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Abstract

Let I be the set of intervals with end points in the integers 1 : : :n. Associated with each element in I

is a value from a commutative semigroup S. Two operations are to be implemented: update of the value

associated with an interval and query of the sum of the values associated with the intervals which include

an integer.

If the values are from a commutative group (i.e., inverses exist) then there is a data structure which

enables both update and query algorithms of time complexity O(logn). For the semigroup problem, the use

of range trees enables both update and query algorithms of time complexity O(log

2

n).

Data structures are presented for the semigroup problem with (update,query) algorithms of complexities

(logn, log

2

n), (logn log logn, logn).

Introduction

Let I be the set of intervals with end points in the integers 1 : : :n. Associated with each element in I is a

value from a commutative semigroup S. Let sum refer to the semigroup operator. Examples of such operators

over the integers are addition, multiplication and minimum. Two operations are to be implemented, update

and query. An update of an interval changes the value associated with that interval. A query of integer k

returns the sum of values associated with the intervals which include k.

We consider solutions of the class that involves variables storing values in S. Each variable stores the

sum of values associated with some subset of I. A query is answered by summing a subset of these variables.

An update is accomplished by recomputing the values of the appropriate variables. This class has been used

by Fredman and others [F80, BFK81, F81, F81b] for analysis of query problems.

If the values associated with the interval are from a commutative group (i.e., inverses exist) then there

is a data structure which enables both update and query algorithms of time complexity O(logn) [F79]. For

the semigroup problem, the use of range trees enables both update and query algorithms of time complexity

O(log

2

n) [W78, L78, LW82, W85].
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We present data structures with update and query algorithms of the following complexities.

Update Time Query Time

O(logn) O(log

2

n)

O(logn log logn) O(logn)

Table 1

Data Structure and Algorithm

We associate each interval [i; j] with a point in a two dimensional plane whose horizontal (x) and vertical

(y) coordinates are i and j, the values of the endpoints of the interval, respectively. These points lie within

the upper left triangular region of an n by n square. A query of k needs to retrieve the sum of the values

associated with all points whose x coordinate is � k and whose y coordinate is � k. That is, the query

region consists of all points which lie in a rectangle whose upper left corner is at (1; n) and whose lower right

corner is at (k; k), as illustrated in Figure 1.

y "

x!

k

1 n

1

n

Figure 1 | Query Region of k

To clarify membership of a rectangle we use the convention that rectangle boundaries are midway

between points, and thus no points can occur on the boundary of a rectangle. Variables may be represented

by a region on the graph which covers the set of points corresponding to the intervals whose values are

included in the variable. A query may be answered by summing variables whose regions form a disjoint

cover of the rectangle associated with the query. Updating an interval involves recomputing the value of

each variable whose region includes the point associated with the interval.

2



For ease of explanation, we assume that n is 2

m

� 2. We partition the triangular region (which cor-

responds to the universe of intervals) into L-shaped subregions. Details of a single L-shaped subregion are

shown in Figure 6, while a partition using these L-shaped subregions is given in Figure 2. Each subregion

on the diagonal includes exactly three intervals [k; k]; [k+ 1; k+1]; and [k; k+ 1], for odd k. Note that there

are 2

m�1

� 1 L's on the diagonal, each having unit width. Behind each diagonal of L's is another diagonal

of L's having the same shape and orientation but of twice the size. There are 2

m�1�i

� 1 L's of width 2

i

. In

Figure 2, there are 7 L's of unit width, 3 L's of width 2, and one L of width 4.

Figure 2 | Partition of Interval Universe into L's

An aggregate is a rectangular region that begins from a leg of an L region, has the width of that L, and

extends through that L across the universal region. There is an aggregate in both the horizontal and vertical

directions for each L. Shown below is a vertical aggregate of size 1 and one of size 2. There is a similar set

of aggregates with orientations in the horizontal direction. For our diagram below there would be a total of

14 aggregates of width 1, 6 of width 2 and 2 of width 4.

Figure 3 | Sample aggregates
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Any query region may be covered by an appropriately chosen set of aggregates. These are chosen as

follows. Given a query k, it lies in a small L. Select the aggregate of width 1 associated with that L and

having the proper orientation. There remains to be covered a rectangular region whose lower left corner is

in an L of size 2. Select the aggregate of width 2 associated with that L and having the proper orientation.

