A Fast Algorithm for Optimal Length-Limited Huffman Codes

Lawrence L. Larmor and Daniel S. Hirschbe?g

Abstract

An O(nL)-time algorithm is introduced for constructing an optimal Huffman code for a
weighted alphabet of size where each code string muswvhdength no greater thdn The
algorithm use®(n) space.

T Department of Computer Science, California Statesésity, Dominguez Hills
¥ Department of Information and Computer Scienceyéfrity of California, Irvine, CA 92717.

1. Introduction

Given an dphabet> = {a,, ... a }, wherea, occurs with frequencw, the Huffman coding
problemis to find a prefix-free binary coliéor = which minimizes the weighted length of a code
string, defined to bé_lwili, wherel, is the length of the code faj. For example, ifh =3, and if
w, =2, w, =5, andw, = 3, then the code

a, - 00
a, -1
a; - 01

is optimal, with weighted length 15. Huffmardgorithm [5] finds such an optimal code in time

O(nlogn), and can be implemented to runQin) time if thew, are already sorted [9].

Restricted length A related problem is to find a prefix-free code which has minimum
weighted length, subject to the restriction that, for,&fI< L, whereL is a given constant. Hu
and Tan gie an exponential time algorithm for finding such a code [3]. Gawsing a different

approach, gies an #gorithm that require@(nZL) time and space [1]A hybrid algorithm,

combining the methods of both Hu-Tan and @anens inO(n*?Llog"?

O(n3/ 2Llog_l/ 2n) space [9]. In this papewe pesent arO(nL)-time algorithm which requires

Llog™n) time and requires

only linear space.

Binary trees The Huffman coding problem is egaient to the following problem:
Given a list of weightsw,, ... w_, sorted into rl]on-decreasing ordénd a full binary treB T with
n leaves for which theweighted path length i:leili is minimized, wheré, is the depth of thi"
leaf of T. (We write WPL(T) for the weighted path length ®f) Therestricted length coding
problem is then equalent to that same minimum weighted path length problem, but with the

restriction that the height dfcannot exceetl. (See, for example, [1].)

Methods Huffman’s ariginal algorithm uses a greedy method. The items are first sorted

by weight, and each item is considered to be a tree of just one Addembine"” step is then

T A code isprefix-freeif no code string is a prefix of wrother The advantage of a prefix-free code is that code
strings can differ in length, yet weoded message can be decoded unambiguously.
A full binary tree is a rooted tree in whickhegy non-leaf has precisely twsons.

executedn—1 times. Each ‘combine” step deletes the trees of smallest weight from the

sorted list, combines them to form one tree (making tloestwaller trees the subtrees of that

new tree) and then inserts thatwmaee, whose weight is the sum of the weights of the subtrees,
in the proper position in the sorted list. Afterl iterations, the list contains just one tree, which
is the Huffman tree. Hu and Tardgorithm uses a dynamic programming approach, working
across the tree from left to right. The items are first sorted by wetgheach integej 0[1,n]

and eaclg which is an integral multiple of 2in the range [0,1], Hu and Tadgorithm
dynamically computes the smallest possible Tétw]l » subject to the condition théz_'i =q.

The best sequentg, ... 1 _forj=n, q=1, is he sequence of |ees for the optimal tree. Garey’s
algorithm also uses dynamic programming, building optimal subtrees, starting with the smallest
possible subtrees, and ending with the entire tree, analogous tod<againithm [7] for

constructing optimal binary search trees. Larnsdgorithm [9] uses a hybrid of those last two
methods, running the subtree algorithm for subtrees up to a certain size, then switching to the

Hu-Tan left-to-right method.

In this paperwe introduce a ne problem which we call th€oin Collector’'sproblem, a
version of the Knapsack problem. Suppose a coin collectomitaéns of various
denominations (face values) and various numismatioeg. Sincéhe country he Vies in has
binary coinage, the denomination of each coin is an integral power of 2. The collector is obliged
to spendX dollars to buy groceries, but the grocer (rather unimagiigtirefuses to accept any
coin at other than its facale. Hav can the coin collector choose a set of coins of minimum
total numismatic value whose total face valu¥s

We gve a linear time algorithm, which we call tiRackage Merge algorithm, for solving
the Coin Collectos problem. W reduce the restricted length Huffman coding problem to an
instance of the Coin Collectsrproblem of sizenL. The Package-Merge algorithm therneg an
optimal restricted length code @(nL) time.

