
A Fast Algorithm for Optimal Length-Limited Huffman Codes

Lawrence L. Larmore†‡ and Daniel S. Hirschberg‡

Abstract

An O(nL)-time algorithm is introduced for constructing an optimal Huffman code for a
weighted alphabet of sizen, where each code string must have length no greater thanL. The
algorithm usesO(n) space.

† Department of Computer Science, California State University, Dominguez Hills
‡ Department of Information and Computer Science, University of California, Irvine, CA 92717.

1. Introduction

Given an alphabetΣ = {a1, ... an}, whereai occurs with frequencywi, theHuffman coding

problemis to find a prefix-free binary code† for Σ which minimizes the weighted length of a code

string, defined to beΣ
i=1

n

wil i, wherel i is the length of the code forai. For example, ifn = 3, and if

w1 = 2, w2 = 5, andw3 = 3, then the code

a1 → 00

a2 → 1

a3 → 01

is optimal, with weighted length 15. Huffman’s algorithm [5] finds such an optimal code in time

O(n logn), and can be implemented to run inO(n) time if thewi are already sorted [9].

Restricted length. A related problem is to find a prefix-free code which has minimum

weighted length, subject to the restriction that, for alli, l i ≤ L, whereL is a given constant. Hu

and Tan give an exponential time algorithm for finding such a code [3]. Garey, using a different

approach, gives an algorithm that requiresO(n2L) time and space [1].A hybrid algorithm,

combining the methods of both Hu-Tan and Garey, runs inO(n3/2L log1/2n) time and requires

O(n3/2L log−1/2n) space [9]. In this paper, we present anO(nL)-time algorithm which requires

only linear space.

Binary trees. The Huffman coding problem is equivalent to the following problem:

Given a list of weights,w1, ... wn, sorted into non-decreasing order, find a full binary tree‡ T with

n leaves for which theweighted path length= Σ
i=1

n

wil i is minimized, wherel i is the depth of theith

leaf ofT. (We write WPL(T) for the weighted path length ofT.) Therestricted length coding

problem is then equivalent to that same minimum weighted path length problem, but with the

restriction that the height ofT cannot exceedL. (See, for example, [1].)

Methods. Huffman’s original algorithm uses a greedy method. The items are first sorted

by weight, and each item is considered to be a tree of just one node.A ‘‘combine" step is then

† A code isprefix-freeif no code string is a prefix of any other. The advantage of a prefix-free code is that code
strings can differ in length, yet any coded message can be decoded unambiguously.
‡ A full binary tree is a rooted tree in which every non-leaf has precisely two sons.

- 2 -

executedn−1 times. Each ‘‘combine" step deletes the two trees of smallest weight from the

sorted list, combines them to form one tree (making the two smaller trees the subtrees of that

new tree) and then inserts that new tree, whose weight is the sum of the weights of the subtrees,

in the proper position in the sorted list. Aftern−1 iterations, the list contains just one tree, which

is the Huffman tree. Hu and Tan’s algorithm uses a dynamic programming approach, working

across the tree from left to right. The items are first sorted by weight.For each integerj ∈ [1,n]

and eachq which is an integral multiple of 2−L in the range [0,1], Hu and Tan’s algorithm

dynamically computes the smallest possible totalΣ
i=1

j

wil i, subject to the condition thatΣ
i=1

j

2−l
i = q.

The best sequencel 1, ... l n for j = n, q = 1, is the sequence of leaves for the optimal tree. Garey’s

algorithm also uses dynamic programming, building optimal subtrees, starting with the smallest

possible subtrees, and ending with the entire tree, analogous to Knuth’s algorithm [7] for

constructing optimal binary search trees. Larmore’s algorithm [9] uses a hybrid of those last two

methods, running the subtree algorithm for subtrees up to a certain size, then switching to the

Hu-Tan left-to-right method.

In this paper, we introduce a new problem which we call theCoin Collector’sproblem, a

version of the Knapsack problem. Suppose a coin collector hasm coins of various

denominations (face values) and various numismatic values. Sincethe country he lives in has

binary coinage, the denomination of each coin is an integral power of 2. The collector is obliged

to spendX dollars to buy groceries, but the grocer (rather unimaginatively) refuses to accept any

coin at other than its face value. How can the coin collector choose a set of coins of minimum

total numismatic value whose total face value isX?

We giv e a linear time algorithm, which we call thePackage-Mergealgorithm, for solving

the Coin Collector’s problem. We reduce the restricted length Huffman coding problem to an

instance of the Coin Collector’s problem of sizenL. The Package-Merge algorithm then gives an

optimal restricted length code inO(nL) time.

