary-length records are

addressed in Section 4.

3.1. Move-to-Front

To transmit word w on the Xnet using the move-to-front heuristic, w is

compared to the list entries of successive processors. At PE 1 (the front of the list)

w overwrites the current list entry which is transmitted to PE 2. Next, the list

entry of PE 2 is overwritten by the previous entry of PE 1. List entries continue to

cascade down the list until w matches the list entry and the �nal entry is updated.

By depositing the input character in the �rst processor as it enters the pipe and

then cascading previous processing element contents down the array, the move-to-

front behavior is realized. For convenience, the move-to-front system on the Xnet

is referred to as XMTF.

For a list of length N

2

, XMTF consists of N

2

processing elements (PEs). PE

i stores the list entry which is currently in position i in the list (referred to as

entry

i

). The input enters the Xnet at PE 1 and exits at PE N

2

.

4



Each step of XMTF consists of updating the list and checking for matches

between the input and the stored entries. Each step is carried out in 2 phases.

During Phase 1 the Xnet switches are set to connect NorthWest-to-SouthEast

(NW-SE) PEs. PE kN , where k � 1, sends 4-tuple (w, e, p, f) to PE kN + 1. w

is the input being accessed in the list, e is the current contents of entry

i

, p is the

list position of w (p is used to perform compression) and f is a bit 
ag which is

set if entry

i

is to be cascaded to PE i + 1. In Phase 2, the Xnet connections are

changed to link processors East-to-West (E-W). PE i, where i is not a multiple of

N , transmits 4-tuple (w, e, p, f) to PE i+1. If f = 1, PE i exchanges entry

i

and

e. If w matches the new entry stored in e (equivalently the previous contents of

entry

i

) then PE i sets f = 0.

3.2. Transpose

To transmit word w on the Xnet using the transpose heuristic for self-

organizing lists, w is compared to list entries of successive processors. If w matches

the list entry in PE i then the list is updated by transposing the list entry (w)

of PE i with the list entry in PE i � 1. Several matches can be detected simul-

taneously on the Xnet. To avoid the contention associated with updating the list

among neighboring processors which have concurrently detected matches, our Xnet

architecture for transpose (referred to as XTR) allows input packets to enter the

mesh only on every other system cycle. First, the word list is updated and, later

in the cycle, word matches are detected.

For XTR on a list of length N

2

, the Xnet consists of N

2

PEs. PE i stores

the i

th

list record and a copy of the input word PE i considered on the previous

system cycle. The list entry is referred to as entry

i

and the prior input word as

oldw

i

.

In Phase 1, the Xnet switches are set NW-SE. PE kN , where k � 1, sends

3-tuple (w, e, p) to PE kN + 1. As in XMTF, w is the input being accessed in

5



the list, e is entry

i

that may be needed for transpose update, and p is the list

index of w used for performing compression. Switches are changed to reverse the

diagonal connections of Phase 1 to SE-NW links in Phase 2. PE kN + 1, k � 1

sends bit m

kN+1

to PE kN . m

kN+1

is a bit 
ag which is set if PE kN +1 detected

a match in the previous system cycle. At the start of Phase 3, the Xnet alters the

connections to W-E links. PE i, where i is not a multiple of N , sends 3-tuple (w,

e, p) to PE i+ 1. In Phase 4, the switches link E-W and PE i + 1, where i is not

a multiple of N , transmits m

i+1

back to PE i. If m

i+1

is set then PE i (for all

i) overwrites entry

i

with oldw

i

. If w matches entry

i

then PE i sets m

i

= 1 and

(if i > 1) overwrites entry

i

with input e. Finally, PE i overwrites oldw

i

with w.

Contention is avoided as a result of restricting input to every other cycle.

4. Self-Organizing Lists of Arbitrary Words on the Xnet

The designs of Section 3 included only �xed-length words in the list. The

more general word list scheme permits words of arbitrary lengths to be present. A

straightforward extension of our previous designs allows arbitrary words. However,

the packets that travel through the mesh may lead to unreasonable VLSI imple-

mentation requirements. One simple solution to the problem of unbounded pin

requirements is to place a bound on the maximum allowable word length. This

bound enforces a limit on the pin requirements. The appropriate maximum word

length is dependent on the application.

In order to avoid the potential VLSI issues, an approximation using a hard-

wired hash table to map arbitrary words onto an 8-bit byte has been considered

[SH92, TW89]. This single byte is input into the system and handled as a �xed-

length word. Implementing this hashing approach on our Xnet architectures is

straightforward.

