
Tight Bounds on the Number of String
Subsequences

DANIEL S. HIRSCHBERG,Department of Information and
Computer Science, University of California, Irvine, CA 92697-3425,
Email: dan@ics.uci.edu

MIREILLE REGNIER, INRIA Rocquencourt, 78153 Le Chesnay
Cedex, FRANCE, Email: Mireille.Regnier@inria.fr

ABSTRACT: The problem considered is that of determining the number of subsequences obtain-
able by deletingt symbols from a string of lengthn over an alphabet of sizes. Recurrences are
proven and solved for the maximum and average case values, and bounds on these values are
exhibited.

Keywords: subsequence, recurrence

1 Problem Definition

We prove bounds on the number of subsequences of a given length that a string on a
fixed-size alphabet can have. Such bounds have been the basisfor an efficient algo-
rithm that reconstructs a binary string from knowledge of a sufficient number of its
subsequences [6]. This research area is linked to applications of Levenshtein distance
whose usage “plays the central role” in “the study of block codes capable of correcting
substitution and synchronization errors” [2].

A �-string is a string over�, where� is an s-alphabet (that is,j�j = s); �n
denotes the set of all�-strings of lengthn. A series is a maximal run of identical
symbols and� (X) denotes the number of series in stringX. A subsequence Y of
stringX is a string obtained by deleting zero or more symbols fromX, andX is said
to be asupersequence of Y: A t-subsequence is a subsequence obtained by deleting
exactlyt symbols. The set oft-subsequences ofX is denoted byDt(X): For example,D2(aab) = fa; bg andDt(X) = ; for t > jXj.

Calabi ([1], as cited in [2]) proved that a particular stringform attains the maxi-
mum value ofjDt(X)j and found an expression for the generating function of that
maximum value. We present a direct alternative proof of the upper bound and prove a
simple underlying recurrence, thereby enabling its efficient evaluation.

Levenshtein [3] proved that, for any binary stringX,
��(X)�t+1t � � jDt(X)j ���(X)+t�1t �

. (These bounds can be generalized to�-strings [5].) However, while the
upper bound is tight, the lower bound is not. We prove a tight lower bound.

Assuming thatX is equally likely any string in�n, we derive and solve a recurrence

J. of Discrete Algorithms, Vol. 1 No. 1, pp. 123–132, 2000 c
 Hermes Science Publications

124 J. of Discrete Algorithms, Vol. 1 No. 1, 2000

on the average value ofjDt(X)j.
2 Upper Bounds for jDt(X)j
We determine an upper bound on the number of subsequences obtainable by deletingt symbols from a string of lengthn over an alphabet of sizes.

Let � = f�1; : : : ; �sg, where thef�ig are listed in some order. LetCn = c1 � � �cn
be a string in�n, whereci = �1+(i�1 mod s). Thus,Cn has the symbols of� in
circular order, cycling as many times as needed.

Let ds(t; n) denotejDt(Cn)j, the number of subsequences obtainable by deletingt
symbols fromCn, where� has cardinalitys.

Calabi ([1], as cited in [2]) proved that, for allX in �n; jDt(X)j � ds(t; n), and
thatds(t; n) is the coefficient ofxn in the generating function�(x) = (Psj=1 xj)n�t(P1j=0 xj):
Apparently, “the proof is rather involved” ([2], p.118) andwas not published. In The-
orem 2.4, we present a direct alternative proof of the upper bound. We prove Calabi’s
Theorem, that�(x) is the generating function fords(t; n), and use that proof as a basis
to prove Theorem 2.6, a simple recurrence onds(t; n). This recurrence enables the
efficient evaluation ofds(t; n) by the use of dynamic programming.

We useQ(a) to denote the subset of strings in setQ that begin with symbola. For
example,D(b)t (X) denotes the set oft-subsequences ofX that start with symbolb. IfQ andR are sets then we useQ+R to denoteQ[R with the assertion thatQ andR
are disjoint and, thus,jQ+Rj = jQj+ jRj.
LEMMA 2.1
For any�-stringX, Dt(X) =Pa2�D(a)t (X).
PROOF. The set of stringsDt(X) is partitioned into subsets organized by each string’s
first symbol.

