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INTRODUCTION

The notion of (polynomial) complete problems was introduced

by Cook [1] and Karp [4]. & problem P is polynomial if there

exists a Turing machine‘T and a polynomial Q(x) of finite degree
such that, for all instances Pi of p, Pi can be described in space
n implies that P, can pe solved by T within a time-bound of Q(n).
It is known that if any one of the set of complete problems is
polynomial then all of them are. Conversely, if it can be shown
that any one of the set of complete problems is not polynomial,
then none of them are.

There are several problems that are "no worse" than complete,
but have not been shown to se either polynomial or complete.
Graph isomorphism (given grapns 2 and B, is A isomorphic to B?)
is one sucin. T

We discuss some approaches that attempt to categorize this
problem. We also describe and refute various conjectures and

algoritnms for this'problem.

+ Another is k-processor scheduling of equal execution time, non-
preemptible jobs with precedence constraints.



CANONICAL FOR: OF A GRAPHA

Consider a mapping f: ¢2C from the set & of adjacency
matrices (representing labeled undirected graphs on the set of
nodes {1,2,...,n}) to an arbitrary set C. Let A; € ¢ represent

graph Gl and A, € ¢ represent graph G,. If G is isomorphic to

2 1

G, (written G, = G2) then we shall say that Ay ig eguivalent to
A, (written A, = A,) . Formally, A, B A, IFF there exists a
permutation matrix 7 such that &, = T BT,

We define

£ is isomorphism invariant Al = A2 = f(Al) = f(AZ)

Fh

is isomorphism indicative f(Al) = I(Az) = Al = A,

is an isomorphism characterization

i

or a canonical mapping f(Al) = f(Az)@ By = A2

in which case f(Al) is the canonical foxm of the
graph represented by Al.
Any algorithm which computes a canonical mapping for graphs
can be used as a graph isomorphism algorithm.
In considering an adjacency matrix A, we need only look at
the upper triangular part (u.t.p.) since A is a symmetric 0-1
matrix with zeros on the diagonal (we are considering simple
undirected ¢raphs with no seli-loops) .
We cdefine an order on the bit positions of the uvu.t.p. of A
as a mapping R: {(i,j)!1si<jsn}ﬁ{l,2,...,N=2§:Q}. An example

of a possible R is given in figure 1.
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et ;
P01l 2 .00 ... n-1

M- (4,3
oMms(ds ) n n+tl ... 2n-3

g,{(a) = b ..
- l<i<j<n *J
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rank of a;; according to R. It is | LN
seen that ¢,(A) is the base 2 evaluation FPIGURE 1

AN
of the bits in the u.t.p. of A arranged in order R. For fixed n,

9:@ = {0,1,2,...,25-1} is bijective. Let

#.(A) = max (g.(A.))
R R iR 1
A.=A
i
Then #, is a canonical mapping for graphs. For suppose
FAN

i

n —_ i —_ - b v — '."’l = 7 = , a .
WR(hl) =k = #R(AZ). Then Al g (k) = A, and thus Ay P

1
i

Conversely, Al = A2 implies that max (gR(Ai)) = max (gR(Ai))
8= A=A,

-

b5

because = is an eguivalence relation.

A neighoorhood searcin algorithm is an algoritim that seeks
to maximize a measure by, for a given starting point, looking at
points that are "close" (in some sense) and choosing some point
in the neighnorhood of points which has a larger measure. This
procedure is iterated until a local optimum is reached., In some
cases (convex programming is one) a local optimum is always a
global optimum. In other cases (as below) it may not be a global
optimum.

In perticular, for R as in figure,l, using simple row (and

column) intexrchange will not necessarily yield a global optimum
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of gR(A)° The two graphs in figure 2 are isomorphic and their
matrix representations are stable under interchange (any single
row interchange with corresponding column interchange will not

yield a higher value of gR(A), yet they have unegual measures) .
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FIGURE 2
Theoren There exists an R such that determining whether

#R(Gl) = #Q(Gz) is a polynomial complete problem.

., to be a circuit on n

Proof Take 2 as in figure 3 and take GZ

points. Thus #Q(Gz) = (11...100...0) 5.
ncoo -

If Gl has a Hamiltonian circuit then

1 n

we can oirder thne nodes of Gl to that R any

2 .
. o, . 4 ; ranking
those bit positions ranked 1 through \\\\\\ g

n by R nave l's and so #R(Gl)z#R(GZ). \}\

o A 1 i \\ n-1
If #R(Gl)éwR(Gz) then those n bit .

positions must all have l's and FIGURE 3
therefore there is a Hamiltonian circuit in Gl' Thus the

Hamiltonian circuit problem reduces to determining whether
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#R(Gl) 2 #K(GZ) for this R (which is in NP) and we have shown

the polynomial completeness of tnis problem. o

SPECIAL CASES

There are polynomial algorithms for various restrictions
of the graph isomorphism problem. Tree isomorphism has a linear
algorithm [3,7], planar gruphs O(n log n} [3], graphs having no
strongly regular subgraph in O(ns) [27.

