
Systolic Implementations for Transpose Coding

Lynn M. Stau�er

University of California, Irvine

Irvine, CA 92717

stau�er@ics.uci.edu

Daniel S. Hirschberg

University of California, Irvine

Irvine, CA 92717

dan@ics.uci.edu

Technical Report 91-69

November 15, 1991

1. Introduction

Data compression attempts to remove redundancy from data and thereby

increases the density of transmitted or stored data. Traditionally, there has been a

tradeo� between the bene�ts of employing data compression versus the computa-

tional costs related to encoding and decoding. Parallelism represents a means for

speeding up data compression performance. The problem of compressing data as

e�ectively as possible is a challenging one that has been extensively researched in

the sequential setting [W91, BCW90, S88, LH87]. Included in this vast collection

of sequential methods is Move-to-Front coding which maintains a dynamic list of

words (to be encoded by their list position) using the move-to-front self-organizing

list strategy [BSTW86, E87, R87, HC87]. A systolic array implementation of

Move-to-Front has been described [TW89]. In this paper, we present systolic array

implementations of Transpose coding, which uses an alternative self-organizing list

strategy but otherwise is similar to Move-to-Front coding. We present implemen-

tations for �xed-length word lists which provide improved system bandwidth by

accelerating Transpose coding.

The state-of-the-art in software data compression systems is the UNIX

1

com-

press utility which is based on a variation of Ziv and Lempel coding due to Welch

[W84, ZL78]. The UNIX compress system provides compression savings of up to

80% at a relatively high input bandwidth of 30 Kbytes per second on a 1 MIPS

machine [TW89]. Higher compression savings are achieved by high-order Markov

models and improved versions of compress which operate at limited input band-

widths of approximately 10 Kbytes per second on a 1 MIPS machine. A systolic

array implementation of Move-to-Front running on a 40 MHz clock operates at a

bandwidth of 40 Mbytes per second with compression savings ranging from 20%

to 70% [TW89]. Several parallel compression systems based on dictionary coding

achieve similar compression at input rates exceeding 25 Mbytes per second using a

1

UNIX is a trademark of AT&T Bell Laboratories

1

40 MHz clock. Our implementations operate at a bandwidth commensurate with

the systolic Move-to-Front system.

Our algorithms are implemented on a systolic array. Systolic arrays consist

of a linearly-connected collection of synchronized rudimentary processing elements.

Each processor has its own local memory and is assigned a unique identi�cation

number. An advantage of the systolic implementation is that a larger pipe can

be fabricated by placing a sequence of processing elements on a single chip, and

then joining a series of chips on a board. Another bene�t is that the length of

interprocessor connections are constant and independent of the array size.

Section 2 describes the basic list compression method and several of its

variants. Related work on systolic implementations of Move-to-Front coding is

presented in Section 3. Our systolic designs for Transpose coding are given in

Sections 4 and 5. Conclusions and areas for further investigation are the focus of

Section 6.

2. List Compression

Data compression schemes can be categorized according to the method used

to parse the input stream into individual encodable messages. In de�ned-word

schemes, the context determines a set of source messages or words

2

(sequences of

input symbols) that are candidates for encoding. There are a number of suitable

de�nitions for the composition of a word. For instance, in text �le compression, a

wordmay be de�ned to consist of an individual character or a sequence of characters

delineated by a space.

This paper considers a class of compression algorithms which maintain a

sequential list of words using a self-organizing heuristic so that frequently accessed

words appear near the front of the list. To distinguish the collection of compression

techniques which utilize a self-organizing list from dynamic dictionary or Ziv and

2

Bentley et al. refer to these source sequences as \words" [BSTW86].

2

Lempel compression schemes, we will refer to this collection as list compression

methods under a particular update heuristic.

A list compression method uses a self-organizing data structure to maintain

a list of source messages and a variable-length encoding of the integers to compress

list indices. To compress a word, it is located in the dynamic word list and encoded

by its list position. After a word has been referenced, the list is reorganized

appropriately. In Move-to-Front coding, the encoded word is removed from its

current position and placed in the �rst list position. In Transpose coding, the

encoded word is exchanged with the contents of the preceding list entry. By

directing the encoded list position to a �xed-to-variable coder, the output is further

compressed by assigning short codewords to positions near the front of the list.