Space complexity. The algorithm in its simple form takesO(nL) space, but can be

modified to take only linear space, using a technique similar to that introduced by Hirschberg [2].

The time complexity remainsO(nL).

- 3 -

2. The Package-Merge Algorithm

An instance (I,X) of the Coin Collector’s problem of sizem is defined by:

(a) A setI of m items, each of which has awidthand aweight, such that each width is a

(possibly negative) integral power of 2, and each weight is a real number. (Think of widthas

being face value of a coin, andweightas being numismatic value.)

(b) A non-negative real numberX, which we calltotal width.

A solutionto such an instance is defined to be a subsetSof I whose widths sum toX, and

anoptimal solutionis a solution of minimum total weight.We write Opt_Sol(I,X) to be such an

optimal solution. IfX is not diadic (adiadic real number is one that can be written as a fraction

whose denominator is a power of 2) then no solution exists.

We now giv e a recursive description of the Package-Merge algorithm. AssumeX is

diadic, which implies thatX can be written as a finite sum of distinct integral powers of 2,

including possibly negative powers. IfX > 0, write minwidthfor the smallest of those powers of

2.

Basis: If X = 0, thenOpt_Sol(I,X) is the empty set. IfX > 0 and I is empty, then no

solution exists.

Recursion: Let r be the smallest width of any item inI. We consider four cases.

Case 1:r > minwidth. No solution exists.

Case 2:r = minwidth. Leta ∈ I be the smallest weight item of widthr. Then

Opt_Sol(I,X) = Opt_Sol(I−{a},X−r) ∪ { a}.

Case 3:r < minwidth, and there is just one itema ∈ I of width r. ThenOpt_Sol(I,X) =

Opt_Sol(I − {a},X).

Case 4:r < minwidth, and there are at least two items inI of width r. Leta, a´ ∈ I be the

two least weight items of widthr, and letb be a new item, which we call apackage, formed by

combininga anda´. Thewidth of b is 2r, and its weight isweight(a) + weight(a´). Let Ś =

Opt_Sol(I−{a,a´} ∪ { b},X). If b ∈ Ś thenOpt_Sol(I,X) = Ś −{b} ∪ { a,a´} otherwiseOpt_Sol(I,X)

= Ś .

- 4 -

Correctness. We show that the Package-Merge algorithm produces an optimal solution

by induction on the depth of the recursion. The basis is trivially correct, so we can assume thatI

is non-empty andX > 0. The inductive hypothesis is that the algorithm is correct for any

problem instance that requires fewer recursive calls than the instance (I,X).

In Case 1, there is no solution since the width of every subset ofI must be an integral

multiple of r, andX is not an integral multiple ofr. In Case 2, any solution must contain an odd

number of items of widthminwidth= r. The optimal solution must contain the item of that width

of minimum weight, since otherwise its one item could be exchanged for that minimum weight

item, causing an improvement. Theremaining items must then be the optimal solution to the

reduced problem. In Case 3, the one item of widthr could not possibly be part of any solution,

hence can be discarded. In Case 4, any solution must have total width an even multiple of r,

hence must contain an even number of items of widthr. If this number is 0, neithera nora´ will

be in the solution, while if this number is 2 or more, both will be in any optimal solution. Thus,

the two itemsa anda´ can be ‘‘packaged" together, it being later decided whether they are both

in or both out of the optimal solution. Replacinga anda´ by the combined item (package)b and

then recursively applying the algorithm accomplishes this.

Implementation. The Package-Merge algorithm can be implemented inO(m) time

provided the items are presorted, as in our application. (If not, anO(mlogm)-time sorting step

can be included.) The space requirement isO(m). Althoughthe algorithm is described above

recursively, for ease of proof, the implementation given here is non-recursive.

Let Ld be the list of items of width 2d, sorted in order of increasing weight. By a slight

abuse of notation, we shall not distinguish between anitemand the singletonsetof items whose

sole member is that item.We refer to thediadic expansionof X as its representation as powers of

2. (For example, the diadic expansion of 5.625 is 22 + 20 + 2−1 + 2−3.)