We look at another "special case," bipartite graphs, and
show that it is polynomial if and only if general graph isomor-
phism is polynomial.

Theorem General graph isomoxphism redJr bipartite g¢raph isomor-

phisim.

Proof Given Gl = (Vl,El) and G2 = (V2,E2) where Gl is a graph

on vertex set V, and edge set E., we shall construct Gl = (Jl,El)
and G2 = (Vz,Ez) such that
A 3
1. Gl' G, are bipartite
2. (v, ls|v,1?
i it

3. (Gl == GZ)Q(Gl == Gz)

Let

g = " 1=1. 2
; =Yy U By (i=1,2)

%i = {{3, {3, K333 e v; A {3.k} € By] M\\\‘\\\\\iiej}

J
FIGURE 4

tDenotes the relation "is reducible to," see Karp [4].



Gi is bipartite (Ji,ﬂi are tine two

inuszpendent blocks)

Lo e D2
* v o+ e s 1]

assume HEs Vl -+ V2

Then define f: Vl » vV, as follows:

s.t. {1,311 € Ela{f(i) SE( Y € B,

23 e v = £03)
3.k} € B ={£(3) . £(0))
Clearly % is an isomorpnism.
é

GZ):(Gl?:“G)

(b)) (G =
l ~ ~ ~ "2'
assume T It Jl = Vz wnigh is an isomorpiisme.

CASH 1 G, is conhectsd

G, is bipartite and there are only two ways to

properly 2-color V;. Assune }Vl} # {Ellg

then f(vl) = Vz, f(El) EZ’
Define £: Vl - VZ by £(v) = £(v).

£ is an isomorpihism £from Gl to G,, since
(1,3} € Bype (i, {1,3}), (3.08,33) € o)
e{£(1), ({1,313, {£(), £({i,3D} € &,

o {E(1), (3} € &,

if ivl! = §Eli tnen Gl is a graph with & single circuit.
If Gl is not a circuit, taen %(Vl) = V2 because there exists
av € Vl with degree = 3 £forcing %(v) € V2 (see figure 5).
If the ¢raph is a ciruuit then there is an isomorphism %

which will wmap Vl to Vv,

Za



cagsn 2 Gy is not conneuted \\
~ - ~ A ~ V
Let Gy = Hyo + H,, + ... + A ., where T
-1 11 21 ml i
4., ie a connected graps (1lsiszm) S
- N ~ ~
Then f(ﬁ¥l) = HiZ (a connected graph) and FIGURE 5
ﬁi9 must be bipartite. From case 1 we conclude that
., = H.. d., = I,.,) taereior 5, = G.,) = = G,) .
(Jll “1z) = ({ll 15) caerefore (Gl GZ) (Gl u2)

SOME I80.0023i5 CARRACTERIZATION APPROACHES
Walk Statistics
A k-wali f£rom node i to node j 1is a sequence of vertices
(va,vly..ogvk) such that v0=i, szj and v, adjacent to Vil
for all 0 < 4% < k.
Define B, as the matrix of k-walk counts. That is, Bk(iyj)

i
will De the number of distinct k-walks from noce 1 to node j.
Tnen, By= (identity matrix), 3,=A (adjacency matrix), and BK=A
(over tiue ring of integers). Since Bk*l(i'j) = g E_(i,4) we
- Ladi 3

nave B, . = BB
!'t"l ’ K.

2 R

Let U = (30”81’°°"Bm) waere m is an arbitrery number.

)
£

Perhaps we can use the multi~set of numbers appearing in D as a

canonical foum. To yield a polynomial procedure, m can even be

In oxder to ghow that walk statistics are not surfficient to

characterize graphs, we introduce grapis Hl and H, shown below in

figure 5. ﬁ? is K, ¥ K, viere K, is tne complete undirected
@ e :

Ggraph on - nodes and x is ¢graol product. A, was constructed by

Shrikhance [27 in connection with his work on association schemes.
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Botin oL taese ¢graphs ax nd

(0]

regular of degree 5 or every

o

pair {i,3} of distinct points, there are exactly 2 otiher points

avtjacent to ~oth 1 and j. cfhus an adjacency matyrix representing

. e . P L2 PO e A
eithexr of tnese graphs satisiies A7 = 4TI + 27 (J 1is the matrix
of all 1's).