The move-to-front and transpose list organizing strategies are two update

heuristics among a collection of many others (see [HH85] for a survey of self-

organizing linear search). After reaching a steady state, where many further

search requests are not expected to signi�cantly impact the expected search time,

the expected access cost will be less for transpose than for move-to-front. But

the convergence time or number of accesses required to reach a steady state is

greater for transpose than for move-to-front [HH85]. There are applications for

which move-to-front and transpose outperform each other. Moreover, Horspool

and Cormack report that the transpose heuristic performs as well as the move-to-

front and is easier to implement since updates involve only local rearrangement

[HC87]. For any particular application, simulations are necessary to determine the

superior heuristic. This paper, by furnishing a systolic array implementation of

transpose, provides the option of choosing between transpose and move-to-front

for other applications.

3

3. Related Work in Move-to-Front Coding

Dictionary coding algorithms (which include list compression algorithms)

function by replacing blocks of input with references to earlier occurrences of

identical data. Systolic implementations have been developed for several variants

of the general dictionary scheme. Parallel dictionary methods are surveyed in

[SH91a]. Previous �ndings in parallel list compression are described below.

Thomborson and Wei investigate parallel implementations of Move-to-Front

coding [TW89]. They distinguish two major algorithmic variants of Move-to-

Front compression. The simpler procedure permutes a byte-level �xed-length list

of symbols and the other approach divides the input stream into \words" and

transmits words by a move-to-front code. VLSI implementation issues are the

root of this distinction. That is, a general de�ned-word scheme requires words

of arbitrary length to be present in the word list. In a systolic array, arbitrary

word lengths place unreasonable demands on the number of input/output pins

that must be placed on each processing element. Thomborson and Wei examine

various alternatives, such as placing a limit on the length of words, and �nd that

even permitting short words can be prohibitive.

For the simpler byte-level �xed-length Move-to-Front coding, Thomborson

and Wei describe an array of 256 processing elements each of which stores an 8-

bit number corresponding to an ASCII code [TW89]. The input stream enters

the pipe and is encoded by detecting matches between the input characters and

the bytes stored in the processing elements. When a match is detected, the input

character is replaced by the identi�cation number of the matching processor. By

depositing the input character in the �rst processor as it enters the pipe and then

cascading previous processing element contents down the array, the move-to-front

behavior is realized. The output of the array, consisting of a sequence of 8-bit

list indices, is fed into a �xed-to-variable length coding system. This byte-level

4

design achieves compression savings of 19% to 38% and operates at a bandwidth

of 40 Mbytes/second running on a 40 MHz byte clock.

Thomborson and Wei describe a systolic design for approximating general

de�ned-word schemes [TW89]. The idea is to map variable-length words to an 8-

bit hashcode using a hardwired hash table. These 8-bit codes are entered into the

Move-to-Front list of target strings and manipulated as in the byte-level systolic

encoder and decoder arrays. A closed hashing scheme with no collision resolu-

tion is used to obtain a high-speed, high-bandwidth design. These performance

improvements, however, come at the expense of poorer compression performance.

Unlike the sequential Move-to-Front codes in which the least-recently-used target

word \falls" o� the end of the list, the hashing approach randomly eliminates list

words. This random behavior of the systolic design yields compression savings

ranging from 25% to 65% and an input bandwidth of 40 Mbytes running on a 40

MHz clock.

4. Parallel Transpose Coding with Fixed-Length Words

Parallel transpose list compression is described by the following general

paradigm. Encoder and decoder maintain identical word lists using the transpose

heuristic. Namely, after a word is used it is exchanged with the word stored in the

position immediately preceding its original position. In general, to transmit word

w on the systolic array, w is compared to the list entries of successive processors.

If w matches the list entry in processor i, it is encoded as i. The encoder then

updates the list by transposing the list entry (w) of processor i with the list entry

in processor i � 1. When the decoder array receives list index i, it decodes it as

the list word stored in processor i (which will be w) and then updates the list by

exchanging w with the previous list entry stored in processor i � 1. Since several

5

matches can be detected in parallel the list update procedure needs additional

consideration.