There now remains a rectangle whose corner is in an L of size 4. Such a selection is shown in Figure 4. Any

rectangle can be disjointly covered by such a recursive selection using logn aggregates.

Figure 4 | Covering a query with 3 aggregates

A point is in at most one horizontal and one vertical aggregate of each size. Thus the value of a point

a�ects O(logn) aggregates. Each query uses at most one aggregate of each size, that is O(logn) aggregates.

The update and query times are O(logn) multiplied by the time to, respectively, update and query an

aggregate.

If inverses exist within the semigroup, we can utilize the aggregates themselves as our variables. A

modi�cation of the value associated with an interval results in a similar modi�cation of the variables associ-

ated with the appropriate aggregates. This is achieved by subtracting the interval's old value and adding its

new value to these aggregates. A query is achieved by summing the variables associated with appropriate

aggregates. This yields a structure which, like that of [F79], has both query and update times of O(logn).
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Figure 5 | Splitting an aggregate at the L boundaries

For the general case (with no inverses) we must supply additional structure. We partition the aggregates

into parts by splitting them where ever they cross the boundary of an L. Figure 5 illustrates the three parts

of one of the aggregates from Figure 4. Because the size of the L's grow exponentially, an aggregate is split

into at most logn parts. Queries will use the parts of each aggregate to compute the sum of the values within

the aggregate. An update now a�ects only the parts within a single L, and there are O(logn) such parts.

We develop a structure within each L to permit all these parts to be updated in O(logn) time regardless of

the size of the L.

We divide each of the L's into overlapping rectangular regions which we will call strips. There are

vertical as well as horizontal strips.

We describe vertical strips which are shown in Figure 6; horizontal strips are symmetric in description.

The strips have width 1. A point lies in exactly one vertical strip. The points within each strip are organized

into range query tree, which is a binary tree with the leaves holding the values of the points and each internal

node holds the sum of the values of the leaves in its subtree. The root of the tree holds the value of the strip

(sum of the values of all points within the strip). Thus, we can update the value of a strip by recomputing the

sums along the path from the updated point to the root in time O(logn). The vertical strips themselves, or

more particularly the variables associated with the root of the range tree within each strip, are also organized

into a range tree, called the L range tree. After a strip has been updated, the L range tree can be updated

in O(logn). We observe that the part associated with an aggregate of width 1 is a strip and so is a leaf in

this range tree; the part associated with an aggregate of width 2 is the combination of two adjacent strips

and so forth. Thus, the nodes in the L range tree contain the values of the parts within the L. Therefore, in
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response to a query, the value associated with any part can be delivered in constant time by accessing the

appropriate node in the L range tree.

Figure 6 | Strips within an L of size 16

We now present two structures based upon the above construction. The parts of each aggregate can

be formed into a range query structure called the aggregate range structure. The only value of interest

for a query is that of the aggregate, that is, the sum of all the parts. The aggregate range structure has

O(logn) parts. If we use a binary tree for this structure with the parts as the leaves and with each internal

node containing the sum of its children, retrievals can be performed by accessing the root, while updates

are performed by recomputing sums along a path from the part to the root. Accessing the root is trivially

an O(1) operation. Recomputing the path from a part to the root is proportional to the height of the tree.

Assuming we chose to use some balanced form of binary tree, this height is the logarithm of the number of

leaves, that is, log(O(logn)). If we use an array whose elements are the values of the parts, updates a�ect

one element while retrievals are performed by forming the sum of the elements. In this case updates are

O(1) while the cost of a retrieval is proportional to the number of elements in the array, that is, O(logn).

Using these two structures, we obtain the following times for queries of an aggregate range structure.

Structure Update Time Query Time

Array O(1) O(logn)

Tree O(log logn) O(1)

Table 2.
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As previously discussed, the update and query times are O(logn) multiplied by the update and query

times for the aggregate range structure plus, in the case of an update, an additional O(logn) to update the

strip and L range trees. This yields the results in Table 1. Finally, we note that we could obtain intermediate

values for Table 2 using the structures presented in [F82].
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