Subtree Weight Ratios for Optimal Binary Search Trees

D.S Hirschberg
L.L. Larmore
M. Molodowitch

Abstract

For an optimal binary search tree T with a subtree S(d) at a distance d from the
root of T, we study the ratio of the weight of S(d) to the weight of T. The maximum
possible value, which we call p(d), of the ratio of weights, is found to have an upper
bound of 2/F . where F; isthe ith Fibonacci number. Ford=1, 2, 3, c?nd 4, the bound is
shown to betight. For larger d, the Fibonacci bound gives p(d) = O(¢’) where @ [
.61803 isthe (90| denratio. By giving a particular set of optimal trees, we prove p(d) =
Q((.58578...)"), and believe asimilar proof follows for p(d) = Q((.60179...)d). If we
include frequencies for unsuccessful searches in the optimal binary search trees, the
Fibonacci bound is found to be tight.

Keywords: Optimal Binary Search Trees, Fibonacci Numbers, monoatinicity
function

1. Introduction

An optimal binary search tree minimizes the expected search time when we are
given afixed set of keyswith frequencies 3, B,....3, for their occurrence[1]. We refer to
the 3’s as weights of the nodes of the search tree. Melhorn has shown that atree, that is
constructed by equalizing as much as possible the weights of the left and right subtrees,
isvery near optimal [2]. We consider arelated problem: how skewed can an optimal
search tree be.

Let T be an optimal binary search tree and S be a subtree with itsroot at a
distance d from the root of T. Theweight of TisW(T) =%, _._ B,, the weight of SisW(S)
=%, B, and theratio of interest is p(d), the maximum possible value for W(S)/W(T).

In Section 2 we give upper bounds for p(d), first for the case d = 1, where Sisthe
left or right subtree of T, and then for the case of general d. In Section 3, we describe a
set of optimal search trees which have, for the casesd = 1, 2, 3, and 4, subtrees that give

Authors' address: Department of Information and Computer Science. University of Cdifornia, Irvine. Irving, CA
92717.

ratios arbitrarily close to the upper bounds for the p’s, showing that the bounds are tight.
In Section 4, we describe a conjecture as to the asymptotic bounds on p(d) and exhibit
sets of optimal trees that give ratios close to the conjectured bounds. In Section 5, we
examine more general optimal binary search trees, which include frequencies for
unsuccessful searches, and find the Fibonacci bounds are tight for these types of trees. In
Section 6, we summarize the paper and conclude with some open questions.

2. Upper bound for p(d)

First we examine the case whered = 1. Sisthen the left or right subtree of T.
We use the following conventions for describing components of T:

root(U) —theroot of any tree U

W(V) —the weight of any tree U

T, Tx —the left and right subtrees of T

T TR —theleft and right subtrees of root(T)

T Trr —the left and right subtrees of root(Tp)
B, —the weight of root(T)

B Br — the weights of root(T,), root(T)
Theorem 1.

If T isan optimal binary search tree, the weight of the left or right subtree must
be at most 2/3 the weight of the entire tree.

Proof.

Suppose that W(T) > 2/3W(T). Root(T) hastwo subtrees, T, and T,. There
are two possible cases.
Case 1. Theweight of T, isgreater than 1/3 W(T). Then make root(Ty,) the new root
of T, using adouble |eft rotation.
Case2. By +W(Tg) >1/3W(T). Then make root(T) the new root of T, using asingle
left rotation.
In either case, the new tree has lower expected search time than T, a contradiction to the
optimality of T. By symmetry, the same argument holds for the left subtree of T.

-2-

For the general case, we need the following lemma.

Lemma 1.
In an optimal binary search tree,
&) By + W(Tg) = max{W(T), W(T)}

b) By + W(T,) 2 max{ W(Tg), W(Tp,)}

Proof.

Parts () and (b) are equivalent by symmetry, so we prove part (a). There aretwo
possible cases to consider.
Case 1. Suppose B,+W(Tg) <W(T,). Performadouble right rotation putting
root(T, ;) asthe new root of T, producing atree with lower expected search time.
Case 2. Suppose B, + W(T) <W(T,). Perform asingle right rotation putting root(T,)
as the new root, again producing atree with lower expected search time.
For both cases we get a contradiction to the optimality of T, so thelemmalis proved.

Theorem 2.

For any subtree Swith itsroot at a distance d from the root of an optimal binary
searchtree T, W(S)/W(T) < 2/F,, . where F_isthe n-th Fibonacci number (F, = 1, F, =
1, F; = 2). Hence p(d) has an upper bound of 2/F ,_..

Proof.