In the sequential setting, a sequence of words that match the list structure

in successive entries are handled in the same way as other matches. However,

in the systolic environment, matches corresponding to successive entries in the

array impose additional constraints when the list of words is being manipulated in

parallel. That is, simultaneous matches occurring in di�erent locations in the array

may force global communication among the processors to determine the contents of

the updated list. To illustrate this di�culty, consider the input string \abcdefgh"

and the word list \ h, g, f, e, d, c, b, a". Sequential transpose list compression

outputs the sequence of positions 8, 8, 6, 6, 4, 4, 2, 2 and the �nal word list is

identical to the original. In a sense, each pair of matches \cancels" the e�ect of

their updates. On the systolic array, the input string pipes into the array and all

eight matches are detected simultaneously. Handling the subsequent update may

require global communication.

A systolic implementationmay have di�culty allowing non-�xed-lengthwords

because of the unreasonable pin requirements [TW89]. Our initial designs are for

de�ned-wordmethods which permute a list of �xed-length source messages. Section

5 describes systolic implementations which approximate the more general dynamic

list compression method.

4.1. Systolic Implementations ENC1 and DEC1

This section gives systolic implementations (which we call ENC1 and DEC1)

for encoding and decoding using the transpose �xed-length list compression model.

For a list of length N , ENC1 consists of N processing elements (PE's) linearly

connected by a two-way communication channel. PE i stores the list entry which

is currently in position i in the list and a copy of the input word PE i considered

on the previous clock cycle. The list entry will be referred to as entry

i

and the

6

PE 1PE 2PE N-1PE N

entry entry entry entry

N 2 1

N-1

oldw

oldw

oldw oldw

N N-1 2 1

(m)

1 bit

(w,e,p)

24 bits

Figure 1

Systolic array for ENC1

prior input word as oldw

i

. The input stream enters the pipe from the right (PE 1)

and the encoded message exits at the left (PE N). A schematic of the architecture

is shown in Figure 1. For N = 256, the array consists of 256 processing elements

each storing an 8-bit byte list entry corresponding to an ASCII symbol.

In order to prevent a contiguous sequence of matches from occurring concur-

rently, our design allows input packets to enter the array only on every other clock

cycle. The word list is updated at the start of each encoding cycle. Later in the

cycle, word matches are detected and encoded.

At the beginning of the ENC1 clock cycle, PE i receives 3-tuple (w, e, p)

from PE i � 1 and bit m

i+1

from PE i + 1. w is a word to be matched, e is the

current contents of entry

i�1

that may be needed for a transpose update, p is the

list position of w (0 is no match found yet) and m

i+1

is a bit
ag which is set

if PE i + 1 detected a match in the previous clock cycle. If m

i+1

is set then PE

i overwrites entry

i

with oldw

i

. If w matches entry

i

then PE i carries out three

tasks. Namely, PE i sets p = i,
ags m

i

= 1, and (if i > 1) overwrites entry

i

with

input e (equivalently entry

i�1

obtained from PE i� 1).

At the close of the clock cycle, PE i overwrites oldw

i

with w and transmits

(w, entry

i

, p) to PE i+ 1 and (m

i

) to PE i� 1. Contention is avoided as a result

of restricting input to every other cycle. An example of this encoding procedure is

given in Figure 2.

7

For N = 256, the ENC1 communication channel is 25 bits wide and each

processing element has three 8-bit registers, an 8-bit identity comparator, two 8-

bit multiplexers, and additional control logic. The critical path in PE i passes

through three hardware components. First, entry

i

and oldw

i

pass through a

multiplexer triggered by
ag m

i

. Second, entry

i

and the input word w enter the

identity comparator. Finally, the output of the comparator determines if the input

word should be encoded as i by triggering a second multiplexer. The critical path

compares to the move-to-front systolic array [TW89].

Our �rst decoding algorithm DEC1a resembles ENC1. As in ENC1, input

enters the pipe on every other clock cycle. At the outset of the cycle, the word list

is updated. Unlike ENC1, where only a single bit is passed from PE i back to PE

i � 1 to facilitate updating, DEC1a requires entry

i

be transmitted along with the

single match bit. Following the list updating, list indices are replaced by word list

entries.