Space complexityThe algorithm in its simple form tak€ynL) space, but can be
modified to tak only linear space, using a technique similar to that introduced by Hirgcfjer
The time complexity remair@(nL).

2. The Package-Merge Algorithm

An instanceI(X) of the Coin Collectos problem of sizenis defined by:

(a) A setl of mitems, each of which hasaadth and aweight such that each width is a
(possibly ngative) integral power of 2, and each weight is a real num@érink of width as
being face value of a coin, ametightas being numismatic value.)

(b) A non-ngative real numbeiX, which we calltotal width

A solutionto such an instance is defined to be a subsét whose widths sum t&, and
anoptimal solutions a solution of minimum total weightMe write Opt_So(l,X) to be sich an
optimal solution. IfXis not diadic (aliadic real number is one that can be written as a fraction

whose denominator is a power of 2) then no solution exists.

We row gve a recursve description of the Package-Merge algorithm. Assufie
diadic, which implies thaX can be written as a finite sum of distinct integral powers of 2,
including possibly ngative ppwers. IfX > 0, write minwidthfor the smallest of those powers of
2.

Basis If X =0, thenOpt_So(l,X) is the empty set. IK> 0 andl is emptythen no
solution exists.

RecursionLetr be the smallest width of gntem inl. We consider four cases.

Case 1r > minwidth No solution exists.

Case 2r = minwidth Leta 0Ol be the smallest weight item of width Then
Opt_So(l,X) = Opt_So(l-{a}, X-r) O {a}.

Case 3r < minwidth and there is just one iteml of widthr. ThenOpt_So(l,X) =
Opt_So(l - {a}, X).

Case 4r < minwidth and there are at leastdvitems inl of widthr. Leta, & Ol be the
two least weight items of width and letb be a ner item, which we call @ackaye, formed by
combiningaanda’. Thewidth ofbis 2r, and its weight isveigh(a) + weigh(a’). LetS =
Opt_So(l-{a,a}d{b},X). If bOS thenOpt_So(l,X) = S—{b} {a,a’} otherwiseOpt_So(l,X)
=S.

Correctness We show that the Package-Merge algorithm produces an optimal solution
by induction on the depth of the recursion. The basis is trivially correct, so we can assume that
is non-empty anX > 0. The inductve hypothesis is that the algorithm is correct for any
problem instance that requires fewer rearsalls than the instancéX).

In Case 1, there is no solution since the widthvefyesubset of must be an integral
multiple ofr, and X is not an integral multiple of In Case 2, apsolution must contain an odd
number of items of widtiminwidth=r. The optimal solution must contain the item of that width
of minimum weight, since otherwise its one item could be exchanged for that minimum weight
item, causing an impvement. Theremaining items must then be the optimal solution to the
reduced problem. In Case 3, the one item of widtbuld not possibly be part of wsolution,
hence can be discarded. In Case #,safution must hee ttal width an een multiple ofr,
hence must contain amem number of items of width. If this number is 0, neithernora’” will
be in the solution, while if this number is 2 or more, both will be inagimal solution. Thus,
the two itemsa anda’” can be “‘packaged" togethet being later decided whether thare both
in or both out of the optimal solution. Replacimgnda” by the combined item (packagejpnd

then recursiely applying the algorithm accomplishes this.

Implementation The Package-Merge algorithm can be implementé&i(im) time
provided the items are presorted, as in our application. (If n@(afogm)-time sorting step
can be included.) The space requiremeQ($). Althoughthe algorithm is described alm®
recursvely, for ease of proof, the implementationayi here is non-recurge.