LEMMA 2.2
For s � 1; ds(t� 1; n� 1) � ds(t; n).
PROOF. ds(t� 1; n� 1) counts subsequences of lengthn� t as doesds(t; n), but of
a smaller string.

If Q is a set of�-strings and� 2 � is a symbol then�Q denotes the set of�-stringsf�q j q 2 Qg.

LEMMA 2.3
For s � 1; ds(t; n) =Psi=1 ds(t+ 1� i; n� i).
PROOF. For 1 � j � s, let C(�j)n = c1 � � �cn be a string in�n, whereci =�1+(j+i�2 mod s). Thus,C(�j)n has the symbols of� in circular order, beginning with�j. Using Lemma 2.1, we see thatDt(Cn) =Psi=1D(�i)t (C(�1)n) =Psi=1 �iDt+1�i(C(�i+1)n�i).
The set of subsequences is partitioned by their beginning symbols. The subsequences
that begin with�i are obtained by deleting the firsti� 1 symbols ofCn andt+ 1� i
symbols from among the symbols occurring after�i. The statement of the lemma
follows directly.

Tight Bounds on the Number of String Subsequences 3

THEOREM 2.4
For s � 1 and for anyX 2 �n; jDt(X)j � ds(t; n).
PROOF. By induction onn andn � t. The theorem is trivially true forn � 1 andn� t � 1. LetX = x1 � � �xn 2 �n. For each symbol�i, let fi be the smallest indexj such thatxj = �i (andfi is n + 1 if �i does not appear inX), where the elements
of �, f�1; : : : ; �ng, are ordered by their first appearance inX, thereby orderingfi
smallest to largest. Consequently,fi � i. We useX[i : j] to denote the substringxi � � �xj of X.

Using Lemma 2.1, we haveDt(X) = sXi=1D(�i)t (X) = sXi=1 �iDt+1�fi(X[fi + 1 : n]) :
Therefore,jDt(X)j = sXi=1 jDt+1�fi(X[fi + 1 : n])j� sXi=1 jDt+1�fi(Cn�fi)j; using the inductive hypothesis,� sXi=1 jDt+1�i(Cn�i)j; becausefi � i and by applying Lemma 2.2,= ds(t; n); by applying Lemma 2.3.

In the following,[zn]poly(z) denotes the coefficient ofzn in a polynomial ofz.

THEOREM 2.5
[Calabi]ds(t; n) satisfiesds(t; n) = [zn](sXj=1 zj)n�t 11� z :
PROOF. The following process exhibits a coding of anyt-subsequenceX of Cn as an(n�t)-tuple� = (�1; : : : ; �n�t), where�i are nonnegative integers,0 � �i � s�1,
and

Pn�ti=1 �i � t.
The elements ofX can be associated with their counterparts inCn. Each�i corre-

sponds with thei-th element ofX,X[i], and denotes the shift inCn, i.e., the minimum
number of symbols ofCn that are to be deleted before encounteringX[i]. For exam-
ple, forCn = ABCABC and 2-subsequenceX = ABBC, the first two symbols ofX match withCn and are encoded with zeros but the third symbol ofX requires a
skip of two symbols inCn and is encoded with a 2. Because of the cyclic nature of the

126 J. of Discrete Algorithms, Vol. 1 No. 1, 2000

symbols inCn, a sequence ofs contiguous deleted symbols do not cause a mismatch
and hence the shift will be an integer inf0; : : : ; s� 1g.

