
An Order-2 Context Model for Data Compression

With Reduced Time and Space Requirements

Debra A. Lelewer and Daniel S. Hirschberg

Technical Report No. 90-33

Abstract

Context modeling has emerged as the most promising new approach to com-

pressing text. While context-modeling algorithms provide very good compression,

they su�er from the disadvantages of being quite slow and requiring large amounts

of main memory in which to execute. We describe a context-model-based algo-

rithm that runs signi�cantly faster and uses less space than earlier context models.

Although our algorithm does not achieve the compression performance of compet-

ing context models, it does provide a signi�cant improvement over the widely-used

Unix utility compress in terms of both use of memory and compression performance.

Introduction

The most widely used data compression algorithms, including the Unix utility

compress, are based on the work of Ziv and Lempel [ZL78]. These are dynamic

algorithms that build a dictionary representative of the input text and code dic-

tionary entries using �xed-length codewords. Compress typically reduces a �le to

40{50% of its original size. Compress is extremely fast, but has a large memory re-

quirement (450 Kbytes). An updated version of the Ziv-Lempel algorithm requires

less memory (186 Kbytes for encoding and 130 Kbytes for decoding) and achieves

better compression (compressing �les by an additional 30% on average) [FG89].

Newer approaches to data compression tend to focus on �les of one partic-

ular type, and text �les are most commonly studied. The most promising new

methodology is one that predicts successive characters taking into account the

context provided by characters already seen. What is meant by predict here is that

previous characters are used in determining the number of bits used to encode the

current character. A method of this type is referred to as a context model and, if

the number of previous characters used to make a prediction is constant, an order-i

context model. When i = 0, no context is used and the text is simply coded one

character at a time. This is the model most commonly discussed in connection

with Hu�man coding ([H52]; [G78]) and with arithmetic coding [WNC87]. When

i = 1, the previous character is used in encoding the current character; when i = 2,

the previous two characters are used, and so on.

A context model is generally combined with arithmetic coding to form a data

compression system. The model provides a frequency distribution for each context

(each character in the order-1 case and each pair of characters in the order-2 case).

Each frequency distribution forms the basis of an arithmetic code and these are used

to map events into code bits. Hu�man coding may be used in concert with �nite-

context models but will generally perform less e�ectively. This is because Hu�man

coding is constrained to represent every event (character) using an integral number

of bits. While information theory tells us that an event with probability

4

5

contains

lg

5

4

y bits of information content and should be coded in lg

5

4

� :32 bits, Hu�man

coding will assign 1 bit to represent this event. Finite-context models frequently

construct skewed distributions, often with one or two very high probability events.

y lg denotes the base 2 logarithm

1

Arithmetic codes are able to represent an event using lg p bits where p is the

probability of the event and are thus able to code events with probability greater

than 1/2 in less than 1 bit. Context modeling is usually used adaptively so that,

like the Lempel-Ziv model and dynamic Hu�man models, it requires only a single

pass over the data to be compressed.

A disadvantage of context models is that the memory requirement of the

model frequently exceeds the size of the �le being compressed. Bell et al. report

compression ratios (compressed �le size divided by original �le size) for an order-3

context model of approximately 30% on average, but the model requires 500 Kbytes

of memory to achieve this compression [BWC90]. While this quantity of memory

may be available on research or production machines, it is not generally available.

In particular, microcomputer implementations must greatly reduce memory uti-

lization. Another disadvantage of context models is that they tend to be much

slower than the Lempel-Ziv style of compression. Bell et al. report encoding and

decoding speeds of 2000 characters per second (cps) for the order-3 context model

as compared with 12000 cps for compress and 6000 cps for the updated Ziv-Lempel

method of Fiala and Green.

The algorithm we describe improves the practicality of the context modeling

concept. Our modi�cations of the basic �nite-context model improve its speed and

decrease its memory requirements. We are willing to sacri�ce some compression

e�ciency to achieve the speed and memory improvements as long as our system

also provides advantages over the state-of-the-art compress. We present our al-

gorithm from the point of view of the encoder, describing the way in which the

encoder maintains a context model and uses corresponding frequency values to

code characters. As in any adaptive data compression algorithm, the decoder must

maintain the same model and use the frequency information in a compatible way

so as to correctly interpret data received from the encoder.