DEC1a proceeds as follows. At the beginning of the clock cycle, PE i receives

3-tuple (w, e, p) from PE i � 1 and 2-tuple (m

i+1

, f) from PE i + 1. p is the

encoded list index, e is the current contents of entry

i�1

, w is the unencoded word

occurring in position p of the list (� if p < i), m

i+1

is a
ag indicating if PE

i + 1 decoded a list index on the previous clock cycle and f is the prior contents

of entry

i+1

that may be needed for a transpose update. If m

i+1

is set then PE i

copies f into entry

i

. If p = i then PE i replaces w by entry

i

, sets m

i

= 1, copies

entry

i

into f , and (if i > 1) �nally overwrites entry

i

with e. At the end of the

clock cycle, PE i sends (w,entry

i

,p) to PE i+ 1 and (m

i

, f) to PE i� 1. Figure 3

provides an example of DEC1a.

Our second decoding algorithm, DEC1b, processes packets on every system

cycle and therefore operates at twice the rate of ENC1 and DEC1a. However,

DEC1b restricts the input to a �xed prede�ned alphabet of size S. The symbols in

8

(m)

(w,e,p)

oldw

entryGeneric PE:Encoding of input string: decade

After 16 clock cycles:

d

f

(e,c,5)

e

c

(c,d,0)

e

c� e

c

d

c

b

(a,a,1)

a

00010

a

(e,c,0)

e

c

e

d

(c,b,0)

c

b

c

a

00000

d

e� c

(d,f,4)

(d,e,4)

d

e

(e,d,0)

d

c

e

d

(c,a,0)

e

b

c

a

00000

e

a

e

b

(e,b,0)

dd

c

(d,c,4)

�

e c� d

de

(a,�,0)

ade

ade

(c,�,0)

PE 6 PE 5 PE 4 PE 3 PE 2 PE 1

cde b

�����

0

abcde

0

(d,�,0)

ecade

d

(d,a,0)

0

ecade

�����

�

e

�

d

�

c

�

0 0 0

ab

d d

(d,b,0) (e,�,0)

cade

�

e

�

d� c

�

c

0 0 0 0

cade

a

e

b

dd

(d,c,0) (e,a,0)

�

f

f

f

f

f

f

f

d

�

0 0 1 0 0

�

a

Final Encoded Output: 4, 5, 5, 1, 3, 5

(e,f,5)

f

e

c

e

e

e

b

e

d

e

a

e

Figure 2

Example of ENC1 on input word \decade"

this alphabet are arbitrarily given indices 1 through S. The output of ENC1 is a

9

(w,e,p)

(m,f)

Generic PE:

After 16 clock cycles:

Decoding of input string: 4, 5, 5, 1, 3

Final output: decade

adbecf

(e,f,5)

(a,e,1) (d,b,3)

(0,�) (0,�) (0,�)

(�,a,5)

(0,�)(1,d)

f e c b b� d a

(�,b,3)(a,c,1)

(0,�) (0,�) (0,�) (0,�) (0,�)

(�,�,5)

abd� bcef

(c,f,5)

(c,e,5) (a,d,1) (�,a,3)

(0,�)(0,�)(0,�)(0,�) (1,c)

abde� cef

(a,b,1)(�,e,5)

(e,f,5)

(0,�) (0,�) (0,�) (0,�) (0,�)

(�,�,3)

abdec� ef

(e,c,5) (�,d,5) (a,a,1)

(0,�)(0,�)(0,�)(0,�) (1,e)

abdc� ecf

(�,b,5)(�,c,5)

(0,�) (0,�) (0,�) (0,�) (0,�)

(�,�,1)

abdce� cf

(d,f,4)

(�,a,5)(�,d,5)(d,e,4)

(0,�) (0,�) (0,�) (0,�) (0,�)

abdcef

(d,c,4) (�,b,5)

(1,d) (0,�) (0,�)

(�,�,5)

abc� dc

(0,�)(0,�)

ef

(�,c,4)

(0,�)

(�,a,5)

(0,�) (0,�) (0,�)

abcd� cef

(�,b,4)

(�,�,5)

(0,�)(0,�)(0,�)

f e d c b a

(�,a,4)

(0,�)(0,�)

f e d c b a

(0,�)

(�,�,4)

bcdf e

PE 1PE 2PE 3PE 4PE 5PE 6

a

Figure 3

Example of DEC1a

10

sequence of list positions which DEC1b receives as input and decodes in two stages.