Assume W(S) = 2W, for some value W, Start at root(S) and go up the path to the
root of T onelevel at atime. At each step i, we are at the root of abigger subtree. Call
this subtree T,, and let 3, be the weight of root(T;). root(T) has another subtree V. which
was not on the path followed. Since every subtree of an optimal treeis also optimal, we
can use Lemma 1:

B, +W(V,) =WMT,_,)
But W(T,) = W(T,_,) + B, + W(V,), so we obtain the recursive relation
W(T,) 2 W(T,_,) + W(T,_,)
W(T) = W(S) = 2W,, and, by Theorem 1, B, + W(V) = W,;, so W(T) = 3W,,. Wecan
solve for W(T) = W(T),
W(T) =2 WF,, 4
and W(S)/W(T) < 2/F . ..

3. The upper bound istight for depths 1, 2, 3, and 4

Wefirst describe a set of trees, in which W(S)/W(T) comes arbitrarily close to the
upper boundsfor d =1 and 2. For higher d, the set provides alower bound for p(d) of
(2—8)/(2d+1) for any small €.

Let T(d) consist of acomplete binary tree of height d in which all the leaves
except one are replaced by complete binary trees of height h and the one leaf is replaced
by acomplete binary tree of height h+1 (Figure 1). Let all nodes have unit weight. T(d)
is clearly optimal and, choosing S to be the subtree of height h+1 at distance d from the
root, we see that

W(S)W(T(d)) = (22™1 - 1) / ((2%+1)2™1 -1)
Aswe let h grow, the ratio comes arbitrarily closeto 2/3 for d =1 and to 2/5 for d = 2.
For higher d's, the ratio approaches 2/(2d+1).

Using T(1) and T(2), we can construct a set of trees T, recursively, in which
W(S)/W(T;) comes arbitrarily closeto the upper boundford=i=3andd=i=4. LetT,
=T(1) and T, =T(2). For odd (even) i =3, theright (left) subtree of root(T,) isT, ;. The
other subtree of root(T,) is asingle node with the same weight 3, as root(T;), where 3, =
S(W(T,_,) +B,_,). Figures2and 3 show T, and T, respectively, and Figure 4 gives the
general T..

If welet W, = 2h+1, T, hasaroot with weight 1.5W, and a single node with the
same weight as the root as the left subtree. The right subtree of T, is T(2) as defined
above. Choosing for S the same subtree of height h+1 as before, but now at a distance 3
from the root,

W(S)W(T) = (2W, — 1)/(8W, — 1)
and, letting h grow, the ratio approaches 2/8. Similarly for T ,, theratio is
W(S)/W(T) = (2W, — 1)/(13W,, — 1) which comes arbitrarily
closeto 2/13.

We now show that T, isoptimal. Inany rearrangement of the nodes into a search
tree minimizing the expected search time, which we will call the cost, the two heavy
nodes must stay in the same relative positions on the left side of thetree. Since all other
nodes have equal weight, they must be arranged as evenly as possible, approximating a

-4-

compl ete tree except on the left side where the two heavy nodes are. Suppose the two
heavy nodes are pushed down one level and anode of weight 1 is at the root (Figure 5).
The change in cost from that of T is given by

ACost = +3W, — (2W,-1) - (W,-1)-2=0
so the cost isthe same as T,,. Pushing the heavy nodes down further results in greater
cost, so T, isan optimal tree asisthetreein Figure 5.

We show that T, is optimal in Section 4.

4. Lower boundsfor p(d)

From Theorem 2 we see that, if W(T,) obeys the recursive relation
W(T) =W(T,_,) + W(T,)
then, solving the characteristic equation, gives
lim, W(T,) =O(((1+V5)/2))
so p(d) = O((2/(1+\/§))d)= O((pd), where ¢ [1.61803 is the golden ratio. We conjecture
that p(d) = O(K%) where K 0 .60179 .

The following stronger version of Lemma 1 suggests why K is probably less than
¢. The notation conventions are the same asin Section 2.

Lemmal'
In an optimal binary tree,

a) By + W(Tg) 2 max{ B +W(T +W(T R}

LL)’ I3LR
b) By +W(T) 2 max{ B + W(Tp), By +W(T,)}

Proof.
The proof isthe sameasin Lemma 1.

We can use Lemma 1and the same construction as in Theorem 2 of going up the
path from root(S) to root(T) onelevel at atime. Using the same notation asin Theorem
2 and applying Lemma 1&t step i,

B+ WV)2WT,_)+B_,
if the path from root(T,_,) to root(T;) was straight and

-5-

B, + W(V) 2W(T,_,) +B,_,
if the path from root(T,_,) to root(T;) was bent.