Finite-Context Modeling

In this section we present an introduction to context modeling. We include

only that information needed to understand our approach to the use of context,

however, and a more comprehensive discussion can be found in the book by Bell et

al. [BCW90]. In order to simplify our introduction to the concept of �nite-context

2

modeling, we de�ned an order-i context model to be one in which the previous i

characters are always used to code the current character. Such a model should

more accurately be referred to as a pure order-i model (or a model of �xed order

i) to distinguish it from the more common blended context model. A blended

model of order i is one in which the order i model is blended with models of orders

i� 1; i� 2; . . . ; 0. Blending is desirable and essentially unavoidable in an adaptive

setting where the model is built from scratch as encoding proceeds. When the �rst

character of a �le is read, the model has no history on which to base predictions.

Larger contexts become more meaningful as compression proceeds.

In a typical blended order-i model, the number of bits used to code character

c will be dictated by the preceding i characters if c has occurred in this particular

context before. Otherwise, models of lower order are consulted, beginning with

order i � 1, until one of them supplies a prediction. When the context of order i

fails to predict the current character, the encoder must emit an escape character, a

signal to the decoder that the lower model is being consulted. The order-0 model

may be initialized to provide a prediction for each character so that the process of

consulting lower-ordered models terminates. Alternatively, the order-0 model may

be used only for characters that have appeared before but are now appearing in a

novel context. In this case, a model of order �1 is used for predicting characters

when they occur for the �rst time. The �1 model is initialized so that each of the

unused characters is equally likely. When a character occurs in a novel context,

this new information is added to the model being constructed.

We will call an order-i context model full if for all k < i, every k-gram

(sequence of k contiguous characters) that occurs in the �le being encoded forms an

order-i context in the model being constructed. A full model of even order 3 is rare

since the space required to store context information for every 3-gram, 2-gram,

1-gram, and single character in the �le is prohibitive. The PPMC algorithm of

Bell et al. is a full context model of order 3 stored in a tree data structure that is

allowed to grow to 500 Kbytes [BCW90]. The model is rebuilt from scratch when

it reaches this limit. We consider strategies that use less space and execute faster

but that still achieve better compression than the state-of-the-art compress.

3

Previous Work on Context Models with Modest Memory Requirements

Langdon and Rissanen describe a algorithm (LR) that uses a subset of the

order-1 model [LR83]. Algorithm LR uses a model consisting of z order-1 contexts

and an order-0 context (z is a parameter associated with the algorithm and de-

termines its memory requirements). When encoding begins, the order-0 model is

used since no characters have yet occurred in any order-1 context. In a full order-1

model, when a character occurs for the �rst time it becomes an order-1 context.

In algorithm LR, only z contexts will be constructed: for the �rst z characters to

occur at least N times in the text being encoded (N is another parameter of the

algorithm). The suggested values z = 31 and N = 50 provide approximately 50%

compression with a very modest space requirement and very good speed [BCW90].

Abrahamson presents an order-1 context model with very modest memory

requirements. He describes his model as follows:

If, for example, in a given text, the probability that the

character h follows the character t is higher than that for

any other character following a t and the probability of an e

following a v is higher than that for any other character fol-

lowing a v, then the same symbol should be used to encode an

h following a t as an e following a v. It should be noted that

this scheme will also increase the probability of occurrence

of the encoded symbol. . . . the source message abracadabra

can be represented by the sequence of symbols abracadaaaa.

Notice how a b following an a and an r following a b (and

also an a following an r) have all been converted into an a,

the most frequently occurring source character [A89].

We believe a simpler description of Abrahamson's model characterizes it as an

order-1 context model that employs a single frequency distribution and that codes

symbol y following symbol x as symbol k, where k can be thought of as the position

of y on x's list of successors and where successor lists are maintained in frequency

count order. Thus we think of bra as being coded by 111 rather than aaa. The

other characters in the string abracadabra will also be coded as list positions, but

these positions cannot be inferred from the example. While this characterization

4

may not be obvious from the description given above, it becomes clear from the

implementation details given in the paper [A89].

The data structures in Abrahamson's method consist of two-dimensional

arrays char to index, index to char and count, and one-dimensional frequency and

cumulative-frequency arrays. The frequency count array stores in count[x; y] the

number of times that character y has appeared in context x (i.e., following character

x). The char to index array is used by the encoder to map characters to frequency

values and the index to char array is used by the decoder to map frequency values

to characters. The value of char to index[x; y] gives the position of y on x's

successor list and this position is used to index into the frequency distribution. The

single frequency distribution may be thought of as representing the frequencies of

occurrence of the various list positions (k values) and this distribution is used for

arithmetic coding of the events modeled.