6



5. List Compression

The Xnet architectures of the previous sections can be used to perform high-

speed text compression. Text compression systems remove data redundancy in

communicated and stored data and increase the e�ective capacities of communica-

tion and storage devices. Dictionary compression algorithms function by replacing

blocks of input with references to earlier occurrences of identical data [BCW90].

Systolic implementations have been developed for several variants of the general

dictionary scheme. Parallel dictionary methods are surveyed in [SH91].

This paper considers a class of compression algorithms which maintains a

sequential list of words using a self-organizing heuristic so that frequently accessed

words appear near the front of the list. We refer to this collection as list compression

methods under a particular update heuristic.

A list compression method uses a self-organizing data structure to maintain a

list of source messages and an encoding of the integers to compress list indices. A

variable-length encoding of the integers, such as Elias codes, Fibonacci codes, and

start-step-stop codes, or a non-codeword based coding such as arithmetic coding

can be used to compress list positions [BCW90]. To compress a word, it is located

in the dynamic word list and encoded by its list position. After a word has been

referenced, the list is reorganized appropriately. In move-to-front compression,

the encoded word is removed from its current position and placed in the �rst

list position. In transpose compression, the encoded word is exchanged with the

contents of the preceding list entry. By directing the encoded list position to a

�xed-to-variable coder (located in a special-purpose processor at the tail of the

array), the output is further compressed by assigning short codewords to positions

near the front of the list. Arithmetic coding assigns shorter encodings to more

frequently occurring list indices.

7



Parallel list compression is described by the following general paradigm.

Encoder and decoder maintain identical word lists using the same list-organizing

heuristic. After a word is used or matched it is encoded by its list position and

the list is permuted according to the update strategy. The Xnet systems for self-

organizing lists can be used to perform parallel list compression. During encoding,

the match detection step is augmented so that when a match is recognized, the

input character is replaced by the identi�cation number of the matching processor.

In the notation of Section 3, if PE i detects a match between the input w and

entry

i

then w is encoded by list index i (p is set to i).

6. Future Work

Although we have outlined the design of several Xnet implementations for

high-speed applications, extensive empirical evaluation of our methods are needed

to fully describe their behavior. For text compression applications, comparative

studies of speed and compression e�ectiveness are required to determine the ad-

vantages of these systems.

The approximations for self-organizing lists of arbitrary-length records are

limited. Alternative schemes are necessary to better emulate general dynamic

lists.

This work represents the extension of parallel self-organizing lists to a novel

parallel model. Further investigation of self-organizing lists and other dynamic

data structures on other models of massively parallel systems are warranted. Move-

ahead-k, for example, is a self-organizing heuristic which compromises between the

extremes of move-to-front and transpose. Move-ahead-k transfers the accessed

entry k positions forward. Parallel versions of this and other heuristics require

further study.

8



References

[BCW90] Bell, T. C., Cleary, J. G., and Witten, I. H. Text Compression,

Prentice-Hall, Englewood Cli�s, New Jersey, 1990.

[BSTW86] Bentley, J. L., Sleator, D. D., Tarjan, R. E., and Wei, V. K. A

locally adaptive data compression scheme. Commun. ACM 29, 4 (April,

1986), 320{330.

[E87] Elias, P. Interval and recency rank source coding: two on-line adap-

tive variable-length schemes. IEEE Trans. Inform. Theory IT-33, 1

(Jan., 1987), 3{10.

[HC87] Horspool, R. N., and Cormack, G. V. A locally adaptive data

compression scheme. Technical Correspondence. Commun. ACM 30,

9 (Sept., 1987), 792{794.

[HH85] Hester, J. H. and Hirschberg, D. S. Self-organizing linear search.

ACM Comp. Sur. 17, 3 (Sep., 1985), 295{311.

[R87] Ryabko, B. Y. A locally adaptive data compression scheme. Technical

Correspondence. Commun. ACM 30, 9 (Sept., 1987), p. 792.

[SH91] Stauffer, L. M. and Hirschberg, D. S. Parallel data compression.

Technical Report 91-44. Info. and Comp. Sci. Department, University

of California, Irvine.

[SH92] Stauffer, L. M. and Hirschberg, D. S. Transpose coding on the

systolic array. In Proceedings IEEE Data Compression Conference,

Snowbird, Utah, IEEE Computer Society Press, 1992, pp. 162{171.

[TW89] Thomborson, C. D. and Wei, Belle W.-Y. Systolic implementations

of a move-to-front text compressor. In Proceedings 1989 ACM Sympo-

sium on Parallel Algorithms and Architectures, Sante Fe, New Mex.,

ACM, New York, 1989, pp. 283{290.

9