Assuiue & = ad + oI +~ cd

- m--L L2, .
tnen A = ah -+ DA -+ CAJ

= op A4 oaal - (25’. - JC)J

)

ither grapn, the multi-set of numbers dexived from

[t}

Thus, fox

(]

higher powersz doeg not give any additional inforization than the
original acjawency matrix. These grapns are not isowoxrphic (as
snown below) . Thereiore, walk statistics, altinough isomorphisn

invariantc, will not provide a canonical foxrm.
A Russian sttenpt: V. A. sSkoxowogatov [6].
In ais Daper, Skorobocatov conjectured tinat tuae following

may e an algoritim for grapa isomorpiisin.

-

’

Given ¢xaph G, node a, ve construct subgrapis GlaG2,.°.
as follows (V(G) = vertex zet 0f ¢raph G, Z(G) = edge

J(Gl) = a
V(G, ) = (v € v(e) v adj m € 7(G;) and ¥j < i v € "V(Gj)}
5(G.) = {{x,v} € B(a)|x,v € V(Gi)}
Define n, = nuaber of nodes in Gi = !V(Gi)ﬁ
u, = number of edges in G Letween V(G;) and V(G ,,)

N(z) = (nlynz,...,nk, ul,uz,.,,,uK_l)
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tle can order.xﬁ(ai) for i=l,...,n and thus get

A(@) = ordered {X(ai)}

i

an isomorpiaism invariant matrix.

Using our previous example of graphs Hl anc we see

Hz,
(using thiz algorithm) that A(a) (Ffor any node in either graph) =
(1,9,9,9,13) . However, closer inspection of subgraphs GZ(Hl)

and GQ(HZ) reveals differences (see figure 7) that show Hl and

H., are not isomorphic. But A(Hl) = A(H?), therefore tihls mapping

2
is not isomoxrphism indicative, anc¢ nence does not characterize

graph isomorpiism.

— o
Gz(Hl) Gz(Hz)

FIGURE 7

Given a graph G = (V,E), we define the neighborihood grapn
éG(a) of a vertex a € V as
6G(a) = (N, L) Waere

N ={ué€v| {ual € 8}

Il

L={{uv} €& | uv e n)
i.e., the G? graph of Skorobogatov's algorithm.

Given two graphs, Gy = (Vl,E1) and G, = (V?,mz), we shall

say that G; is §-isomorphic to G, IFF there exists a bijection

I

£: vV, = V., suzh that 8 . (a) 5. (£(a)) £for all a € v,.
1 2 G G? L

1 2



Y.

6—isomozphié ¢raphs are, in some sense, locally isomorphic.
Isomorpnic graphs are clearly é-isomorphic. If the converse
were also true then one could construczt a graph iso.oxphisn
algorithm waicih attempts to pair isomorphic neighpnornoods, per—
haps recursively. However, tuae examole shown in ficure 3 shows
that §-isoworpnic graphs nesd not be isomorphic.
It can ne seen that G is not isomorphic to I oy counting

4-circuitss G has 9 whereas H nas only o.

SPANNING T.3E3% PROBLEL]

This pro.lem is a sub-prooslem of tne subgraoh igomoxrphism
problem. Given a tree T on n nodes and a graph G on n nodes,
is T isowmorpanic to a gpanning tree of G-

Instanzes of this problem range from simple ( vadratis time,
as in "Is the (n-1)-pointed star a spanning gree of G-") to
complete ("Is the (n-1) chain a gpanning tree of Gy").," The

proof of completeness of tinis latter problem is given »elow.

Theoren demiltonian circuit problem red linear spanning tree

(Hamiltonian path) problem.

Proof: Given i = (V,E), pick x €V,

Let W = {v € v |{v.x} € x}.

(V,E) : v = VU {Y:a:B}

i

Construcc H

[RTIB

= eUly,wiw e wulla,x},{B.v}}.
A has a Hamiltonian circuit IFF 4 has a linear spanning tree.

(») Assume A has a damiltonian civcuit, say



" H

b

o de-gircuits




1%,

Ky W_ gV s VejsoeesV v, »X ti w de djac Z k
[x, NACEALY eV 3o Wy ] (the two nodes adjacent to x must be

in ), then [q,x,wa,vl,vz,...,vn_3,wb,y,5] is a linear spanning

tree of . .

(<=) Assume i has a linear spanning - ‘\xff waf””
Hs Y,

tree, say // A /f\\\\

{a’x’wapvl’"°'vn_3iwb'Y'B] (haVlng wl \3“]2 s o o W

degree 1, o and B must be endpoints of

the tree), then [x,wa,vl,...,vn_3,wb,x]

is a Hamiltonian circuit in 4. FIGURE 9
An interesting problem (for further research) presents

itself: 'hich families of trees make this problem complete

and is there a (sharp) dividing line between "polynomial" and

"complete" tree families?
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