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Abstract:

An algorithm is given that determines whether a word is
a member of a lexicographically ordered dictionary. This
alyorithm, an extension of hoth linear ana hinary scarch,
has worst case time bounds that, depending wuzon the length
o1 the words involved, way be less than half that of binary

56arche

Key Words: dictionary, searchiny, binary search, vector,

complexity

[
(&

CR Categories: 3.74, 5..

Research supported b{ NSF gran
current address: Department of £
University, Houston Texas 77001.

76-97633.  Author!'s
al &

oM ‘
lect Englaeering, Kice




We consider the problem of searching a adictionary, each
wora consisting of at most & letters. It 15 assuisted tnat
the alpnabet 1s ordered &and that the dictionary 1is  in
lexicographic order.

Two letters can be cumpared (to deteluine which has
lower rank in the alphabet) 1n unit time. Our 3o3al  1s to

exnihit an algorithm for searching thne

miniwmal worst casc time complexity.

Je denote the orderesd set of words

gictionary tnat has

(k=vectors) by b and

refec to tne i-th word (vector) by 9 . Let I[Pl = n-1. e
L
wish to detecmine if the vector 2 is in 3.

Let EO D2 a vector lexicographically less than &] WHhose
first x components were founa Lo egqual  tne correspondinyg
comjpcnents of A and, analuvgously, F n3as haa its first y

tl

components found egual to the corresponding <omponents in A.
x and y are 0 initially.

Aobte that for all 1s<idin we need not cowpare & b for

J il

Jasnin{x,vY> since the result must be M"equal" from the results
52f previous Ccoliparisons and the fact tnat Eois  iu
lexicographlic orders

Let T{x,v,nJ) be the minimum nusbeir of  coaxparisons
required, in the worst case, to search the n-1 vectors with
%« and y as defined above, using the following "quicksearch"

algorithie




function QUICKSEARCH(low,high,x,y)

n <$-- high - low

™
w
]
e

if nsn_ (defined below) then use linear search
j <=-- lou
i ¢-- x+1
while j<high AND isk
do compare a b
if = them i“€-- i + 1
else if > then j 4-- j + 1
else return ©
od
if j=high then return 0
if a =b_ _ for all 1 &8 {y+l,eee,k-12
lthgé return j
else return 0
else evaluate p (as described below) and:
1 €=- min{x,v} + 1
while i<k AND a =b  do i ¢-- 1 + 1
compare a b s
if = the% %éturn o)
else if < then return QUICKSEARCHA(IOW,p,X,1-1)
else return LUICKSZARLH(p+1,hich,1-1,y)

end.
If linedr search is used, T(x,y,n) = 2k + n-3 - X - vy.

DOtherwise, z = min{x,y} andg
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if A=  then T(x,y,n)
¢

+ T(X/l"'l/@)

t
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i AE then T(x,y,n)

2

Lf >3 then T{(x,ys,n)
p

-z + T(i-1,v,n-p).

{
b

T(xsy,n) will be bound by the maximun of these cases.
Note tha*t binary search 1s quicksearch with p=n/2 (and

nozl) and that modified binary sesarcnh (described in L43) is




quicksearch with p=n/4.
Assume that T(x,y,n) = C(n) - x - y. Thus,
C{n) s max(C(pl)+l+y-z, C{n-p)+1l+x-23
To minimize the maximum (employing the technigue of
balancing £13),  we should endesvor to cause bdth
v0ss51ibilities to have egual complexity. dssuming C(n) =
(/1og k)log a* L[this assumption will be borune outl, if vex

{(y=-x)(log K)/K
2 )\ However,

we should chooese p =  u/(1
since T{xyys,n) with k implicit 1s the same a3 T(0,y-x,7)
Wwith X=X implicit, We suggest choosing » =
n/{l + 2(y-x)1og(k—x)/(k-x)). A similar result will hold if
Yy<xX. In particular, if y=x then p=i/2, il.c¢s binary searche
“hat 1is a good cutoff value no? When should 4e use
linear search? The worst case of quicksearch 13 better than
that of binary search. Using binary searcn and then linegar
segarch results 1in
C(n) < C(n/2) + 1 + y=-x s C(n/2) + k
< 3k - 3 %+ n/2
whereas using linear search directly results in
C{n) ¢ 25 + n = 3.
Thus, linear search should not be used 1f no>lk. A more
detailed analysis would indicatz a tighter cutoff.

Fmpirical results indicate that no:l.ik i3 a yood cnoicee

*Unless specified otherwise, logarithms are base <.




Using values of k=6 and 20, we have obtained results
indicating savings of over 25 and 50 2ercent respectively on
the number of comparisons raquired 1it the worst case as
compared to binary searche

w2 also ran simulation experiments 1o compare thess
algyorithms for "average casa" behavior. Assuming all
stiings in  tne dictionary have equal probabllity of being
queried, the following percentayge s5aviigs were ohserved for
average observed case and worst observed case numbear of
comparisons (obtained by using quicksearch as opposaed  to
binary szarchn)s. t0r a dictionary containing tho segueice of

for the
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all binary strings of length 14, 5.1 and
sequence  ¢f all quatenary strings of length 7, 46.1 and
21-4;  for the sequence of cvery 41sL otiing ia  the set of
quatenary strings of lengtnh 10, 45.9 and 25. 5.

In running these experiments, reather Lthan comdute

complicited logarithms and  ¢xponeatials, we used the

t

deyroxamation p = low + /(1 + DELTA), wnere DELTA
maxn{le.d,y-x} when y>x and DELTA = 1 wnen Y= Xa when y<x, p =
nigh - a/(l + DELTA) using an analagyous computation of
DLLTA.
Ihe complexity of thus aljoritna is O(k logrn), as cah
AN
be verified by substitution in the recurrence equations, and

compares favorably to the &k log n compariscas rejuired by




binary search

coefficients i3

[2j. Detailed analysis

1eft as an open problem.

te obtain

the exact
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