
SIAM J. COMPUT. © 1980 Society for Industrial and Applied Mathematics

Vol. 9, No. 1, February 1980 0097-5397/80/0901-0012 $01.00/0

ON THE COMPLEXnT OF SEARCHING A SET OF VECTORS*

D. S. HIRSCHBERG+

Abstract. The vector searching problem is, given fc-vector A (a fe-vector is a vector that has k

components, over the integers) and given a set B of n distinct fe-vectors, to determine whether or not A is a

member of set B. Comparisons between components yielding "greater than-equal-less than" results are

permitted. If the vectors in B are unordered then nk comparisons are necessary and sufficient. In the case

when the vectors in B are ordered, it is shown that [log n\ +k comparisons are necessary and, for n S4fe,

k flog (n/k)~\ + 2k — 1 comparisons are sufficient.

Key words, searching, vector, lower bounds, complexity

Searching an unordered set. We first consider the case in which the vectors in B
are not ordered. In this case, an upper bound of nk comparisons can be easily

demonstrated. A simple adversary can be constructed to show that nk comparisons are

also necessary.

A nontriviat dynamic adversary can be used to construct an oracle to demonstrate

that nk comparisons are necessary even if we allow comparisons between elements of

the vectors in B as well as comparisons between elements of A and vectors in B [3].
Recently, Stockmeyer and Wong have demonstrated upper and lower bounds that

are within a small factor from one another for the more general problem of determining
the intersection of two sets of vectors [7].

For a review of the use of oracles to derive lower bounds, the reader is referred to

El], [4], [6].

Searching an ordered set. We now consider the case in which preprocessing of the
set B is permitted. That is, we can assume that B is in some prearranged order, such as

lexicographic order.

In the discussions that follow, all logarithms are assumed to be base 2.
A lower bound of [lognj+fc comparisons can be seen by observing that

[log nj +1 comparisons are required to determine if there is any vector having the
correct value of one component, and k -1 comparisons are required to verify the

agreement of the remaining components.

The oracle for distinguishing a path (which will be of length at least [log nj + k) in
each decision tree that solves this problem is as follows.

Initially, define low = 1 and high = n.
Let the next comparison presented to the oracle be a/ : b,,.

mid <- (low + high)/2
If low Tt high then:

if / < low then return>
if low S i S tnid then [low <-;'+1; return>]
if mid < / S high then [high <-;' -1; returo<]

if high <; then return<
Else (low = high) return =

low will not equal high until after at least [log n\ comparisons. During these
comparisons, vector A could equal any of the vectors I?iow • • • -Bhigh.

When low = high, until all components of 5iow have been compared with A, Biow

may equal A but it is also possible that one component of -Biow will be less than the

* Received by the editors January 12,1978, and in revised form March 30, 1979. This research was

supported by The National Science Foundation under Grant MCS-76-3933.

+ Department of Electrical Engineering, Rice University, Houston, Texas 77001.

126

SEARCHING A SET OF VECTORS . , 127

corresponding component of A and, in that case, it is possible that none of the vectors in
B are equal to A.

Thus [log nj +k comparisons are necessary to solve this problem.
In the above analysis, we assumed that all comparisons are between a component

of A and the corresponding component of a vector in B. It is straightforward to
generalize and allow comparisons between components of vectors both of which are
elements of B.

Having demonstrated a lower bound, we now consider upper bounds for this

problem.

We present and analyze two algorithms that solve the ordered set problem and
then combine them to obtain an algorithm that is faster than both.

The first algorithm is an example of binary search. Let B = {B^, Bz, • • •, Bn} and let
B,=bn • • • bik. Proceed comparing the components of A with those of the central

vector, i.e. compare a^ with b,h for /i=l,2,'-- where /= [(n + 1)/2J. If all

comparisons result in "equal" then A ==j?j. Otherwise, if at some point we get a "less

than" result then A^B, and we can restrict our attention to B' ={Si, • • • ,-By-i}.

Similarly, if we get a "greater than" result, then we can restrict our attention to

B'={Bj-n, • • • ,Bn}. In the worst case, we will require k comparisons in each of

1 + [log n J iterations for a total of k + k [log n J comparisons. This is equivalent to the
result in [2].

The second algorithm uses linear search and is as follows:

/^l
h^l

while jSn AND h S k
do compare Oh: b,h

if = then h<- h +1

else if > then j<-j+1
else [print 'NO SOLUTION'; stop]

od
if /> n then [print 'NO SOLUTION'; stop]

final: if a, = b/, for all ;• e {1, 2, • • •, k-1}

then print /; comment A = B,
else print <NO SOLUTION'

stop
The algorithm finds the first (lowest indexed) vector, B,, that matches A in the h th

component. All lower indexed vectors are not considered further. All other vectors are

assumed to match in this component. The algorithm then iterates on the (h + l)st
component. This part of the algorithm will make at most n +k -1 comparisons (each
iteration increments either/ with upper limit n, or h with upper limit k). If we succeed in
matching all k components in this manner then the vector, B,, that is found will be equal
to A if all assumptions made earlier apply to B,. However, if B, disagrees with A in any
component h then A does not appear in B since all /' </ have been eliminated, B, ^ A
(assumed here) and for all /" > /', By will disagree with A among the first h' components
since B is in lexicographic order. The final phase of the algorithm, in which the
components of B, (which were assumed to agree with A) are compared with A, requires
at most k -1 comparisons for a total of at most n +2k -1 comparisons.