We note that
Pn�ti=1 �i � t and that the inequality is strict when deletions occur at

the end of the sequence. We also note that the number,r, of deletions occurring at the
end of the sequence may be greater thans � 1. This number need not be coded, as it
is determined by the equality

Pn�ti=1 �i + r = t.
Example. Let C12 = ABCABCABCABC and t = 3. The 3-subsequenceAABCABCAB is coded on a 3-alphabet by 020000000. Reciprocally, from cod-

ing 001002000, one recovers 3-subsequenceABABCCABC.
Enumeration ofds(t; n) reduces to an enumeration off�1; : : : ; �n�tg. Each value�i is associated with a subword of length�i + 1 of the initial sequence. There aren � t choices of subword lengths fromf1; : : : ; sg. Using a generating function, this

is enumerated by(Psj=1 zj)n�t. A choice where
Pn�ti=1 �i = t � r is the same as a

choice where the sum of the subword lengths isn � r, and leads to an indexn � r
for the last chosen element. In this case, ther last symbols ofCn are deleted, where0 � r � t. The coefficient ofzk in the generating function denotes the number of
choices of subword lengths (equivalently, the number of choices of�) that result in
the last symbol being at indexk. Hence,ds(t; n) = tXr=0[zn�r](sXj=1 zj)n�t= tXr=0[zn](sXj=1 zj)n�tzr= [zn](sXj=1 zj)n�t tXr=0 zr :
As [zn](Psj=1 zj)n�tP1r=t+1 zr = 0, we obtain our result.

Alternatively, count thet-subsequences that have total shiftt � r � t. Hence,ds(t; n) = tXr=0 (the number of choices of� that cause
Pn�ti=1 �i = r)= tXr=0[zt�r](1 + z + � � �+ zs�1)n�t= tXr=0[zt](1 + z + � � �+ zs�1)n�tzr= [zt](1 + z + � � �+ zs�1)n�t tXr=0 zr= [zt](1 + z + � � �+ zs�1)n�t 1Xr=0 zr:

Tight Bounds on the Number of String Subsequences 5

This last equality comes from the fact that[zt](1+z+ � � �+zs�1)n�tPk�t+1 zk is
0. Finally, we rewrite the last expression as= [zn]zn�t(1+z+� � �+zs�1)n�tP1r=0 zr .

THEOREM 2.6
For 0 � t � n ands � 2; ds(t; n) =Pti=0 �n�ti �ds�1(t� i; t).
PROOF. We exhibit a mapping betweent-subsequences ofCn on ans-alphabet and(t � i)-subsequences ofCt on an(s � 1)-alphabet, fori 2 f0; : : : ; tg.

The process used in the proof of Theorem 2.5 can be used to codea (t � i)-
subsequence of stringCt on an(s� 1)-alphabet (the subsequence having lengthi), as
ani-tuple over the alphabetf0; : : : ; s � 2g. The sum of the entries in the coding will
bet� i� r, for some0 � r � t� i. Alternatively, by increasing each entry value by
one, the coding will be ani-tuple over the alphabetf1; : : : ; s� 1g and the sum of the
entries will bet � r, for some0 � r � t� i. We note that, similarly, at-sequence of
stringCn (having lengthn � t) over ans-alphabet could be encoded by choosing thei non-zero positions amongn� t, and encoding the resultingi-tuple.

The setT of t-subsequences of stringCn on ans-alphabet can be coded as(n� t)-
tuples over the alphabetf0; : : : ; s�1g, each with entry sum� t. The number of non-
zero positionsi in any one of these codings is therefore at mostt. For each possible
value of i, extract thei non-zero positions, decrease each value by 1, and obtain a
coding for the sequence of lengthi over alphabetf0; : : : ; s � 2g with sum� t � i.
Performing this for all members of setT results in obtaining each(t� i)-subsequence�n�ti � times.

COROLLARY 2.7
For0 � t � n; d2(t; n) =Pti=0 �n�ti �; for 0 � t � n; d3(t; n) =Pti=0 �n�ti �Pt�ij=0 �ij�.
PROOF. This follows immediately from Theorem 2.6 and the fact thatd1(t; n) = 1
for 0 � t � n.