Package Merge Algorithm(I,X)

S← ∅
for all d, L

d
← list of items having width 2d, sorted by weight

while X > 0 loop

- 5 -

minwidth= the smallest term in the diadic expansion ofX

if I = ∅ then
return ‘‘ No solution."

else
d ← the minimum such thatL

d
is not empty

r ← 2d

if r > minwidththen
return ‘‘ No solution."

else if r = minwidththen
Delete the minimum weight item fromL

d
and insert it intoS

X ← X − minwidth

end if
P

d+1
← PA CKAGE(L

d
)

discardL
d

L
d+1

← MERGE(P
d+1

,L
d+1

)

end if
end loop
return ‘‘ S is the optimal solution."

The stepPA CKAGE. Thelist Pd+1 is formed fromLd by combining items in consecutive

pairs, starting from the lightest.I.e., thekth item ofPd+1 is the package formed by combining

items (2k−1) and 2k of Ld. If Ld is of odd length, its heaviest item is simply discarded. The

MERGE step is just the usual merging of two sorted lists.

Time Analysis. Merging of two sorted lists takes time which is linear in the sum of the

lengths of the lists, while the package step takes time which is linear in the length of the list. The

following amortization argument shows that the entire algorithm takes linear time. Place three

credits on each original item. Invariably, there are three credits on each item of any list Ld which

consists solely of original items, two credits on each item of any list Ld which was formed by a

MERGE step, and three credits on each item ofPd. The PACKAGE step combines two items

which have two or three credits each into one item which has three credits, one credit paying for

the operation. The MERGE step takes time which is linear in the sum of the lengths of the lists.

One credit from each item (they hav ethree each) pays for the MERGE, leaving each item with

two credits.

Space Analysis. Each package can be represented as a binary tree, where the leaves are

original items. The space requirement isO(m).

- 6 -

3. The Length-Limited Huffman Coding Problem

In this section, we show how to reduce the restricted length Huffman coding problem to

the Coin Collector’s problem. ThePackage-Merge algorithm can then be applied to solve the

original problem inO(nL) time andO(nL) space.

We assume that the input weights are non-negative. The input weights can be sorted

within the stated complexity bounds, since logn = O(L) and hence we assume that the weights

are presented in sorted order.

We begin with the nodeset representation of binary trees, which was introduced in [10].

Fix n ≥ 1 andL ≥ log2n. We are only interested in full binary trees withn leaves whose height

does not exceedL.

Nodeset representation. Define anodeto be an ordered pair (i,l) such thati ∈ [1,n],

which is called theindexof the node, andl ∈ [1,L], which is called thelevelof the node. Any set

of nodes we call anodeset. If T is a tree, define

nodeset(T) = { (i,l) | 1≤l ≤l i}

wherel i is the depth of theith leaf ofT. For example, Figure 1 showsnodeset(T) for a treeT of 7

leaves, withL = 4.

Width and weight. If (i,l) is any node, definewidth(i,l) = 2−l , andweight(i,l) = wi. If A is

a nodeset,width(A) andweight(A) will be the sums of the widths and weights, respectively, of its

constituent nodes.We make the following two observations.

1. If T is a tree, thenweight(Nodeset(T)) = WPL(T). Thisfollows directly from the

definition of weighted path length.

2. If T is a tree withn leaves, thenwidth(Nodeset(T)) = n−1. Thiscan be proved easily

by induction. The basis isn=1. Thistree has one leaf at level 0 andwidth(Nodeset(T)) = 0. For

the inductive step, considerT, a tree withn>1 leaves. Leta andb be two leaves that are siblings

(there must be such a pair) and letf be their father at level l ≥0. LetT´ beT with a andb deleted.

T´ hasn−1 leaves (a andb are no longer leaves and f is now a leaf) and, by the inductive

- 7 -

hypothesis,width(Nodeset(T´)) = n−2. To obtainwidth(Nodeset(T)) we must subtract the

contributions of {(f ,j) | 1≤j≤l } and add the contributions of {(a,j), (b,j) | 1≤j≤l +1}. That is, we

must subtract (1−2−l) and we must add 2(1−2−(l +1)). Thenet result is thatwidth(Nodeset(T)) =

width(Nodeset(T´)) + 1 = (n−2)+1 =n−1.

For convenience, we assume strict monotonicity of the weights, i.e.,wi > wi+1. No loss of

generality is incurred by this assumption, since an infinitesimal value can be added to weights to

force tie-breaking in the correct direction.We can also assumewi > 0 for all i, sincewi ≥ 0 and

we could add an infinitesimal value to the zero weights.