Since W(T;) =W(T,_,) + B, + W(V,), we get the following:

W(T) 2W(T,_)) + W(T.) +B,

W(T) 2 W(T,_)) + W(T.) + B, ,
the choice depending on whether the path went straight or zigzagged. From this, we see
that to get p(d), we need to choose the minimum possible weights (3" s for the nodes
directly on the path from root(S) to root(T). Inthe examples given in Section 3, the
relevant 3,"s had unit weight, and since 3./W, = /2™, 0ash - oo, p(d) approached
the upper bound of 2/F ..

For d > 4, we conjecture that the 3" s on the path are no longer negligible, and
hence p(d) < 2/F, , ford > 4.

In Section 3 wefirst described a set of trees which gave alower bound of
(2—8)/(2d + 1) for p(d) so that p(d) = Q(Z'd). Theset T, that was described next gives a
recursion relation for f3;:

Bi =B+ 158 _,— 5B
and we have p(d) = Q((.58578...)%).

We now describe athird set of trees which isvery similar to the second (Figure
6). Ingoing from T to T, the change in the weight is the same as before, W()'— W(T}) =
W(T) + B35, but now it is equally split between four nodesinstead of two. One of the four
new nodes is the root of .T'the other three nodes form a complete binary tree whichisa
subtree of root(}); and T} isthe other subtree.. The weight of anew node is thus
25(W(T5) + B,) and p(d) = Q((.60179...)d). Thefirst two trees, Tand J,'are the same for
this set as for the other sets.

In the remainder of this section, we prove the optimality of the trees in the second
set. For the treesin the third set, we have constructed a proof of optimality using similar
arguments. We use extensively atheorem by Knuth [1]: If theinorder of tree T is hodes
A.A, and A, istheroot of an optimal binary search tree for nodesA ,...,A,, and Aj is
the root for an optimal binary search tree for A A, thentheroot A for A ,...,A
satisfies the condition that i <1 <.

K1 1o

Theorem 3.
The binary search trees T, in the second set, described in Section 3, are optimal.

Proof.
The proof is by strong induction. T, was shown to be optimal in Section 3. We
also need to show for the basis that T, is optimal (Figure 3).

By Knuth's theorem, since T, is optimal, there are three possibilities for the root
after adding the two heavy nodes C and D.
a) Theroot isC. Thisiswhat we want.
b) Theroot isB. Then the weight of the right subtree is 10W, — 1, which contradicts
Theorem 1.
¢) Theroot is one of the nodes of unit weight. A tree can then be characterized by the
levels of nodes B and C.
Casel) BothB and C are at level 1 (Figure 7). Thereisno net change in cost from
the tree with theroot at C.
Case2)Bisatlevel 2and Cisat level 1 (Figure 8). The changein cost from Case
(1) isW,, whichis strictly positive, so that thisis not optimal.
Itisclear that moving B or C down further only increases the cost.

Hence the tree with the root at C (Figure 3) isoptimal, asisthetreein Case (1),
sothat T, isoptimal.

We now assume that all Tj, for 1<j <i (wherei > 4), are optimal and show that
T, isoptimal. In the following, welabel the nodes and subtrees of T, asin Figure 4.

Using Knuth's theorem, there are five possibilities for the root when nodes E and
Fareaddedto T, ;.

1) TherootisE. Thisiswhat we wish to show.

2) Theroot isB. The subtree containing {nodes C, D, E, F, and the tree T, .} contradicts
Theorem 1.

3) Theroot isD. Theright subtree contains nodes E and F. For the |eft subtree, we must

-7-

find the optimal tree for A, B, C, and the nodesin T, .. If D is added, we have the
optimal tree T,_, so that, using Knuth's theorem, the root for an optimal tree
which excludes D must be at A or B. However, having the root at A contradicts
Theorem 1, so that the root of the left subtree must be B.

The tree with theroot at D is shown in Figure 9. Note that the cost for
such atree must be greater than the cost for the tree TsShown in Figure 10, where
both C and subtree T, ; are at level 2. Thereis no changein cost from the tree
with root E (Figure 4) to T'Thus the tree with the root at D must cost more than
the tree with the root at E.

4) Theroot isC. Theright subtree contains D, E, and F. The left subtree must be
optimal and contain A, B, and the nodesin T, .. Again using Knuth's theorem
and the assumption that B is the root of an optimal tree T, ,, the root for the left
subtree must be A or B. It cannot be A because of Theorem 1, so the root of the
subtree must be B.

The tree must be the one shown in Figure 11 and there is no differencein
cost between it and the tree with the root at E.

5) TherootisanodeK inT, .. Let Hjbetheoptimal tree formed by the nodesin T,
before K and H, be the optimal tree formed by the nodesin T, _, after K.