Thus, we recognize that Abrahamson is modifying the basic order-1 model

by a) employing a single frequency distribution rather than a distribution for each

1-character context and b) employing self-organizing lists to map characters to

frequency values. Abrahamson's model is a pure order-1 context model. That is,

it is always possible to predict the next character given its predecessor. For any

pair x; y of successive characters, we code y using the k

th

frequency value where

char to index[x; y] = k. There is intuitive appeal in the use of the frequency count

list organizing strategy in Abrahamson's algorithm since the coding technique

employed is based on frequency values. On the other hand, the frequency values

used are aggregate values. Character y in context x is coded not using count[x; y],

but frequency[k] where k is the position of y on the self-organizing list for context

x. That is, the frequency used for encoding is not the frequency with which y has

occurred after x, but the number of times that position k has been used to encode

an event.

We have investigated the performance of other self-organizing list strategies in

connection with Abrahamson's model (for a survey of list-organizing strategies, see

[HH85]). We tested the performance of move-to-front, transpose, and move-p%-of-

the-way-to-front (for p = 33, 50, 67, 70, and 75). For most �les we tested, frequency

count provided the best compression ratios, but the di�erences in performance were

not dramatic. Our results agree with research by Horspool and Cormack in which

5

a variety of list organizing strategies are used in connection with an order-0 context

model based on words rather than characters. They also report no signi�cant per-

formance di�erences among list organizing methods [HC87]. The use of transpose

or move-to-front obviates the need for frequency counts in Abrahamson's algorithm

and reduces the memory requirement from 200 Kbytes to 68 Kbytes when n = 256.

Order-2 Context Models in Limited Memory

When used to encode text �les (where the alphabet size is typically in the

range 90{128), Abrahamson's algorithm provides a speed advantage over the con-

text model PPMC and a space advantage over PPMC and compress. However,

the compression performance, approximately 54%, compares poorly with that pro-

vided by PPMC and compress. Abrahamson's algorithm provides about the same

throughput as that of the updated Lempel-Ziv algorithm by Fiala and Green (al-

gorithm FG, [FG89]), and this is signi�cantly slower than compress. The space

required is less than than of algorithm FG only for small alphabets (n � 200).

Using the transpose list organizing strategy instead of frequency count improves

the space requirements of Abrahamson's algorithm, but provides the samemediocre

compression performance.

We consider �nite-context models of order 2. Abrahamson's technique of

using a single frequency distribution would provide some memory reduction, but

to maintain a self-organizing list of size n (where n = 128 or 256) for each two-

character context is prohibitive. We use a blended order-2 model and maintain a

self-organizing list of size s, where s� n, for each two-character context. When z

occurs in context xy and z is not on the xy list we must leave the order-2 model

and code z on some other basis. There are several candidates for this alternative

basis. We may employ a pure order-1 model at this point, or an order-0 model,

or we may maintain short order-1 lists and resort to order-0 when z appears on

neither the xy list nor the y list.

We have considered each of these alternatives. Our experiments indicate that

an order-2-and-1 model is the least successful of the three options. Models based

on orders 2 and 0 and models based on orders 2, 1, and 0 have produced similar

compression results. The order-2-and-0 model allows faster encoding/decoding

since it consults at most two contexts per character. We discuss the order-2-and-0

6

model that displays the best compression performance. We refer to this model as

partially blended since it does not consult all models of lower order.

In our order-2-and-0model, we maintain a self-organizing list of size s for each

two-character context. We encode z in context xy by event k if z is in position

k of list xy. When z does not appear on list xy we encode z itself. The order-0

part of the model consists of frequency values for n characters. Encoding entails

mapping the event (k or z) to a frequency and employing an arithmetic coder. To

complete the description of the model, we need to specify a list-organizing strategy

and the method of maintaining frequencies. The frequency count list-organizing

strategy is inappropriate because of the large number of counts required. We use

the transpose strategy because in addition to not requiring frequency counts it also

provides faster update than move-to-front.

In order to conserve memory we do not use a frequency distribution for each

context. Instead, we maintain a frequency value for each feasible event. Since

there are s + 1 values of k (the s list positions and the escape value) and n + 1

values for z (the n characters of the alphabet and an end-of-�le character), the

number of feasible events is s + n + 2. We can maintain the frequency values

either as a single distribution or as two distributions, an order-2 distribution to

which list positions are mapped and an order-0 distribution to which characters

are mapped. Our experiments indicate that the two-distribution model is slightly

superior. When z occurs in context xy we use the two frequency distributions in

the following way: if list xy exists and z occupies position k, we encode k using the

order-2 distribution. If list xy exists but does not contain z, we encode an escape

code (using the order-2 distribution) as a signal to the decoder that an order-0

prediction (and the order-0 frequency distribution) is to be used, and then encode

the character z. When list xy has not been created yet, the decoder knows this

and no escape code is necessary; we encode z using the order-0 distribution.