Monotonicity. We say that a nodesetA is monotoneif the following two conditions hold:

(a) for i < n, (i,l) ∈ A (i+1,l) ∈ A

(b) for l > 1, (i,l) ∈ A (i,l −1) ∈ A

Lemma 1. Suppose thatA is a nodeset of widthI (2−l) + r whereI is an integer and 0 <r

< 2−l . ThenA has a subsetB whose width is exactlyr.

Proof. By induction on the cardinality (number of nodes) ofA. If A has just one node, its

width must ber, and we can simply letB = A. If A has cardinality greater than 1, we assume the

inductive hypothesis, namely that the lemma holds for all nodesets of cardinalities less than that

of A. Letp be the node ofA of smallest width, say 2−k. If k ≤ l , we hav ea contradiction, sinceA

would then have width a multiple of 2−k, and hence a multiple of 2−l . Thusk > l . Sincewidth(A)

and 2−l are both multiples of 2−k, r must also be a multiple of 2−k, hencer ≥ 2−k. If r = 2−k, letB

= {p}. Otherwise,let A´ = A−{p}, let B´ be the subset ofA´ of width r − 2−k, obtained by the

inductive hypothesis, and letB = B´∪ { p}.

Lemma 2. If X < n is an integer, the minimum weight nodeset of widthX is monotone.

Proof. LetA be the minimum weight nodeset of widthX. If (i,l) ∈ A and (i+1,l) /∈ A, then

A∪ {(i+1,l)}−{(i,l)} has the same width asA and smaller weight, a contradiction. If (i,l) ∈ A and

(i,l −1) /∈ A, letA´ = A∪ {(i,l −1)}−{(i,l)}, which has the same weight asA, but width which is 2−l

- 8 -

larger. Thus the width ofA´ is X + 2−l , with X integer. By Lemma 1, there exists a nodesetB⊆ A´

of width 2−l . A´−B has widthX and weight less thanA, a contradiction.

Lemma 3. If l 1, ... l n is a list of integers in the range [1,L], andA is the nodeset { (i,l) |

1≤i≤n, 1≤l ≤l i }, thenwidth(A) = n−Σ
i=1

n

2−l
i.

Proof. For eachi, letAi⊆ A be the set of all nodes inA of indexi, i.e.,Ai = { (i,1),...(i,l i)}.

Thenwidth(Ai) = 2−1 + 2−2 + ... + 2−l
i = 1−2−l

i. Summing over all i yields the result.

Lemma 4. If w = (l 1,l 2,...) is a monotone increasing list of non-negative integers whose

width is 1, thenw is the list of leaf depths of a tree.

Proof. This follows as an immediate corollary from Lemma 2.3 in [9], p.1117.For

completeness, we give a proof here.

The proof is by induction on the length ofw. If |w| = 1, thenw = (0) which is the list of leaf

depths of a tree consisting of one leaf. Suppose |w| = n > 1. Define

x0 = 0

xi = xi−1 + 2−l
i, for all i ∈ [1,n].

Note that (x0,x1,...,xn) is a monotone strictly increasing sequence, and thatxn = 1. Letk be the

smallest index such thatxk ≥ 2
1 . If xk > 2

1, we obtain a contradiction, as follows. Sincew is

monotone increasing, 2−l
i is an integral multiple of 2−l

k for all i < k. Thus bothxk−1 andxk are

both multiples of 2−l
k, and in fact are consecutive multiples of that quantity. But 2

1, which is also

a multiple of 2−l
i, lies strictly between them, a contradiction. Thusxk = 2

1 . Letu = (l 1−1, ...

l k−1) and letv = (l k+1−1, ...l n−1). Bothu andv are lists of length less thann of width 1. By the

inductive hypothesis,u andv are the lists of leaf depths of treesL andR, respectively. LetT be

the tree whose left and right subtrees areL andR. The list of leaf depths ofT will be w.

To apply the Package-Merge algorithm, we need the following theorem.

- 9 -

Main Theorem. If thewi are distinct (i.e.,wi > wi+1 for all i) then any nodesetA that has

minimum weight among all nodesets of widthn−1 is the nodeset of a treeT that is an optimal

solution to the restricted length Huffman coding problem.

Proof. LetA be the minimum weight nodeset of widthn−1. For eachi, let l i be the

largest index such that (i,l i) ∈ A. By Lemma 2,A is monotone, hencel i≤l i+1. SinceA is

monotone and has widthn−1, Σ
i=1

n

2−l
i = 1 by Lemma 3. Therefore, by Lemma 4, {l i} is the list of

leaf depths of a binary treeT, and henceA = nodeset(T). If there were a tree of smaller weighted

path length, the weight of its nodeset would be less than that ofA andA would then not be the

least weight nodeset of widthn−1. Thus,T is optimal.