LetL be the list of items of widthd230rted in order of increasing weight. By a slight
abuse of notation, we shall not distinguish betweeiteamand the singletosetof items whose
sole member is that itemVe refer to thediadic expansiomf X as its representation as powers of
2. (For example, the diadic expansion of 5.625%s 2° + 271+ 273)

Package Merge Algorithm(X)
S0

foralld, L, — list of items having width % sorted by weight
while X > 0loop

minwidth= the smallest term in the diadic expansioiXof
if 1 =0 then
return “ No solution.”
else
d — the minimum such that is not empty
re 2
if r > minwidththen
return “ No solution."
eseif r = minwidththen
Delete the minimum weight item frol, and insert it intcs
X « X = minwidth
end if
P, — PACKAGE(L)

d+1
discardL q

L4, < MERGEP,, L.,
end if
end loop
return “ Sis the optimal solution."

The stefPACKAGE. Thelist P, , is formed fromL by combining items in consecui
pairs, starting from the lightest.e., the k" item of P,., is the package formed by combining
items (%-1) and Rof L .. If Lis of odd length, its heaviest item is simply discarded. The
MERGE step is just the usual merging obtsorted lists.

Time Analysis Merging of tw sorted lists takes time which is linear in the sum of the
lengths of the lists, while the package step takes time which is linear in the length of the list. The
following amortization argument shows that the entire algorithm takes linear time. Place three
credits on each original item. variably, there are three credits on each item ofl&st L , which
consists solely of original items, éveredits on each item of grtist L, which was formed by a
MERGE step, and three credits on each itefd ofThe ACKAGE step combines twitems
which have wo o three credits each into one item which has three credits, one credit paying for
the operation. The MERGE step takes time which is linear in the sum of the lengths of the lists.
One credit from each item (théavethree each) pays for the MERGE, leaving each item with
two credits.

Space AnalysisEach package can be represented as a binary tree, wherevésealea
original items. The space requiremen®ign).

3. TheLength-Limited Huffman Coding Problem

In this section, we shhow to reduce the restricted length Huffman coding problem to
the Coin Collectos problem. ThePackage-Merge algorithm can then be applied toestig
original problem inO(nL) time andO(nL) space.

We assume that the input weights are nogdi®e. The input weights can be sorted
within the stated complexity bounds, since tog O(L) and hence we assume that the weights

are presented in sorted order.

We kegn with the nodeset representation of binary trees, which was introduced in [10].
Fixnz1andL =log,n. We ae only interested in full binary trees witleaves whose height
does not exceeld

Nodeset representatiorbDefine anodeto be an ordered pair,l() such thati 0[1,n],
which is called thendexof the node, ant0[1,L], which is called théevelof the node. Ag set
of nodes we call aodeset If Tis a tree, define

nodesefl) = {(i,!) | 1=I<l }
wherel. is the depth of thid" leaf of T. For example, Figure 1 showedesd(T) for a treeT of 7
leaves, withL = 4.

Width and weight If (i,l) is any node, definevidth(i,|) = 27 and weigh(i,l) =w.. If Ais
a nodesetwidth(A) and weightA) will be the sums of the widths and weights, respelgti of its
constituent nodesWe make the following two observations.

1. If Tis a tree, themweigh{NodesefT)) = WPL(T). Thisfollows directly from the
definition of weighted path length.

2. If Tis a tree withn leaves, therwidth(NodesefT)) =n—-1. Thiscan be preed easily
by induction. The basis i=1. Thistree has one leaf atg 0 and width(NodesefT)) = 0. For
the inductve gep, consideT, a tree withn>1 leaves. Leta andb be two leaves that are siblings
(there must be such a pair) andflee their father at {esl 1>0. LetT be T with a andb deleted.
T hasn-1 leaves (@ andb are no longer laaes andf is now a leaf) and, by the indust

hypothesiswidth(NodesefT")) = n-2. To dbtainwidth(NodesefT)) we must subtract the
contributions of {{,j) | 1<j<I} and add the contributions ofdf), (b,)) | 1<j<I+1}. Thatis, we
must subtract (1—'?) and we must add 2(1—'§+1)). Thenet result is thawidth(NodesefT)) =
width(NodesefT’)) + 1 = -2)+1 =n-1.

For corvenience, we assume strict monotonicity of the weightsw,exw. ,. No loss of
generality is incurred by this assumption, since an infinitesimal value can be added to weights to
force tie-breaking in the correct directiowe cn also assume, > 0 for alli, sncew, = 0 and
we could add an infinitesimal value to the zero weights.