The �rst stage decodes list positions into indices and the second stage translates

indices into symbols. PE i stores pos

i

which is the list position of the alphabet

symbol with index representation i.

At the start of the clock cycle, PE i receives input packet (w, p) from PE

i � 1. As in DEC1a, p is the encoded list position and w is the unencoded word

occurring in position p of the list (� if p < i). If p > 1 and p = pos

i

then w is set to

i and pos

i

is decremented. If p = pos

i

� 1 then pos

i

is incremented. All necessary

manipulations of list positions transpire before a packet arrives at the processor

which will carry out the decoding.

After leaving the DEC1b array, the decoded symbol indices are replaced by

their corresponding alphabet symbol by a special purpose processor located at the

end of the pipe. The DEC1b algorithm is illustrated in Figure 4.

For a �xed-length list, such as the 256 di�erent 8-bit ASCII characters, each

processor is initialized to contain one of the 8-bit bytes. Alternatively, new words

can be added to the list until the list becomes full. Moreover, if an input word

w is not in the current list of size K (1 � K � N) the word is encoded by the

index K + 1 followed by the word w and the list is updated by transposing w

with the list entry K. If K = N (i.e., the list is full), word w replaces the last

list entry. The decoder \learns" the word list in a similar fashion. In the systolic

array, an additional
ag bit in each processor is used to delimit the current list.

The processor holding the
ag is designated as the �rst empty list entry. Initially,

the
ag bit in PE 1 is set.

4.1.1. Empirical Evaluation

Compression �ndings for �xed-length word implementations of Move-to-Front

and Transpose coding are reported in Table 1. A systolic array consisting of

128 processing elements each initialized to contain a 7-bit ASCII character was

11

If PE i has contents j then symbol with index i is in list position j and thus pos

i

= j.

(w,p)

pos

Generic PE:

alphabet = a, b, c, d, e

symbols:

indices:

a b c d e f

1 2 3 4 5 6

13246 5

56 5= 4 2 3 1

13256 5

(�,5)(4,3)(1,1)(3,5)

(�,5)

4= 5

(�,3)(1,1)(3,5)(5,5)

(�,5)(�,3)(1,1)(3,5)(5,5)

(�,5)(�,3)(1,1)(3,5)(�,5)(4,4)

(�,3)(1,1)

5= 4

(�,5)(�,5)(4,4)

(�,4) (�,5) (�,5) (�,1)

4= 5

3= 4

(�,4) (�,5) (�,5)

(�,4) (�,5)

(�,4)

PE 1PE 2PE 3PE 4PE 5PE 6

6 5 4 2 1

5 4 3 2 1

124= 356

6 5 3 2 1

12= 3435= 46

6 4= 5 3 4 3 1

133= 256

6 5 4 3 2 1

(�,5)(4,3)

(4,3) (5,5)

Ouput of stage 1: 4, 5, 3, 1, 4, 5

Output of translator (indices into alphabet symbols): decade

(4,4)

(1,1)

6

Figure 4

Example of DEC1b

simulated. The test �les used are part of the Calgary/Canterbury text compression

12

Compression Compression

Input File Size (Bytes) Savings { MTF Savings { Transpose

bib 111261 29.44 32.24

book1 768771 37.91 41.90

book2 610856 36.98 39.54

paper1 53161 34.19 34.33

paper2 82199 37.49 39.07

paper3 46526 36.63 36.81

paper4 13286 35.20 29.75

paper5 11954 33.71 26.64

paper6 38105 35.45 33.79

news 377109 31.48 34.43

progc 39611 30.72 30.70

progl 71646 38.72 38.61

progp 49379 35.26 34.99

Table 1

Compression savings delivered by Transpose and Move-to-Front Coding

corpus [BCW90]. Transpose coding provides superior compression performance for

large text �les but, for small �les (under 40 Kbytes), Move-to-Front gives better

compression. These �ndings support the theoretical expectation that Transpose

coding takes longer to reach a steady state but, after reaching a steady state, has

a smaller expected access cost.