The reduction. We can find an optimal Huffman tree of depth no more thanL as follows.

Let each node in the nodeset be an item, each of which has width less than 1. Apply the

Package-Merge algorithm to the set of all those nodes to find a minimal weight nodeset of width

n−1. For eachl ∈ [1,L], the list of nodes of width 2−l is initialized as((n,l), (n−1,l), ... (1,l)).

Note that sorting of the nodes is unnecessary, since thewi are already sorted.Ties are broken as

if wi were infinitesimally greater thanwi+1, so that the Main Theorem applies.We construct the

optimal tree from the resulting nodeset as in the proof of the Main Theorem.

Time and space. The algorithm takesO(nL) time andO(nL) space. Inthe next section,

we show how the space can be reduced toO(n), while multiplying the time by only a constant

factor.

4. A Linear Space Algorithm

In this section, we show how the algorithm of the previous section can be modified to

solve the restricted length Huffman coding problem inO(n) space, while still taking onlyO(nL)

time.

In the previous section, the restricted length Huffman coding problem was reduced to the

Coin Collector’s problem, where each node (coin) was an ordered pair in [1,n]×[1,L]. During the

- 10 -

course of the algorithm, ‘‘packages" were formed, each of which is a set of nodes, which could

be represented as (for example) a binary tree. Each such package has a width and a weight,

being the sums of the widths and weights of its constituent nodes.

At any giv en point in the algorithm, the number of packages that has to be remembered is

fewer than 2n — fewer thann packages formed at the previous level plusn nodes at the current

level. But these packages could have, as their members, most of thenL original nodes. Thus,

O(nL) space is required to keep track of everything. We propose, instead, to keep track of a very

limited portion of this information, that portion being sufficient to divide the problem into two

subproblems that can be worked recursively. Each stage of the recursion will require onlyO(n)

space. Thesize of the original Coin Collector’s problem isnL, and the total of the sizes of the

Coin Collector’s problems at each stage of the recursive descent does not exceed half the size of

the total at the previous stage. Thus, the total work is roughly twice that of the work during the

first stage, i.e., stillO(nL).

It is important to note that the linear space algorithm is guaranteed to calculate the same

nodesetSas the original algorithm. Each recursive call calculates the least weight nodeset of a

given width within a given sub-rectangleRof [1,n]×[1,L]. Thatnodeset will beS∩R. If the

recursion returned any nodesetA other thanS∩R, it would contradict the fact thatS is the lowest

weight nodeset of widthn−1, sinceScould be improved by removingS∩Rand replacing it with

A.

We now explain in detail the first stage of the algorithm, which is illustrated by Figure 2.

Let l mid =  (L+1)/2 . The basic idea is to run the package-merge algorithm once, using only

linear space, retaining only enough information to be able to break the problem into two

subproblems whose total complexity does not exceed half the complexity of the original

problem. Ourgoal is to determine the set of leaves. We can do so in linear time if we know the

number of nodes at each level. As we execute the algorithm, we keep track of only the following

four values for each package. Other information, such as the full set of members of a package, is

discarded. Thevalues we keep are:

weight(p) = the sum of the weights of nodes inp

width(p) = the total width of all nodes inp

- 11 -

midct(p) = the number of nodes inp of level l mid

hiwidth(p) = the total width of all nodes inp whose levels exceedl mid

In addition, these same values are maintained forS, which will be the optimal nodeset by

the end of the algorithm.Ssatisfies the following two monotonicity properties (see Lemma 2).

(a) for i < n, (i,l) ∈ A (i+1,l) ∈ A

(b) for l > 1, (i,l) ∈ A (i,l −1) ∈ A

Let m be the number of nodes of level l mid in S. m = midct(S), which is remembered by

the algorithm.We note thatScan be written as the disjoint union of four sets, namely

A = nodes inSwhose levels are <l mid with indices in [1,n−m]

B = nodes inSwhose levels are <l mid with indices in [n−m+1,n]

C = nodes inSwhose levels are =l mid

D = nodes inSwhose levels are >l mid

Figure 2 illustrates the partition ofS into A, B, C, andD.

By the monotonicity ofS, the nodes inC are (n−m+1,l mid), ... (n,l mid) and the nodes inB

are [n−m+1,n]×[1,l mid−1]. Thus,we know the number of nodes inB andC at each level. We

can determine the width of the four sets as follows. Thewidth of C is m2−l
mid and the width ofB

is m(1−2−(l
mid

−1)). D ⊆ [n−m+1,n]×[l mid+1,L] and therefore the width ofD is hiwidth(S), which

is remembered by the algorithm. The width ofA is width(S)−width(B)−width(C)−width(D).

