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ABSTRACT

It is shown that k(p+3)/2 + p-2 letter comparisons suffice to

determine whether a word is a member of a 1exicographica!ly ordered

dictionary containing 1r - 1 words of length k. This offers a potential

savings (compared to worst case complaxity of binary s"arch) thai:

asymptotically approaches 50 percent.

We consider the problem of searching a dictionary containing n

words, each word consisting of at most k letters. It is assumed that

the alphabet is ordered and that the dictionary is in 1 exicographic

order.

Two letters can be compared (to determine which has lower rank in

the alphabet) in unit time. Our goal is to exhibit an algorithm for

searching the dictionary that has minimal worst case time complexity.

We denote the ordered set of words (k-vectors) by F and refer to the

i-th word (vector) by B, . We wish to determine if the vector A is in

F . Assume that n == 2P- 1, i.e. p = pog(n+l)'j.

Let D be the "middle" vector (m = 2 ), let 8 be the "quarter"
m _ 1 _n q

vector (q " 2P"' + 2P~^).

Using binary search, i.e. comparing A first with B and then,

depending upon the result, comparing A with either B_ or with B etc.

will lead to a worst case complexity of kp comparisons.

In a recent paper [2] , Hirschberg has exhibited an <••• 1 qor i thm,

VECTOR-SEARCH, that has a worst case complexity of less than k(p-h2-1og k)

For many values of n and k, this algorithm offers a potential savings of

from 5 to 25 percent.

Research supported by NSF grant MCS-76-3933. Author's current address;

Department of Electrical Engineering, Rice University, Houston,

Texas, 77001.



Let there have been x "equal" comparisons between A and B (if no

comparisons were made between A and B^ then x := 0) and y "equal"

comparisons between A and B . Without loss of generality, assume that

x -^ y (the case x > y wi11 lead to symmetric arguments).

For the algorithm we shall next consider, which we call mod i fi ed

binary search, let T(x,y,p) be the minimum number of comparisons required

for x, y, and p as defined above and for k (the length of the vectors)

implicit. We shall demonstrate a savings that asymptotica1ly approaches

50 percent of the worst case complexity as compcu'cd to 1-h'-* binary

search method.

Note that for a11 1 < I < n we need not compare a,:b.. for j < x
J U ' ~'

since the result mu^j_ be "equal" from the results of previous comparisons

and the fact that F is in lexicographic order.

Out- algorithm first compares components of A with components of

B (starting at component x + 0 until it is determined whether A < B ,'q ---•-•"" -- --..r-..-.- .. . .. -...-.. - - -...._,.,...,-.. ........... ,. .. ^,

A = B , or A > B .
•q' "• " •- -q'

Case_}_. If A < B_ because a.,, < b ... (x< t < k) then
'q --—"-- ~t+] -~ "q,t-H '•" -~-

T(x,y,p) = T(x,t,p~2) + t-+1-x (1)

Case 2. If A > 8 because a... > b .. then compare A with
q t+1 'q,t+l

another vector depending on the v<-i1ue of t.

Case 2 a. If t < y then compare A with B (startinq with component
in

t + 1)

_2a_a. If A < B because a, ., < b ... (x < t < h < k) then
m n+1 m, h-f- I ~

T(x,y,p) = T(t,h,p-2) + h+2-x (2)

2ab. If A > B because a, ,, > b ,., (x< t <h< k) then
m h+1 m,h+l ' ~

T(%,y,p) " T(min[h,y), max(h,y1, p-1) + h+2-x (3)

2ac. If A = B then
m

T(x,y,p) - k+l-x (4)

Case 2b. If t > y then compare A with B (starting with component

y+1)



2ba. If A < B because a,,, < b , ,, (y < h, t: < k) then
i- tr-H r, h+1 ' -~

T(x,y,p) = T(min(h,t), max(h,t], p-1) + t+l-x 4- h+1-y

2bb. If A > B because a, ,, > b , ., (y < h, i: < k) then
r h+1 r, h-1-1 '' -

T(x,y,p) = T(y,h,p-2) + t+1-x + h+1-y

2bc. If A = B then
r

T(x,y,p) = t+1-x + k-y

Case 3. If A = B then
q

T(x,y,p) = k-x

(5)

(6)

(7)

(8)

The resulting problem has either half or quarter l.he range (in TO

of the original problem. If the range is reduced to zero then terminate

with the solution that A is not In B, If the range consists of one

vector B then compare a..,,...ai. with the corresponding k-x components of

B. Otherwise, recursively apply the modified binary search algorithm.

Theorem. For- p > 1, T(x,y,p) < k(p+3)/2 + p-2 - x - y

Proof. By induction on p. Note that T(x,y;0) = 0. The theorem,

for p = 1, is true since T(x,y,1) = k--x (the algorithm treats this case

separately). The theorern, for p •-= 2, is also true as can be seen by

substituting for T(',',0) and T(',',l) in the righthand side of the

formulas given in a 11 of the cases, one of which must occur.

For the incluctive step, T(x,y,p) is bounded from above by the

maximum of the cases. In a11 cases, substituting in the assumed complexity

for T (with smaller value of the third argument) substantiates that the
v

theorem holds.

The table below illustrates typical percentage savings (worst case

analysis) of VECTOR-SEARCH and modified binary search as compared to

binary search.
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000 (10)
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4
8

16

4
8

16

4
8

16

28
56

112

40
80

160

80
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26
46
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38
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( 7.1)

(17.9)
(30.4)

( 5.0)
(12.5)
(21.2)

( 2.5)
( 6.2)
(10.6)

25

45
81

34
60

112

64
110
202

(10.7)
(19.6)

(27.7)

(15.0)

(25.0)

(30.0)

(20.0)

(31.2)
(36.9)

We have shown that, approximately, k(1og n)/2 letter comparisons

suffice to search a dictionary. . Research currently in progress indicates

that this upper bound on the complexity of dictionary searching may be

reduced to k(1og n)/1og^k. A lower bound of k + log^n can easily be

shown (see [2]) and it is an open problem to narrow the gap between these

bounds.
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