Monotonicity We say that a nodesétis monotonef the following two conditions hold:
(@) fori<n, (i) DA (i+1)) DA
(b) forl > 1, (,1) OA(i,|1-1) OA

Lemma 1 Suppose thaf is a nodeset of widtr(z_') +r wherel is an integer and O K
<27, ThenA has a subsé@ whose width is exactly.

Proof. By induction on the cardinality (number of nodespofif A has just one node, its
width must be, and we can simply leB = A. If Ahas cardinality greater than 1, we assume the
inductive hypothesis, namely that the lemma holds for all nodesets of cardinalities less than that
of A. Letp be the node oh of smallest width, say_f. If k<1, we havea contradiction, sincé
would then hae width a multiple of 2% and hence a multiple of 2 Thusk>1. Sincewidth(A)
and 2' are both multiples of %, r must also be a multiple of % hencer > 27X Ifr =27 letB
={p}. OtherwiseletA" = A-{p}, let B" be he subset of” of widthr - 27% obtained by the
inductive hypothesis, and léd = B"0{ p}.

Lemma 2 If X<nis an integerthe minimum weight nodeset of widkis monotone.
Proof. LetA be the minimum weight nodeset of width If (i,]) DAand (+1]) OA, then

A{(i+1])}-{(1,1)} has the same width asand smaller weight, a contradiction. ifiY OA and
(i,1-2) b A letA” = AO{(i,I-1)}-{(i,1)}, which has the same weight Asbut width which is 2

larger Thus the width ofA" is X + 2_', with X integer By Lemma 1, there exists a nodeBEIA
of width 2'. A'-B has widthX and weight less thaf, a cntradiction.

Lemma 3 Ifl,, .1 is alist of integers in the rangel[],,andA is the nodeset {i{) |
n
1sisn, 1<I<l; }, thenwidth(A) = n-2. 27l

Proof. For eachi, letAUA be the set of all nodes Mof indexi, i.e.,A ={(i,1),...¢.1,)}.
Thenwidth(A) = 2 4024 4 2li=1-2Th Summing wer al i yields the result.

Lemma 4 If w=(l ..) IS @ monotone increasing list of norgaere integers whose

I,
12
width is 1, therw is the list of leaf depths of a tree.

Proof. This follows as an immediate corollary from Lemma 2.3 in [9], p.1F¥.
completeness, we\g a poof here.

The proof is by induction on the lengthwef If |w| = 1, henw = (0) which is the list of leaf
depths of a tree consisting of one leaf. Suppoeke h > 1. Define

X,=0

x =x_, + 27, for alli o[1,n].
Note that X,x,,...X) is @ nonotone strictly increasing sequence, andxpatl. Letk be the
smallest inde such thatx, > % x> %
monotone increasing,_@is an integral multiple of 2 for alli <k. Thus bothx, _, andx, are

we dbtain a contradiction, as folls. Sincewis

both multiples of ?k, and in fact are consecué nultiples of that quantity But % which is also
a nultiple of 2_'i, lies strictly between them, a contradiction. Thlys% . Letu=(,-1, ...

l~1)andlev=(-1,
inductive hypothesisu andyv are the lists of leaf depths of trdeandR, respectiely. LetT be

...l .=1). Bothuandv are lists of length less tharof width 1. By the

the tree whose left and right subtreeslasmdR. The list of leaf depths oF will be w.

To gpply the Package-Merge algorithm, we need the following theorem.

Main Theorem If thew. are distinct (i.e.w. >w._, for alli) then aly nodesefA that has
minimum weight among all nodesets of widthl is the nodeset of a tr@ehat is an optimal
solution to the restricted length Huffman coding problem.

Proof. LetA be the minimum weight nodeset of widthl. For each, letl. be the
largest inde such that (|) DAri By Lemma 2Ais monotone, hendexl, ,. SnceAis
monotone and has widrh-l,i:Z1 27i=1 by Lemma 3. Therefore, by Lemma 4,His the list of
leaf depths of a binary tr@e and henceA = nodesd(fT). If there were a tree of smaller weighted
path length, the weight of its nodeset would be less than tiReqd A would then not be the
least weight nodeset of widti+-1. Thus,T is optimal.

