- Yolume 7, number 1

.

INFORMATION PROCESSING LETTERS

January 1978

AN INFORMATION-THEORETIC LOWER BOUND FOR
THE LONGEST COMMON SUBSEQUENCE PROBLEM *

~ D.S. HIRSCHBERG
- Rice University, Houston TX 77001

Received 1 July 1977; revised version received 26 October 13'77

Algorithm, comparison

The longest common subsequence (LCS) problem
is the problem of determining a sequence C of maxi-
mum length that is a subsequernce of (can be obtained
by deleting zero or more symbols from) each of two
given strings 4 and B [1].

The best algorithms known for the LCS probiem
are, in the worst case, only siightly faster than qua-
dratic in the length of the input [3,5] alti:ough, for
sore special cases, there are algorithms known that
require only O(n log n) time [3,4].

Lower bounds on the complexity of the LCS prob-
lem have been determined for algorithms that are
restricted to making “equal—unequal” comparisons
of positions in the two strings. A “comparison of two
positions” means a comparison of ihe values cf the
symbols located at those positions. It has been shown
[1] that O(n®) such comparisons are required to solve
the LCS problem for unrestricted alphabet size and
O(rs)y such comparisens are required for alphabet size
restricted to s.

We shall prove that n log 1 is a lower bound on
the num:ber of “less than-equal-greater than” compari-
sons requiced to solve the LCS problem, assuming
unrestriciec alphabet size.

Let T'(n) be the minimum number of comparisons
(resultiag in “less than”, “greater than”, of “equal”)
requirs] +o solve the LCS problem with two input
strings of length n.

Wc siia.l use a decision tree model (see [1]) and
shall demonst:ate a lower bound on T'(n) by exhibit-

* Research supported by NSF Grant MCS-76-07683.

40

ing a path of sufficient length in each possible deci-
:ion tree.

A basic configuration is an assignment of values to
strings A and B such that there are no values common
to strings A and B. Thus a basic configuration has an
1.CS ~7length 0.

A valid configuration (for a particular sequence of
comparisons) is an assignment of values to positions
that is consistent with the results of all comparisons.

We now define an “oracle” or decision rule by
which a r ath, P, , is distinguished in each decision tree
for the LCS problem. Let P¥) be the prefix of length
i of P, (starting at the root of the decision tree).

Decision rule. Let the comparison p,; : p, be the ith
on P,. If py and p, are both positions in 4 (say, a,
and ;) then if u <wv then return “less than”; other-
wise, return “greater than”.

If p; and p, are not both positions in A then do
the foliowing. Let R be the set of relative orderings
of the positions of strings 4 and B that are consistent
with the results of all comparisons made along P¢~
that also have a; <a, <+ <a,. Let R, be the subset
of R that is consistent with p; <p, and let R; be the
subset of R consistent with p; > p,. If IR > IR;)
then return “less than”; otherwise return “greater
than”. O

Note that the decision rule never returns a result
of “equal”.

Define positions p and g to be comparoble (for a
sequence of comparisons) if it can be logically deduced

Volume 7, number 1

from the results of the comparisons that p < or
thatp >q.

Lemma. There must be sufficient comparisons in P,
so that all positions in A are comparable (possibly by
transitivity) to all positions in B,

Proof. If not, assume g; is not comparable to b;. We
know that there is a valid basic configuration C, for
P, in which a; < b; and which has an LCS of length 0.
Consider the set S of positions p (of 4 and/or B)
in C, such that ¢; <p < b;. We can partition § into
subsets Sq, Sy, 53, and S5 where
So = {Po €S | pg not comparable to either g; or b;},
Sy = {p1 €S | py comparable to a; but not to by},
S2 = {p2 €S | p; comparable to b; but not to ;},
§3={p3 €S | p3 comparable to both 4; and b;}.
In what follows, p is a generic element of S, py is a
generic element of S (fork =0, 1, 2, 3). S5 is empty
since otherwise g; is comparable to b;. There is no
p1 €S, that is comparably less than any p, € S, since
otherwise a; would be comparably less than b;. Also,
there is no pg € Sy that is comparably greater than
any p, €S, or is comparably less than any p, €S,
since otherwise pg would be in S or S, respectively.
We can change the relative order of values of g;,
{p}, bj so that {p,} <a; <b;< {pg} < {p1} and
will still have a valid basic configuration Cq. The con-
figuration, C,, whick: is the same as Cg except that
a; = bj will also be valid, but it will have an LCS of
length 1. The decision tree D, of which P, was a path,
does not distinguish between these two valid configu-
rations and hence does not solve the LCS problem. O

Lemma. There must be n log n comparisons along P,

INFORMATION PROCESSING LETTERS

- January 1978

Proof. Each element, b; of B, can be-in any one of
n + 1 distinct states: ‘

‘D" S ay,

a: <bj<d,‘+1 , [i =
ey < bj .

1, .,n-1],

'Thus, there are (n.+ 1) possible 1elative orderings
of the elements of B with respect to the elements of
A. It will require log((n + 1)") > 1 log n compatisons
to distinguish which states the elements of B are in.
That is, n log n comparisons are required to make

every element of B compzrable to every element
of 4.0

Theorem. T(n) = n log n.

Proof. W: have exhibited « path of length n log n that
must anpes. in any decision tree that solves the {.CS
problem. (]

References

[1] A.V. Aho, D.S. Hirschberg and J.D. Ullman, Bounds on
the complexity of the longest common subsequence
problem, J. ACM 23 (1) (January 1976) 1-12.

[2] D.S. Hirschberg, A linear space algorithm for computing
maximal common subsequences, Comm. ACM 18 (6)
(Tune 1975) 341-343.

[3] D.S. Hirschberg, Algorithms for the longest common
subsequence problem, J. ACM 24 (3) (October 1977).

[4] J.W. Hunt and T.G. Szymanski, A fast algcrithm for
computing longest common subsequences, Comm. ACM
20 (5) (May 1977) 350-353. _

(5} M.S. Paterson, unpublished manuscript, University of
Warwick, England (1974).

(6] C.K. Wong, private communication to D.S. Hirschberg.

41