Finally, A andD are (respectively) the minimum weight subsets of [1,n−m]×[1,l mid−1]

and [n−m+1,n]×[l mid+1,L], of their respective widths. Thus,the number of nodes at each level of

A andD can be found by recursive calls to the algorithm. (Although, in the recursive calls, the

total width needed is no longern−1.)

The recurrence relation we obtain is the following. Letf(n,L) be the worst case time to

find the minimum weight subsetSof [1,n]×[1,L] of a giv en width X, under the assumption thatS

satisfies the two monotonicity properties. Then,

for L < 3, f(n,L) ≤ c1n

for L ≥ 3, f(n,L) ≤ c2nL + f(n1,L1) + f(n2,L2)

- 12 -

whereL1 = l mid−1 ≤ L/2 , L2 = L − L1 − 1 ≤ L/2 , and the adversary choosesn1 + n2 = n. To

obtain an upper bound on the complexity off(n,L), we note thatf(n,L) = O(g(n,L)), whereg is

any function that satisfies the recurrence

for L < 3, g(n,L) ≥ c1nL

for L ≥ 3, g(n,L) ≥ c2nL + g(n1,L/2) + g(n−v’0.4m’1,L/2)

It is seen thatg(n,L) = (c1+2c2)nL satisfies the recurrence relation. Thusf(n,L) = O(nL).

5. Additional Questions

Alphabetic Codes. A prefix free code is said to bealphabeticif the lexical order of the

code strings corresponds to a given order of the original weighted alphabet. Itai and Wessner [6],

[12] present algorithms to find an optimal length-limited alphabetic code inO(n2L) time. By

using the nodeset representation of code trees, anO(nLlogn) algorithm for this problem has been

developed [11]. Can the complexity be reduced toO(nL)?

Dynamic Trees. Consider the case in which an encoding of a stream of symbols is

transmitted, and the code (based on symbol frequencies) is updated after each symbol. If there

are no length limitations, the optimal tree can be updated inO(l) time, wherel is the length of

the codeword whose frequency was incremented [8]. Can the optimal length-limited code tree be

updated inO(l) time?

References

[1] Garey, M.R., ‘‘Optimal Binary Search Trees with Restricted Maximal Depth,"SIAM J

Comp3 (1974) pp. 101-110.

[2] Hirschberg, D.S., ‘‘A l inear space algorithm for computing maximal common

subsequences,"Comm. ACM18 (1975), pp. 341-343.

[3] Hu, T.C. and K.C. Tan, ‘‘Path length of binary search trees,"SIAM J Applied Math22

- 13 -

(1972) pp. 225-234.

[4] Hu, T.C. and A.C. Tucker, ‘‘Optimal computer search trees and variable length alphabetic

codes,"SIAM J Applied Math21 (1971) pp. 514-532.

[5] Huffman, D.A., ‘‘A M ethod for the construction of minimum redundancy codes,"Proc.

Inst. Radio Engineers40 (1952) pp. 1098-1101.

[6] Itai, Alon, ‘‘Optimal alphabetic trees,"SIAM J Comp5 (1976), pp. 9-18.

[7] Knuth,D.E. ‘‘Optimal Binary Search Trees,"Acta Informatica1 (1971), pp. 14-25.

[8] Knuth,D.E. ‘‘Dynamic Huffman coding,"J Algorithms6, 2 (1985) pp. 163-180.

[9] Larmore,L.L., ‘‘Height-restricted optimal binary trees,"SIAM J Comp16 (1987) pp.

1115-1123.

[10] Larmore,L.L., ‘‘Minimum delay codes,"SIAM J Comp18 (1989), pp. 82-94.

[11] Larmore,L.L., ‘‘Optimal Length-Restricted Codes," Colloquium, A.T.&T. Bell Labs,

Murray Hill, NJ, January 6, 1988.

[12] Wessner, Rusell L., ‘‘Optimal alphabetic search trees with restricted maximal height,"

Information Processing Letters4 (1976), pp. 90-94.

- 14 -

1 2 3 4 5 6 7

i

4

3

2

1

l

Figure 1. nodeset(T)

n−m1 n

L

lmid

1

A B

C

D

Figure 2. Sets A, B, C, D

- 15 -

- 16 -