The reduction We aan find an optimal Huffman tree of depth no more thas follows.
Let each node in the nodeset be an item, each of which has width less than 1. Apply the
Package-Merge algorithm to the set of all those nodes to find a minimal weight nodeset of width
n-1. For eacH O[1,L], the list of nodes of width2is initialized ag((n,l), (n-1)), ... (11)).
Note that sorting of the nodes is unnecessage thew, are already sortedTies are broken as
if w. were infinitesimally greater tham, ,, so hat the Main Theorem appliesVe mnstruct the
optimal tree from the resulting nodeset as in the proof of the Main Theorem.

Time and spaceThe algorithm take®(nL) time andO(nL) space. Inthe next section,
we shav how the space can be reducedX(n), while multiplying the time by only a constant
factor.

4. A Linear Space Algorithm

In this section, we shohow the algorithm of the previous section can be modified to
solwve the restricted length Huffman coding problenQi(n) space, while still taking onl{(nL)
time.

In the previous section, the restricted length Huffman coding problem was reduced to the

Coin Collectors problem, where each node (coin) was an ordered pairnix[1,L]. Duringthe

-10 -

course of the algorithm, “packages"” were formed, each of which is a set of nodes, which could
be represented as (for example) a binary tree. Each such package has a width and a weight,
being the sums of the widths and weights of its constituent nodes.

At any given point in the algorithm, the number of packages that has to be remembered is
fewer than B — fewer thann packages formed at the previougdelus n nodes at the current
level. Butthese packages couldveaas teir members, most of thik original nodes. Thus,
O(nL) space is required to keep track ebgthing. We propose, instead, to keep track of a very
limited portion of this information, that portion being sufficient to divide the problem into two
subproblems that can be worked reotelgi Each stage of the recursion will require o@lyn)
space. Theize of the original Coin Collectarjroblem isnL, and the total of the sizes of the
Coin Collectors problems at each stage of the rectesiescent does not exceed half the size of
the total at the previous stage. Thus, the total work is roughly twice that of the work during the
first stage, i.e., stilD(nL).

It is important to note that the linear space algorithm is guaranteed to calculate the same
nodeseBas the original algorithm. Each recwesiall calculates the least weight nodeset of a
given width within a gven sub-rectanglék of [1,n]x[1,L]. Thatnodeset will bé&snR. If the
recursion returned gmodesefA other tharSn R, it would contradict the fact th&tis the lowest
weight nodeset of width—1, sinceScould be imprged by removingSn R and replacing it with
A.

We row explain in detail the first stage of the algorithm, which is illustrated by Figure 2.
Letl .,=[L+1)/2L] The basic idea is to run the package-merge algorithm once, using only
linear space, retaining only enough information to be able to break the problem into two
subproblems whose total complexity does not exceed half the complexity of the original
problem. Oumgoal is to determine the set ofvea. We can do so in linear time if we kacthe
number of nodes at eaclvée As we execute the algorithm, we keep track of only the following
four values for each package. Other information, such as the full set of members of a package, is
discarded. Thealues we keep are:
weigh{p) = the sum of the weights of nodespn
width(p) = the total width of all nodes ip

-11 -

midc{(p) = the number of nodes mof level | .,

hiwidth(p) = the total width of all nodes ipwhose leels exceed .

In addition, these same values are maintaine&,fahich will be the optimal nodeset by
the end of the algorithmS satisfies the following tewmonotonicity properties (see Lemma 2).
(@) fori<n, (i) OA (i+1)]) OA
(b) forl > 1, @,1) 0A (i,1-1)DA

Let mbe the number of nodes of/&| ., in S m=midc{(S), which is remembered by
the algorithm.We rote thatScan be written as the disjoint union of four sets, namely
A =nodes inSwhose lgels are 4., with indices in [1p-m]
B = nodes inSwhose leels are < ., with indices in fi-m+1,n]
C =nodes inSwhose leels are 5.,
D = nodes inSwhose leels are > .,
Figure 2 illustrates the partition 8finto A, B, C, and D.

