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This paper studies three graph problems with parameters n, the number of nodes, 
e, the number of edges, and k, the diameter of the graph. Given any two of these 
three parameters, the problem is to construct a directed graph which minimizes 
or maximizes the third. The first problem has its origin in a recent study of record 
allocation in a paged computer system. It is shown how to construct graphs 
that are optimal for all three problems in some cases and are asymptotically 
optimal for other cases. The solution of the second problem answers a question 
raised by Berge in “The Theory of Graphs and its Application,” 1962. 

I. INTRODUCTION 

In this paper, we study three graph problems with parameters n, the number 
of nodes, e, the number of edges, and k, the diameter of the graph. Given 
any two of these three parameters, we seek a directed graph which minimizes 
or maximizes the third. Specifically, the first problem is: Given y1 and k, 
6.nd a directed graph with n nodes, whose diameter is not larger than k, such 
that it has the minimum possible number of edges. This problem will be 
referred to as the (n, k) problem. The second problem is: Given e and YE, 
find a directed graph with n nodes and at most e edges whose diameter is 
minimum. This problem will be referred to as the (n, e) problem. The last 
problem is: Given e and k, find a directed graph with at most e edges whose 
diamter is not larger thank such that it has the maximum possible number of 
nodes. This problem will be referred to as the (e, k) problem. 

The first problem (the (n, k) problem) has its origin in a recent study of 
record allocation in a paged computer system. Given n pages of records, one 
wants to assign page pointers to each page. These pointers point to other 
pages after whatever operations on the page containing these pointers are 
completed. Since each pointer corresponds to a page fault, one naturally 
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wants to minimize the total number of page pointers. On the other hand, in 
order to guarantee the performance of the system as a whole, the following 
constraint is imposed: the number of pointers traced when gsing from one 
page to another should not be larger than k. Represented as 2 graph, this 
problem becomes the (n, k) problem. The other two problems are natural 
complements of the first one and are of interest in their own rights. In fact, t 
second problem was mentioned in [I]. 

Since optimal solutions seem to be difficult to find, we propose some 
heuristics. We shall show how to construct graphs that are optimal for a 
three problems in some cases and are asymptotically optimal (in a certain 
sense) for other cases. 

Finally, it should be pointed out that some aspects of these problems have 
been studied by various authors [3-S]. 

FOP definitions concerning graphs, we refer to [2]- 

II. THE (n, k) PROBLEIVI 

This problem is to find a directed graph G = (V, E) with minimum size 
edge set E such that the vertex set, V, is of size n and there is a path betwee 
any two vertices that is of length k or less (k < n - 11. Let e(q k) be the 
size of the minimum edge set. 

DEFINITION 1. Given n, k (k < n - I), a flower graph G,,l, is constructe 
as follows: Let there be a loop having [k/2] + 1 vertices. Pick one of 
vertices and call it CENTER. As long as there are at least Ekj2J vertices 
that have not yet been picked, pick [k/2] of them and, together with CENTER, 
add edges to make a loop. If there are less than lk/2J vertices unpicked, add 
edges so as to make a loop using those vertices and CENTER. Finally, 
assign the same direction to all edges in a loop. 

An example for n = 5, k = 3 is given in Fig. 1. 

FIG. I. A Flower Graph for n = 5, k = 3 
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THEOREM 1. 

(i) e(n, k) < IZ + [(n - 1 - [k/21)/[k/211 for k < n - 1. 

(ii) e(n, 72 - 1) = ~1. 

Proof. We show (i) by counting the edges in a flower graph G,,I, and 
demonstrating that it satisfies the problem’s path requirements. 

There is one edge emanating from each vertex except for CENTER. 
CENTER emanates as many edges as there are loops. The expression [(n - 
1 - [k/21)/[k/2]1 + 1 is precisely the number of loops in the flower graph. 
Thus the expression on the right-hand side of(i) gives the number of edges in 
G ?z,k - We need but show that the flower graph satisfies the problem’s path 
requirements. 

Let x be in loop L, and y be in loop L, . If L, = L, then clearly the path 
x -+ y is of length < [k/2] < k. If L, f L, then the larger of these loops can 
have at most [k/21 + 1 vertices, the smaller can have at most [k/Z] + 1 
vertices. If L, is the larger, then x -+ CENTER is of length at most [k/2] and 
CENTER -+ y is of length at most [k/2]. If L, is the larger, then x + 
CENTER is of length at most [k/2] and CENTER + y is of length at most 
[k/21. In either case, the path x -+ CENTER -+ y is of length at most k. 