We note that the linear search algorithm's mirror image also works. That is, we can

start with j'=n and decrement /, being careful to interchange the <'s and >'s. We can,

as an initial improvement, compare A with the central vector in B rather than with Bi or
Bn and, at the first "less than" or "greater than" result, eontinue with the linear search

128 D.. S. HIRSCHBERG

algorithm applied to only half of the original set B. This leads to an algorithm that

requires, in the worst case, only [n/2j +2k—l comparisons. We call this improved
algorithm the modified linear search algorithm.

We can make further improvements by deciding, at the time that a "less than" or
"greater than" result is obtained, whether to continue in the style of the binary or the
modified linear search algorithm depending upon which will lead to fewer comparisons

in the worst case. If, after making h comparisons (resulting in "equal") along vector B,
within feasible set B of cardinality n, we make a comparison resulting in "less than" or

"greater than" then continuing with the linear search algorithm requires, in the worst
case, at most [n/2J +2k-l-h additional comparisons. If, however, we decide to
proceed with the comparisons in a new vector within B and thus follov/ the binary
search algorithm or follow the modified linear search algorithm on a feasible set of half
the size, then we will have upper bounds of fc[lognj and [n/4j +2k-l additional

comparisons respectively. We should continue with linear search only if

Ln/2j+2fe-l-/i<min{Ln/4j+2fe-l,fc[lognJ}

which holds only if n < 4h. For particular values of k, we can solve this inequality to gain
further restrictions. For example, if k = 3 then we should continue with linear search
only if n = 4 and h=2 OT n=5 and /; = 2.

Let T(n, k) be the minimum number of comparisons required for the ordered
vector search problem when B consists of n /^-vectors. Then, for nS4k, T(n, k)S

[n/2j+2^-l.
FoTn=k2r,T(.n,k)Sk+T(n/2,k)S(r-2)k+T(4k,k)s(r+2)k-l.
For k2r~l<n<k2r, T(n, k)S(r-2)k+T(4k-l, k)S(r+2)k-2. Note that in

both cases, r == flog (.n/k)}.
Algorithm VECTOR_SEARCH incorporates the modifications mentioned above.

VECTOR_SEARCH (A, B, n, k)
low<-l

high «- n

binary: binsearch <- TRUE
whUe binsearch AND low •Ss. high
do/<-(low+high)/2

compare ai: Aji

if > then high <-/-!
else if < then low <~ / +1

. else binsearch <- FALSE

•xl

if low > high then [print 'NO SOLUTION'; stop]
n<-high-low+l

modlin: h<-2

while h S k
do compare OH '• b,h

if=then/i<-/z+l

else if > then if nS4*/i

then [high <-/ — 1 ; goto binary]
else goto linear

else if < then if n S A*h

then [low <-/+!; goto binary]

else goto linear2

SEARCHING A SET OF VECTORS 129

od
print /'; comment A = B,

stop
linear: while /' S high AND h S k

do compare a»,: b,h

if=then/i<-/i+l
else if > then /'«-/'+1

else [print 'NO SOLUTION'; stop]
od
if /•> high then [print 'NO SOLUTION'; stop]

final: if a, = A,, for all ;• e {1, 2, • • •, k-1}

then print /'; comment A = B,
else print 'NO SOLUTION'
stop

linear 2: while / s low AND h S k
do compare dh'. b,h

if = then h <-/!+!
else if < then /<-/'-1

else [print 'NO SOLUTION'; stop]
od
if y < low then [print 'NO SOLUTION'; stop]
goto final

REFERENCES

[1] A. V. AHO, D. S. HlRSCHBERG AND J. D. ULLMAN, Bounds on the complexity of the longest common

subsequence problem, J. Assoc. Computer Mach., 23 (1976), pp. 1-12.

[2] D. DOBKINAND R. J. LIPTON, Multidimensiona! searching problems, this Journal, 5 (1976), pp. 181-

186.
[3] D. S. HIRSCHBERG, On the complexity of vector searching. Rice Univ. Tech. Rept. * 7807, Houston, TX,

June 1978.
[4] D. E. KNUTH, The Art of Computer Programming, vol. 3. Addison-Wesley, New York, 1973.

[5] V. V. RAGHAVAN AND C. T. Yu, A note on a multidimensional searching problem, IPL 6 (1977),

pp.133-135.

[6] E. M. REINGOLD, On the optimality of some set algorithms, J. Assoc. Comput. Mach., 19 (1972),

pp.649-659.

[7] L. J. STOCKMBYER AND C. K. WONG, On the number of comparisons to find the intersection of two

relations, IBM Watson Research Center Tech. Rept., 1978.