The escape code must be chosen so that the decoder recognizes it as a signal

rather than a list position. If viewed as just another list position, there are two

reasonable choices for the value of the escape. The value s+1 will never represent

a list position; or we may use size + 1, where size is the current size of list xy

(and ranges from 1 to s). In the �rst case, the escape code is the same for every

context and all of the counts for the escape code accrue to a single frequency

7

value; in the second case, the value of the escape code depends on the context

and generates counts that accrue to multiple frequency values. The two escape

strategies produce similar compression results. The algorithm we describe here

uses the second alternative.

We also need to specify how the self-organizing lists and frequency distribu-

tions are updated. A list is updated for each character encoded. That is, when z

occurs in context xy, the xy list is updated, either by transposing z with its pre-

decessor or by adding it to the list. Similarly, we update a frequency distribution

when it is used. Thus, when list xy exists, the order-2 distribution is updated after

it is used to encode either a list position or an escape. The order-0 distribution is

used and updated when z is not predicted by context xy.

The data stored for our method includes frequency and cumulative frequency

lists of size s+2 (for order 2) and n+1 (for order 0), and pos to freq and freq to pos

arrays of size s + 1 and n + 1, as well as the self-organizing lists of size s. The

pos to freq and freq to pos arrays play the role of Abrahamson's char to index and

index to char arrays, mapping list positions to frequencies in the order-2 context

and characters to frequencies in the order-0 context. When the self-organizing

lists are implemented as arrays, the total memory requirement of our method is

n

2

(s+1)+5(s+n+2)+3 bytes. With an s value as low as 2, our method is faster

than Abrahamson's and provides better compression with less storage required.

Based on empirical data, s = 7 provides the best average compression over a suite

of test �les. With s = 7 we use approximately three times as much memory

as Abrahamson's method but achieve compression that is 21% better on average

(3.3 bits per character as opposed to 4.2) and in slightly less execution time. Our

method also provides better compression than Unix's compress (approximately 15%

better with s = 7) using essentially the same memory requirement for n = 256 and

far less for n = 128.

Using dynamic memory allocation to implement the self-organizing lists re-

sults in a far more e�cient use of space. We allocate an array of n

2

pointers to

potential lists, and allocate space for list xy only if xy occurs in the text being

compressed. The memory requirement becomes n

2

+ u(s + 1) + 5(s + n + 2) + 3

bytes, where u represents the number of distinct character pairs occurring in the

text. In our suite of test �les, the maximum value of u was 4721; this value was

8

encountered in �le windows, a 0:69 megabyte �le of messages extracted from the

bulletin board comp.windows.x. Even in this worst case, the dynamic-memory

version of the order-2-and-0 algorithm results in a 95 Kbyte space savings over

Abrahamson's method (when both methods use k = 256 and with s = 7, our space

requirement is � 104 Kbytes and his � 199 Kbytes). The compression performance

is, of course, the same as that provided by an array-based implementation. The

dynamic-memory implementation is slightly slower than the static version due to

overhead incurred by dynamic allocation, but this algorithm is still faster than

Abrahamson's algorithm.

Order Unix Abrahamson's

File type 2-and-0 Compress Order-1

bboard 45:96 47:69 51:61

doc 38:76 42:85 48:98

T

E

X 40:98 43:09 50:14

source 33:66 41:30 45:30

non-text 51:24 55:94 57:08

all 41:09 48:06 51:89

Table 1 Performance by category.

Experimental Results

We compare the performance of the order-2-and-0method to that of compress

and Abrahamson's method on a suite of 34 �les selected to include a variety

of �le types and sizes. Since compress is available under Unix and source code

for Abrahamson's method appears in [A89], we are able to run each of these

methods against our test suite. Where possible, we include �les used by other

researchers to compare with competing compression algorithms. The �les we use

can be grouped into categories: bboard �les consisting of electronic bulletin board

entries, doc �les of on-line program documentation/user's manuals, T

E

X-formatted

versions of technical papers, source �les in C and Pascal, non-text �les including

a dvi �le and a binary �le, and miscellaneous �le types. The miscellaneous �le

9

category includes �les alphabet (enough copies of the 26-letter alphabet to �ll

out 100,000 characters) and skewstat (10,000 copies of the string aaaabaaaac)

described by Witten et al. [WNC87] and the Unix dictionary /usr/dict/words

described by Williams [W88]. Table 1 presents a performance comparison of our

method with compress and Abrahamson's order-1 method. Data reported are

average compression ratios by category and overall.