The left subtree consists of A, B, and the nodesin H,. Again using
Knuth’' s theorem, the root of the left subtree must be A or B, and clearly the tree
with B asroot has lower cost.

Theright subtree consists of C, D, E, F, and thenodesin H,. Thereare
three possibilities for the root because of Knuth’'s theorem, shown in Figures 12,
13, and 15. Instead of finding the optimal tree containing C and the nodes of H,,
see that the cost of the tree in Figure 14 is less than that in Figure 13. Comparing
costs, we see that both Fig. 14 and Fig. 12 cost more than Fig. 15. Hencethe
right subtree has E as the root.

The whole tree with theroot at K isgiven in Figure 16. We now rearrange
the nodes of T, in Figure 4 to make K theroot asin Figure 17. Then
Cost(Fig. 16) — Cost(Fig. 4)

= Cost(Fig. 16) — Cost(Fig. 17) + Cost(Fig. 17) — Cost(Fig. 4)

-8-

= 2B, - 3B, —2W(H) —WH,)) + 4,
= 2B, — 2B, —W(Hy)) —W(T, o) + A,
=3B, ,— 2B, —W(Hy) + A,
where A, givesthe differencein cost in rearranging T,_; to make K the root.

There are three possibilities for T, . itcanbeT,, T,, or some T, wherek
>3. WhenT, _,isT,, inthe above equation for the differencein costs, 3, , =
1.5W,, B, =1, and we can explicitly find \W(H) + A, for different K's. For all
K's, the differencein costsis positive. Similarly for the case of T,, we can
explicitly show that the difference is positive for all K’s. For the last case, we
look at the structure of T, _, (Figure 18). K can be any of the four nodes shown or
beanodeinT_.. However, we get the minimum in the difference in costs when
2B, + W(H,) isamaximum, so we need only to look at the cases where K is
either node M or node N. For node N, the rearranging cost A, is too high. For
node M, even assuming A, =0,

3B, = 2By —WHy) =3B, —2B,_4 = 2B 3~ W(T;_)
=3P, —WT)
which can be shown to be always positive for i > 6. Therefore the cost of trees
with the root at anode from T, _, is greater than the cost of the tree with the root at
E.

We have now covered all possibilities and shown that the tree with the root at E
(Figure 4) is optimal, which proves the theorem.

5. Moregeneral optimal binary search trees

In the more general case of an optimal binary search tree, we are also given a,,
a,,...0, wherea; is the frequency of unsuccessful searchesfor akey between K. and
Ki;;- Lemmas 1 and land Theorems 1 and 2 till hold with the weights of trees now
including the weights of the leaves a’s, but now we can show that the Fibonacci bounds
aretight for all depths.

Let e the set of binary search trees defined recursively as follows (Figure 19)., T’
and, Bre T(1) and T(2) as defined in Section 3, where the leaves are now the a;’s., fias a
root of unit weight, its left subtreeis T, and itsright subtree is aleaf of weight a = W(T)
—1. Sinceall the s have unit weight and B./W, - O, p(d) - 2/F, ; asdiscussed in

-9-

Section 4.

Theorem 4.
The binary search trees @fe optimal.

Proof.

The proof is by induction on i., Bnd, Bre obviously optimal. Wefirst show, TS
optimal (Figure 20). We can characterize any rearrangement of the tree by the level of
the rightmost leaf Z with weight 3W;-1. ,Bs shown has the leaf at level 1. The lowest
cost of atreewith Z at level 2 isthe same as that for,Tand the cost rises as Z goes down
further. Hence,TS optimal.

Now assume T'is optimal. When we add one internal node of unit weight and one
leaf of weight W(T)—1 to the right of T, by Knuth's theorem there are only two possible
choices for an optimal tree; ahd Figure 21. We can see that their costs are equal, so that T'
isoptimal, asis Figure 21.

6. Summary and open questions

We studied the behavior of p(d), defined as the maximum possible value for the
ratio of the weight of a subtree of an optimal binary search tree to the weight of the entire
tree, where the subtree is at a distance d from the root. p(d) was shown to have an upper
bound of 2/F, ,, so that p(d) = O((.61803...)d). We described sets of trees giving lower
bounds for p(d) of Q((.5)%), Q((.58578...)%) and Q((.60179..)%). Ford=1, 2, 3, and 4,
the upper bound was found to betight, but for higher d' s the question of closing the gap
between the two bounds still remains. For optimal binary search trees which include

frequencies for unsuccessful searches, the Fibonacci bound was shown to be tight.
References

[1] Knuth, D.E.: Optimum binary search trees. Actalnformatica 1, 14-25 (1971)

[2] Mehlhorn, K.: Nearly optimal binary search trees. Actalnformaticab, 287-295

(1975)

-10-

-11-