(ii) is demonstrated by constructing a single loop with all IZ vertices. 
There are n edges and the path x --+ y for x # y is of length at most n - 1. 
Clearly, such a graph is optimal. j 

THEOREM 2. e(n, k) > n - 1 + 2(n - 1)/k for k < n - 1 and hence 

e(n, k) > n - 1 + [2(n - l)fkl for k<n-I. 

ProoJ In a minimal graph G for the (n, k) problem, let m be the maximum 
length of a chain of nodes all of whom have outdegree = 1, and let C be an 
example of such a chain, let ROOT be the first node in C, let BASE be the 
node pointed to by the last node in C. (See Fig. 2). 

Let T be a spanning tree of G such that the root of T will be ROOT and 
the path, P(u) in T, from ROOT to any vertex u will be a minimal length path 
ROOT + 2, in G. For 2, not in C, P(v) will include the m nodes in C as well as 
BASE. 

All edges in G that are not in T will be either back edges or cross edges. 
Forward edges are not possible by definition of T. Define the level of vertex 
v to be the length of the path in Tfrom ROOT to v. The level of ROOT is zero, 
the level of BASE is m, and the level of any vertex must be no more than k 
since G satisfies the (n, k) condition. For any leaf, w, the length of the path 
from BASE to w is < k - m. 

Define vertex v to be a junction node if there are at least 2 tree edges emanat- 
ing from v. BASE is an example of a junction node. 
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FIGURE 2 

Define vertex v to be an emitter node if outdegree (v) 3 2 and v is not a 
junction node. 

If, for each leaf, w, we backtrack up the tree and consider the set S, of 
the first m + 1 nodes encountered (including w) then, by the maximality of m, 
there must be a node with outdegree at least 2 and so one of the following 
two conditions must hold: 

(1) SW contains a junction node 

or 
(2) ,TU contains an emitter node. 

If condition (1) is true we will say that w is a class 1 member, otherwise 
w is a class 2 member. Let the size of class 1 be L, , the size of class 2 be 
L, , then L = total number of leaves = & + L, . 

We shall count the number of nodes in the tree (a total of n) by back- 
tracking from the leaves and, to avoid duplication of nodes in the inventory, 
by halting the backtracking from a leaf when the nodes higher up the tree 
will be counted by some other path. 

The inventory count is as follows: 

ROOT -+ BASE, = m + 1 
Nodes in class 1 paths, at most half of which are needed to continue 
at or above their*juction node in order to count all nodes in their 
paths, < (k - m) L,/2 + mL,/2 
Nodes in class 2 paths, < (k - m) L, 
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From the above, we get: 

n < m + 1 + kL,/2 + (k - m) L, (1) 
The number of tree edges is n - 1, the number of edges from leaves is at 

least Ll + L, (each leaf must have outdegree at least one), and the number of 
other edges must be at least Lz . Taken all together, this yields: 

e 3 n - 1 + L, + 2L, (2) 

From (1) we get Ll > 2[n - m - 1 - (k - m) L,]/k which, when sub- 
stituted into (2), results in: 

e 3 n - 1 + 2(n - 1)/k + 2m(LL, - 1)/k 

If L, > 1 then e > n - 1 + 2(n - 1)/k; otherwise we have L, = 0 in 
which case e > n - 1 + 2(n - 1)/k - 2m/k. We shall show that, even in 
the case where L, = 0, e >, n - 1 + 2(n - 1)/k. 

If m < k/2 then e > n - 2 + 2(n - 1)/k whereas if m 3 k/2 then there are 
m + 1 nodes in the chain from ROOT to BASE and every other node will 
be in some path from BASE to some leaf, the length of this path being at 
most k - m. Thus n < m + 1 + (k - m)L = k + 1 + (k - m)(L - 1) < 
k + 1 + (L - l)k/2 where L is the total number of leaves. This implies that 
L 3 2(n - 1)/k - 1. There are n - 1 tree edges and each leaf has outdegree 
at least one (a non-tree edge). Thus e 3 n - 1 + L and so e 3 n - 2 + 
2(n - 1)/k. 