In Table 2 we display results for some speci�c �les. These are: alphabet,

skewstat, and /usr/dict/words described above; fcsh, the formated manual

entry for the csh command in Unix; ocsh, the object code for the csh command;

compress20 through compress500; and compress. Compress is the C source

code for the Unix utility compress and compress20 contains the �rst 20 lines of

compress. Original �le sizes are listed in column two.

Original Order Unix Abrahamson's

File Size 2-and-0 Compress Order-1

alphabet 100000 0:05 3:05 0:58

skewstat 100000 9:06 1:80 12:09

/usr/dict/words 201089 38:52 51:10 49:33

fcsh 77844 37:84 38:10 44:30

ocsh 118784 59:82 65:35 62:68

comp20 578 69:38 83:56 80:45

comp50 1234 59:32 68:80 66:94

comp100 2292 49:87 59:82 58:38

comp200 4877 49:33 58:48 58:60

comp500 13314 47:30 54:35 55:88

compress 35382 41:75 47:67 51:81

Table 2 Performance on selected �les.

Witten et al. describe alphabet and skewstat and give results for an order-

0 context model [WNC87]. This model achieves compression ratios of 59:29 and

12:09 respectively. Table 2 shows that our order-2-and-0 model outperforms the

10

order-0 model, compress, and the order-1 model of Abrahamson on alphabet

and that only compress performs better on skewstat. These �les are not typical

of text, however, so performance on them is of little interest. Williams reports

results on /usr/dict/words and the various compress �les [W88]. The values

he gives for original �le sizes are slightly di�erent from ours since local copies of the

�les contain minor di�erences. Williams' dynamic-history compression technique

achieves a compression ratio of 58:3 on /usr/dict/words and ratios of 69:9, 57:3,

45:4, 49:2, 40:1, and 42:24 on the versions of the compress source. Williams'

motivation in considering subsets of the compress source was to emphasize the

fact that his model `learns' the characteristics of a �le as it compresses. Thus,

a larger �le provides more opportunity for learning and greater compression is

achieved. Any dynamic data compression scheme learns characteristics of a source

as compression proceeds. Compression performance improves with �le size to the

point at which the limit on available memory is reached. When the algorithm can

no longer store new information, performance may degrade. The compress �les

and the source category in Table 1 demonstrate that the order-2-and-0 method

performs particularly well on source program �les. Cormack and Horspool report

results for �les fcsh and ocsh [CH87]. The values for original �le size di�er from

ours substantially, so comparisons are unreliable. Cormack and Horspool report

that an order-4 context model achieves compression ratios of 26:5 and 69:4 on fcsh

and ocsh respectively and that a dynamic Markov model (which is essentially a

�nite context model) provides ratios of 27:2 and 54:8. Our results for ocsh compare

favorably to theirs. In comparing ratios, however, we must keep in mind that the

�les may be quite di�erent and, more importantly, that the models they discuss

have unlimited memory requirements.

Using Hashing to Improve Memory Use

We have described an algorithm that allocates n

2

self-organizing lists of size

s and another that uses dynamic memory to allocate lists of size s only when they

are needed. The second algorithm, however, statically allocates n

2

pointers, one

for each of the n

2

possible contexts. In this section we describe an order-2-and-0

strategy that uses hashing rather than dynamic memory. This algorithm employs

a hash table into which all n

2

contexts are hashed. Each hash table entry is a

self-organizing list of size s. An implementation of this strategy provides better

average compression than the earlier methods and requires much less memory.