COROLLARY 2.8
For 0 � t � n ands � 2, the value ofds(t; n) can be computed in timeO(t + (s �1)n2).
PROOF. The set of valuesC = f�ji� j 0 � i � j � ng can be computed in timeO(n2) using dynamic programming. Letds = fds(i; n) j 0 � i � ng. From
Corollary 2.7, the setd2 can be computed in timeO(n2) from C. For k iteratively
valued3; : : : ; s� 1, using the recurrence of Theorem 2.6, the setdk can be computed
in timeO(n2) fromC anddk�1. Finally, again using the recurrence of Theorem 2.6,ds(t; n) can be computed in timeO(t) from ds�1 andC.

OBSERVATION 2.9
It may be possible to improve the complexity of computingds(t; n) by using memo-
ized recursion.

By evaluatingds(t; n) and expressing its difference from
�nt� as a power series, one

can see that, fort � s; ds(t; n) = �nt�� nt+1�s=(t� s)! +O(nt�s).

128 J. of Discrete Algorithms, Vol. 1 No. 1, 2000Map(s) u � vx wz0 y0Map(s0) u0 � v0
FIG. 1. If Map(s) =Map(s0)

We note that the problem of calculating the number,is(t; n), of supersequences
obtainable by insertingt symbols in a lengthn stringX on an alphabet of sizes is
much simpler, and is invariant overX. It is known [4] that, using a binary alphabet,i2(t; n) = Ptj=0 �n+tj �. This can be generalized tos � 2 [5]. It is easy to see thatis(t; n) = is(t; n� 1) + (s � 1)is(t � 1; n), with boundary conditionsis(0; n) = 1
and is(t; 0) = st. Let X 2 �n�1; Y 2 �n+t�1, anda; b 2 �. Then bY is a
supersequence ofaX if and only if either (1)a = b andY is a supersequence ofX, or (2) a 6= b andY is a supersequence ofaX. This recurrence is solved byis(t; n) =Ptj=0(s� 1)j�n+tj �.
3 A Lower Bound for jDt(X)j
It was stated [6, 3] that, for any binary stringX, jDt(X)j � ��(X)�t+1t �

. Note that

this bound is the same as
��(X)�tt � + ��(X)�tt�1 �. We will improve and generalize this

bound. We first need a few lemmas.

LEMMA 3.1
For any�-stringsU; V and any� 2 �; jDt(UV)j � jDt(U�V)j.
PROOF. We show thats 2 Dt(UV) can be mapped distinctly toMap(s) 2 Dt(U�V).

Let s = uv, with u the maximum length prefix ofs that is a subsequence ofU .
We defineMap(s) to beu�v. It remains to be shown that ifs 6= s0 thenMap(s) 6=Map(s0).

Let s = uv ands0 = u0v0 be elements inDt(UV), whereu andu0 are the maximum
length prefixes ofs ands0 that are subsequences ofU . If u = u0 then it must be thatv 6= v0 and thusu�v 6= u�v0. We now consider the case whenu 6= u0.

Assume thatMap(s) = Map(s0), i.e., u�v = u0�v0. Without loss of generality,juj > ju0j, and we letu = u0x andv0 = y0v, with x non-null. Refer to Figure 1. Thusu0x�v = u0�y0v and thereforex� = �y0. Then we can expressx asx = �w andy0 asy0 = z0�. Accordingly,�w� = �z0�. We note thatz0 is non-null, elses would equals0. Now we see thatu = u0x = u0�w and thats0 = u0v0 = u0y0v = u0z0�v = u0w�v.
However, this means thatu0z0 is a prefix ofs0 and, sinceu0z0 is a subsequence ofu, it
follows thatu0z0 is a subsequence ofU , contradicting the maximality ofu0.

Tight Bounds on the Number of String Subsequences 7

LEMMA 3.2
If X is a �-string such that� (X) = n then there exists a stringY 2 �n, with� (Y) = n, such thatjDt(Y)j � jDt(X)j.
PROOF. Let Y be�-string of lengthn consisting of one symbol from each of the
series inX. StringX can be obtained fromY by a sequence of symbol insertions.
The statement of the lemma then follows from repeated applications of Lemma 3.1.