13

4.2. Systolic Implementations ENC2 and DEC2 with Reduced Delay

The linear delay of the previous designs is determined by the piping of the

input from PE 1 through to PE N . In this section we describe an architecture

which combines a systolic array with trees, resulting in a logarithmic delay. The

trees broadcast the input to the array processors and reduce the simultaneous

outputs of the processors. A similar architecture for dictionary coding is described

in [Z90]. In addition to decreased delay, the restriction allowing data to enter

the pipe only on every other system cycle is eliminated in systolic implementation

ENC2 for Transpose coding.

For a list of size N , the ENC2 architecture consists of 3N � 2 processors.

The �rst N processors are arranged in a systolic pipe and the remaining processors

are con�gured as two binary trees (each containing N �1 processors) synchronized

with the systolic array (see Figure 5). One of the binary trees (the broadcast tree)

is placed on top of the systolic array. Input enters at the root of the broadcast

tree and is propagated down the tree to each array processor. The other binary

tree (the reduction tree) is placed below the systolic array. Results of the array

processors are reduced to a single non-null output via the propagation toward the

root of the reduction tree. The tree interconnect provides total delay of 2 log

2

N .

Processor PE i in the systolic array stores the list entry which is currently

in position i in the list. As in ENC1, this entry is referred to as entry

i

. PE i

receives input from the broadcast tree and from PE i � 1 and PE i + 1. PE i

transmits entry

i

to PE i � 1 and PE i + 1 and outputs match information to the

reduction tree. Processors in the broadcast tree simply pass their input to their

outputs. Reduction processors receive two inputs which are either both zero or one

is non-zero. In the �rst case, the reduction tree outputs zero. In the second case,

the reduction processor transmits the non-zero input.

14

Reduction Tree

Broadcast Tree

(output i if entry

i

matches w)

i or �

entry

i+1

entry

i

entry

i�1

entry

i

w

entry

i

Generic PE i in systolic array:

Figure 5

Broadcast/reduce architecture for ENC2 and DEC2

After the input has propagated down the broadcast tree to the array pro-

cessors, encoding proceeds as follows. At the beginning of the clock cycle, PE i

receives (w) from the broadcast tree, (entry

i�1

) from PE i�1, and (entry

i+1

) from

PE i+1. w is the word to be encoded. If w matches entry

i

then w is set to i and

15

entry

i�1

is written into entry

i

. If w matches entry

i+1

(received from PE i + 1 at

the start of the cycle) then PE i overwrites entry

i

with entry

i+1

and sets w to 0.

Otherwise, PE i sets w to 0. At the close of the clock cycle, PE i transmits entry

i

to PE i+1 and PE i� 1 and sends w to its neighboring processor in the reduction

tree. Thus, at the end of each clock cycle, exactly one array processor (the one

which matched the input symbol) outputs a non-zero value into the base of the

broadcast tree. This non-zero value is propagated to the root of the reduction tree

and �nally output. Decompression (DEC2) mirrors ENC2.

5. Parallel Transpose Coding with Arbitrary Words

The designs of Section 4 included only �xed-length words in the list. The

more general word list compression scheme permits words of arbitrary lengths to

be present. A straightforward extension of our previous designs allows arbitrary

words. However, the 3-tuples that travel through the array, consisting of two words

and a pointer, may lead to unreasonable VLSI implementation requirements. For

example, the �xed-length implementations consisting of 256 processing elements

require 24 bits per tuple or 48 input/output pins per systolic element. For words

of length 8 or less on a systolic array of similar size, the pin requirement jumps to

272 input/output pins per chip. One simple solution to the problem of unbounded

pin requirements is to place a bound on the maximum allowable word length. This

bound enforces a limit on the pin requirements. The appropriate maximum word

length is dependent on the application.

In order to avoid the potential VLSI issues, Thomborson andWei approximate

Move-to-Front coding by using a hardwired hash table to map arbitrary words onto

an 8-bit byte[TW89]. This single byte is piped into the array and encoded as a

�xed-length word. The increased throughput provided by the systolic design comes

at the expense of lower compression savings. Their design provides compression

16

savings ranging from 25% to 65% and an input bandwidth of 40 Mbytes running on

a 40 MHz clock. This is considerably lower than the compression savings of 30% to

75% obtained by the sequential Move-to-Front codes. Implementing this hashing

approach on our systolic transpose coders is straightforward. We suspect that the

random behavior of the hashing scheme would result in compression savings similar

to those of the Move-to-Front systolic implementation [TW89].