11

Encoding and decoding proceed as in the earlier algorithms: when z occurs

in context xy and no xy list exists we encode z using the order-0 frequency

distribution; when an xy list exists but does not contain z, we emit an escape

code and then code z using the order-0 distribution; when z is contained on the

list for xy we code its position. An obvious disadvantage of the use of hashing is

the possibility of collision. If two contexts hash to the same table position, the

lists for these contexts are coalesced into a single list. This does not a�ect the

correctness of the approach, but may impact its compression performance. We

mitigate the negative e�ects of hashing in two ways. First, we use linear probing

to resolve collisions. In order to maintain reasonable running time we perform only

a small number of probes (four in the implementation we describe here). Second,

we use some of the space gained by eliminating n

2

pointers to provide m > 1

order-2 frequency distributions. The value of m is is signi�cantly smaller than the

size of the hash table (H) so that we are coalescing H=m lists into each frequency

distribution. Thus the cost is less than that of providing a frequency distribution

for each context while compression results are better than those achieved when we

use a single frequency distribution for all lists.

An implementation of the hash-based algorithm with H = 4800, m = 70,

s = 7, and n = 256 provides approximately 4% more compression than the order-

2-and-0 algorithm described above and uses only 48 Kbytes of memory. We provide

empirical comparisons with the pointer-based algorithm in Table 3.

Future Research

Our algorithm provides an order-2 model that makes e�cient use of inter-

nal storage. The use of main memory is particularly critical for microcomputer

compression programs. We will compare our results with state-of-the-art micro-

computer compression utilities. We o�er better compression than that achieved by

compress; it seems likely that our work represents an even more valuable improve-

ment over limited-memory microcomputer versions of Lempel-Ziv coding.

We are also investigating limited-memory models based on order-3 context.

These models must be implemented using dynamic memory, and the `array of

12

Order Order

File/Type 2-and-0 2-and-0

(Dynamic) (Hashing)

bboard 45:96 44:46

doc 38:76 36:44

T

E

X 40:98 39:70

source 33:66 32:92

non-text 51:24 50:00

all 41:09 39:49

/usr/dict/words 38:52 36:94

fcsh 37:84 35:45

ocsh 59:82 58:23

comp20 69:38 69:55

comp50 59:32 57:29

comp100 49:87 47:47

comp200 49:33 47:16

comp500 47:30 45:26

compress 41:75 40:10

Table 3 Performance comparison - dynamic memory and hashing.

pointers' dynamic strategy discussed for the order-2-and-0 model is not appro-

priate. For an alphabet of 256 symbols, storing even a single pointer for each

3-character context is prohibitive.

Summary

We present an order-2-and-0 �nite context model that provides compression

performance better than that of the state-of-the-art Unix utility compress and has

memory requirements far more modest than those of compress. Our algorithm

provides improved compression performance on �les of many types and performs

particularly well on program source codes. We believe that our model is concep-

tually simple and easy to implement.

13

References

[A89] Abrahamson, D. M. An adaptive dependency source model for data

compression. Commun. ACM 32, 1 (Jan., 1989), 77{83.

[BCW90] Bell, T., Cleary, J. G., and Witten, I. H. Text Compression, Pren-

tice-Hall, Englewood Cli�s, N.J., 1990.

[CH87] Cormack, G. V. and Horspool, R. N. S. Data compression using

dynamic Markov modeling. Comput. J. 30, 6 (Dec., 1987), 541{550.

[FG89] Fiala, E. R. and Greene, D. H. Data compression with �nite windows.

Commun. ACM 32, 4 (Apr., 1989), 490{505.

[G78] Gallager, R. G. Variations on a theme by Hu�man. IEEE Trans. Inf.

Theory 24, 6 (Nov., 1978), 668{674.

[HH85] Hester, J. H. and Hirschberg, D. S. Self-organizing linear search.

ACM Comput. Surv. 17, 3 (Sept., 1985), 295{311.

[HC87] Horspool, R. N. and Cormack, G. V. A locally adaptive data com-

pression scheme. Commun. ACM 16, 2 (Sept., 1987), 792{794.

[H52] Huffman, D. A. A method for the construction of minimum- redun-

dancy codes. Proc. IRE 40, 9 (Sept., 1952), 1098{1101.

[LR83] Langdon, G. G. and Rissanen, J. J. A double-adaptive �le compression

algorithm. IEEE Trans. Comm. 31, 11 (Nov., 1983), 1253{1255.

[W88] Williams, R. N. Dynamic-history predictive compression. Information

Systems 13, 1 (Jan., 1988), 129{140.

[WNC87] Witten, I. H., Neal, R. M., and Cleary, J. G. Arithmetic coding for

data compression. Commun. ACM 30, 6 (June, 1987), 520{540.

[ZL78] Ziv, J. and Lempel, A. Compression of individual sequences via vari-

able- rate coding. IEEE Trans. Inf. Theory 24, 5 (Sept., 1978), 530{536.

14