LEMMA 3.3
If X is a string in�n such that� (X) = n thenjDt(X)j � d2(t; n).
PROOF. By induction onn andn � t. The lemma is trivially true for the base cases,
whenn � 2 or n� t � 2. For the induction step, letX = abY , wherea 6= b because
each series inX has length 1. Then,Dt(X) = D(a)t (X) +D(b)t (X) + X� 6=a;bD(�)t (X)� D(a)t (X) +D(b)t (X) = aDt(bY) + bDt�1(Y) :
Using the inductive hypothesis and Lemma 2.3, we obtainjDt(X)j � jDt(bY)j+ jDt�1(Y)j� d2(t; n� 1) + d2(t � 1; n� 2) = d2(t; n) :
THEOREM 3.4
For any�-stringX; jDt(X)j � Pti=0 ��(X)�ti �

and for all values of� andt, wheret � � , there exists a stringX such that� (X) = � andjDt(X)j =Pti=0 ��(X)�ti �
.

PROOF. Follows directly from Corollary 2.7 and Lemmas 3.2 and 3.3.

4 The Average Number of Subsequences

Under the assumption that�-strings of lengthn are equiprobable, the average number
of subsequences obtainableby deleting one symbol has been shown to be(n(s� 1) + 1) =s
[2]. We develop and solve a recurrence on the average number of subsequences ob-
tainable by deletingt symbols.

LetGt(n) =PX2�n jDt(X)j be the sum, over all strings in�n, of the number of

subsequences obtainable by deletingt symbols. Similarly,G(a)t (n) =PX2�n jD(a)t (X)j
is the sum when the subsequences are restricted to begin withsymbola.

We see that, for0 < t < n,G(a)t (n) = XX2�n jD(a)t (X)j =Xb2� XX2(�n)(b) jD(a)t (X)j : (4.1)

If b = a then(�n)(b) = faY j Y 2 �n�1g. We note that the count of subse-
quences ofaY that start witha and have lengthn � t is the same as the count of

130 J. of Discrete Algorithms, Vol. 1 No. 1, 2000

subsequences ofY that have lengthn � 1� t because of a simple bijection between
those two sets of subsequences. As a result, we see that

PX2(�n)(a) jD(a)t (X)j =PY 2�n�1 jD(a)t (aY)j =PY 2�n�1 jDt(Y)j.
If b 6= a then(�n)(b) = fbY j Y 2 �n�1g. We note that the count of subsequences

of bY that start witha and have lengthn� t is the same as the count of subsequences
of Y that start witha and have lengthn � t because the leadingb of bY can just be
discarded. As a result, we see that

PX2(�n)(b) jD(a)t (X)j =PY 2�n�1 jD(a)t (bY)j =PY 2�n�1 jDt�1(Y)j.
Therefore,G(a)t (n) = XY2�n�1 jDt(Y)j+ (s� 1) XY2�n�1 jD(a)t�1(Y)j : (4.2)

We then see thatG(a)t (n) = Gt(n� 1) + (s � 1)G(a)t�1(n� 1) (4.3)

follows immediately from (4.1), (4.2) and the definitions.
From the fact thatGt(n) = Pa2�G(a)t (n), using (4.3)s times, once for each

symbol in�, G(�1)t (n) = Gt(n � 1) + (s � 1)G(�1)t�1 (n� 1)G(�2)t (n) = Gt(n � 1) + (s � 1)G(�2)t�1 (n� 1)� � �G(�s)t (n) = Gt(n� 1) + (s � 1)G(�s)t�1 (n� 1)
obtains Gt(n) = sGt(n� 1) + (s � 1)Gt�1(n� 1) : (4.4)

Boundary conditions,G0(n) = Gn(n) = sn, hold because there is only one string
obtainable by deleting none or all of the symbols in each of the sn strings in�n.