6. Topics for Future Investigation

Although we have outlined the design and compression performance of several

systolic compressors for high-bandwidth applications, extensive empirical evalua-

tions of our methods are needed to fully describe their behavior.

As supported by the empirical �ndings in Section 4.1.1, Move-to-Front coding

performs well on small �les and Transpose coding is superior for large �les. This

suggests the examination of a hybrid scheme which combines Move-to-Front and

Transpose coding. Initially, Move-to-Front coding is utilized and at some point

control is switched to a Transpose coding method.

The broadcast/reduce implementation for Transpose coding described in

Section 4.2 has a delay of logarithmic length. Further investigation into a broad-

cast/reduce for Move-to-Front coding may result in similar reductions in the delay.

The systolic designs for arbitrary word lengths are limited by the imperfect

approximation behavior of the hashing scheme. Alternative methods are necessary

to better emulate general sequential list compression.

As suggested by Thomborson and Wei, a high-bandwidth architecture for

adaptive Hu�man coding or other �xed-to-variable length coders which is capable

of operating at a rate that is commensurate to the systolic list compression systems

is also of great interest. Potentially, this high-bandwidth coder, when coupled with

a systolic list compressor, will lead to improved compression performance.

17

References

[BCW90] Bell, T. C., Cleary, J. G., and Witten, I. H. Text Compression,

Prentice-Hall, Englewood Cli�s, New Jersey, 1990.

[BSTW86] Bentley, J. L., Sleator, D. D., Tarjan, R. E., and Wei, V. K. A

locally adaptive data compression scheme. Commun. ACM 29, 4 (April,

1986), 320{330.

[E87] Elias, P. Interval and recency rank source coding: two on-line adap-

tive variable-length schemes. IEEE Trans. Inform. Theory IT-33, 1

(Jan., 1987), 3{10.

[HH85] Hester, J. H. and Hirschberg, D. S. Self-organizing linear search.

ACM Comp. Sur. 17, 3 (Sep., 1985), 295{311.

[HC87] Horspool, R. N., and Cormack, G. V. A locally adaptive data

compression scheme. Technical Correspondence. Commun. ACM 30,

9 (Sept., 1987), 792{794.

[LH87] Lelewer, D. A. and Hirschberg, D. S. Data compression. ACM

Comp. Sur. 19, 3 (Sep., 1987), 261{296.

[R87] Ryabko, B. Y. A locally adaptive data compression scheme. Technical

Correspondence. Commun. ACM 30, 9 (Sept., 1987), p. 792.

[SH91a] Stauffer, L. M. and Hirschberg, D. S. Parallel data compression.

Technical Report 91-44. Info. and Comp. Sci. Department, University

of California, Irvine.

[S88] Storer, J. A. Data Compression Methods and Theory, Computer

Science Press, Rockville, Maryland, 1988.

[TW89] Thomborson, C. D. and Wei, Belle W.-Y. Systolic implementations

of a move-to-front text compressor. In Proceedings 1989 ACM Sympo-

sium on Parallel Algorithms and Architectures, Sante Fe, New Mex.,

ACM, New York, 1989, pp. 283{290.

[W84] Welch, T. A. A technique for high-performance data compression.

Computer 17, 6 (June, 1984), 8{19.

[W91] Williams, R. N. Adaptive Data Compression, Kluwer Academic Pub-

lishers, Norwell, MA, 1991.

18

[Z90] Zito-Wolf, R. J. A broadcast/reduce architecture for high-speed data

compression. In Proceedings of the Second IEEE Symposium on Parallel

and Distributed Processing, Dallas, Texas, 1990.

[ZL78] Ziv, J. and Lempel, A. Compression of individual sequences via

variable-rate coding. IEEE Trans. Inf. Theory 24, 5 (1978), 530{536.

19

Contents

Page

Introduction . 1

List Compression . 2

Related Work in Move-to-Front Coding . 4

Parallel Transpose Coding with Fixed-Length Words 5

Systolic Implementations ENC1 and DEC1 6

Systolic Implementations ENC2 and DEC2 with Reduced Delay 14

Parallel Transpose Coding with Arbitrary Words 16

Topics for Future Investigation . 17

References . 18

i