By the monotonicity of, the nodes irC are fi-m+1| . 0l 4 and the nodes iB

mid)’)
are p-m+1n]x[1,l .,—-1]. Thuswe knav the number of nodes BandC at each leel. We

can determine the width of the four sets as ¥adlo Thewidth of C is m2™'ms and the width oB
ism(1-2 {ma ™). D O [n-m+1nlx[I_ +1L] and therefore the width db is hiwidth(S), which

is remembered by the algorithm. The widthAdE width(S)-width(B)-width(C)-width(D).

Finally, AandD are (respectily) the minimum weight subsets of fim]x[1,l . ,—1]
and p-m+1n]x[l . +1L], of their respectie widths. Thusthe number of nodes at eachileof
A andD can be found by recux@ alls to the algorithm. (Although, in the recwesialls, the

total width needed is no longet1.)

The recurrence relation we obtain is the fwileg. Letf(n,L) be he worst case time to
find the minimum weight subs8iof [1,n]x[1,L] of a given width X, under the assumption th&t
satisfies the tawmonotonicity properties. Then,

for L <3, f(n,L) < c,n

for L = 3, f(nL) <c,nL+f(n, L)) +f(n,L,)

-12-

whereL1 = Imid—l < /20 L,=L-L,-1< [L/2[J and the adversary choosels+ n,=n. To
obtain an upper bound on the complexity (@fL), we note that(n,L) = O(g(n,L)), whereg is
ary function that satisfies the recurrence

forL<3, g(nL) =c,nL

forL = 3, g(nL) = c,nL +g(n,,L/2) + g(n—v’O.4m’1*L/2)
Itis seen thag(n,L) = (c,+2c,)nL satisfies the recurrence relation. THrsL) = O(nL).

5. Additional Questions

Alphabetic CodesA prefix free code is said to ladphabeticif the lexical order of the
code strings corresponds to &eami order of the original weighted alphabet. Itai and Wessner [6],
[12] present algorithms to find an optimal length-limited alphabetic co@éri%L) time. By
using the nodeset representation of code treed(alnlogn) algorithm for this problem has been
developed [11]. Can the complexity be reducedxmL)?

Dynamic Tees Consider the case in which an encoding of a stream of symbols is
transmitted, and the code (based on symbol frequencies) is updated after each symbol. If there
are no length limitations, the optimal tree can be updatéqdlintime, wherd is the length of
the codevord whose frequerycwas incremented [8]. Can the optimal length-limited code tree be
updated irO(l) time?

References
[1] Gargy, M.R., “Optimal Binary Search Trees with Restricted Maximal De@hAM J
Comp3(1974) pp. 101-110.

[2] Hirschbeg, D.S., A linear space algorithm for computing maximal common
subsequencesComm. ACML8 (1975), pp. 341-343.

[3] Hu, T.C. and K.C. Tan, “Path length of binary search tre8$M J Applied Matl22

-13 -

(1972) pp. 225-234.

[4] Hu, T.C. and A.C. Tucker‘Optimal computer search trees and variable length alphabetic
codes,"SIAM J Applied Matl21 (1971) pp. 514-532.

[5] Huffman, D.A., ‘A M ethod for the construction of minimum redundaoades,"Proc.
Inst. Radio Engineer40 (1952) pp. 1098-1101.

[6] Itai, Alon, “Optimal alphabetic treesSIAM J Comb (1976), pp. 9-18.

[7] Knuth, D.E. ‘Optimal Binary Search TreesiActa Informatical (1971), pp. 14-25.

[8] Knuth, D.E. ‘Dynamic Huffman coding,J Algorithmse6, 2 (1985) pp. 163-180.

[9] Larmore,L.L., “Height-restricted optimal binary trees$1AM J Comi6 (1987) pp.
1115-1123.

[10] Larmore,L.L., “Minimum delay codes,'SIAM J Com8 (1989), pp. 82-94.

[11] Larmorel.L., “Optimal Length-Restricted Codes," Colloquium, A.T.&8ell Labs,
Murray Hill, NJ, January 6, 1988.

[12] WessnerRusell L., “Optimal alphabetic search trees with restricted maximal height,”
Information Processing Letteds(1976), pp. 90-94.

-14 -

—_—

Figure 1. nodeset(T)

B
D

n—-m

Figure2. Sets A, B, C, D

-15-

-16 -