Let Et(n) be the average (or expected) value ofjDt(X)j, whereX can equally
likely be any string in�n, and let� = 1� 1=s.
THEOREM 4.1
For 0 < t < n;Et(n) = Et(n� 1) + �Et�1(n� 1), andE0(n) = Et(t) = 1.

PROOF. This follows from the recurrence (4.4) and boundary conditions onG and the
fact thatEt(n) = Gt(n)=sn.

THEOREM 4.2
Let Et(n) be the expected value ofjDt(X)j. Then the bivariate generating functionE(z; u) =Pn�1P1�t�nEt(n)utzn has closed formE(z; u) = zu1� zu (1 + z1� z � �zu) :

Tight Bounds on the Number of String Subsequences 9

It follows that Et(n) = tXi=0�n� t� 1 + ii ��i:
PROOF. From Theorem 4.1, sequencefEt(n)gn�t�1 satisfiesEt(n) = Et(n� 1) + �Et�1(n� 1) + (1� �)1n=t�1 ; (4.5)

with En(n � 1) = 0 andEn(n) = 1. Multiply both sides of (4.5) byznut and sum
over alln andt such thatn � t � 1. Noting thatEt(n�1)znut = zEt(n�1)zn�1ut,
we obtainE(z; u) = zE(z; u) + �zu[E(z; u) +E0(0)] + (1� �)Xn�1(uz)n ;
which can be rewritten asE(z; u)(1� z � �zu) = �zu+ (1� �)zu1� zu = zu1� zu (1� �zu)
and simplification yields the claimed closed form.

It follows thatEt(n) = [ut][zn]E(z; u). If n > t, one observes that[ut][zn] zu1�zu =0 and using the factorizationzn = zn�t � zt yieldsEt(n) = [(uz)t][zn�t] zu1� zu � z1� z � �zu= [(uz)t][zn�t�1] zu1� zu � 11� z � �zu :
Expanding the last expression yieldsEt(n) = tXi=0[zn�t�1](z + �zu)n�t�1+i = tXi=0 �n � t� 1 + ii ��i:
5 Conclusions

We have shown bounds on the number of sequences obtainable bydeletingt symbols
from a lengthn string over an alphabet of sizes. That number varies with the string
and it would be of interest to be able to efficiently compute that number for any given
string.

We noted that the number of sequences obtainable by inserting t symbols in a lengthn stringX over an alphabet of sizes is invariant overX. A more general problem,
combining these operations, is to compute the number of sequences obtainable by
applying a sequence oft insert symbol anddelete symbol operations to a given string.

132 J. of Discrete Algorithms, Vol. 1 No. 1, 2000

Acknowledgements

We thank an anonymous referee whose detailed comments significantly helped im-
prove the presentation of our results.

References
[1] L. Calabi, “On the computation of Levenshtein’s distances,” TM-9-0030, Parke Math. Labs., Inc.,

Carlisle, Mass., 1967.
[2] L. Calabi and W.E. Hartnett, “Some general results of coding theory with applications to the study of

codes for the correction of synchronizationerrors,”Information and Control 15,3 (Sept 1969) 235-249.
Reprinted in: W. E. Hartnett (ed),Foundations of Coding Theory (1974) Chapter 7, pp.107-121.

[3] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions and reversals,”Soviet Phys.
Dokl. 10 (1966) 707-710.

[4] V. I. Levenshtein, “Elements of the coding theory,” in:Discrete Math. and Math. Probl. of Cybern.,
Nauka, Moscow (1974) 207-235 (in Russian).

[5] V. I. Levenshtein, “On perfect codes in deletion and insertion metric,”Discrete Math. Appl. 2,3 (1992)
241-258. Originally published inDiskretnaya Matematika 3,1 (1991) 3-20 (in Russian).

[6] V. I. Levenshtein, “Reconstructing binary sequences bythe minimum number of their subsequences
or supersequences of a given length,”Proc. 5th Int. Wkshp on Alg. & Comb. Coding Theory, Sozopol,
Bulgaria (1996) 176-183.

Received November 15, 1999.