Thus, if we count only tree edges and allow for each leaf to have outdegree 
of precisely one, we get e 3 n - 2 + 2(n - 1)/k (which is exactly one less 
than the minimum shown for the case when L, > 1.) But we shall show that 
there must be at least one edge unaccounted for (other than tree edges and 
one edge per leaf). 

Since ROOT must be reachable, there must be an edge entering ROOT, say 
from vertex U. If we assume that the only non-tree edges are from leaves, 
then D is a leaf. 

If u has outdegree = 1 then there is a chain, u -+ ROOT + BASE, of 
length m + 1 each of whose nodes has outdegree = 1, contradicting the 
assumption that C was maximal. Therefore v has outdegree > 1 which means 
there is an extra, previously unaccounted for, non-tree edge. Therefore, 
e 3 n - 1 + 2(n - 1)/k, always. 1 

COROLLARY 3. TheJlower graph is optimalfor k even, and is asymptotically 
optimal when k (odd) is fixed and n tends to infinity. 

DEFINITION 2. A circular graph is a directed, graph that consists of 
6 line segments that are symmetrically bonded at three junction nodes. Each 
line segment has m internal nodes and all edges within a line segment are 
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directed as shown in Figure 3. The values of n, e and k are related via param- 
eter m: 

n=6m$3 
e=6m+6 
k=3m+l 

FIG. 3. A circular Graph 

COROLLARY 4. (i) When k is even, if a circular graph and a flower g-rap 
have the same values of n and k then they also have the same number of edges. 

(ii) Circzdar graphs are always optimal. 

III. THE (n,e> PROBLEM 

Given n and e (7~ < e), the problem is to find a directed graph with n 
nodes and at most e edges such that its diameter is minimum. iameter is 
defined as the number of edges in the longest path between any two nodes 
Let k(n, e) be the minimum diameter. 

DEFWTION 3. For n < e, a flower graph G,,, is constructed by taking 
one center and e - y1 + 1 loops and distributing the nodes to the loops as 
evenly as possible. Directions of all edges in one loop are the same. 

THEOREM 5. Let q be the quotient of (n - r)/(e - pz + 1) and r th.e 
remainder. Then for n < e, 

k(n, 4 < 3, if r=o 

< 29 + 1, y r=I 

e 29 + 2, tj- r&2 
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andfor n = e, 
k(n,n) =n-1. 

ProoJ Construct a flower graph G,,, . For n < e, if P = 0, each loop 
has exactly 4 nodes (other than the center). Thus the diameter is precisely 2q. 
Ifr = 1, one loop has q + 1 nodes while other loops have q nodes each. Thus, 
the diameter is 2q + 1. If Y > 2, at least two loops have 4 + 1 nodes each 
while the others have at most q + 1 nodes each. Thus the diameter is 2q + 2. 

For y2 = e, G,,, reduces to a single loop with diameter n - 1. Clearly, it is 
an optimal graph. 1 

THEOREM 6. For II < e, k(n, e) > 2q, ifr = 0 
>2q+ l,ifr>O. 

Proof. Let k = k(n, e). By Theorem 2, e > n - 1 + 2(n - 1)/k must 
hold. Solving this inequality for k results in the statemen of this theorem. 1 

COROLLARY 7. The power graph is optimal for r = 0 or 1. For r 2 2, it 
may difser from the optimal by at most one. 

COROLLARY 8. (i) When n and e are of the form n = 6m + 3, e = 6m + 6, 
the circuiar graph and thejower graph have the same diameter. 

(ii) CircuIar graphs are always optimal. 

It should be pointed out that Theorem 6 answers a question raised at the 
end of Chapter 13 in [l]. 

IV. THE(~, k) PROBLEM 

C+iven e, k (k < e), the problem is to find a directed graph with at most e 
edges whose diameter is not larger than k such that it has the maximum 
possible number of nodes. Let n(e, k) be the maximum number of nodes. 

DEFINITION 4. For k -=z e - 1, a flower graph G,,k is constructed as 
follows: 

(i) form a loop of [k/21 + 1 edges, 
(ii) form loops of lk/2] + 1 edges all having a node, CENTER, in 

common with the first loop, 
(iii) the remaining edges {if there are at least two of them) are used to 

form one final loop, again having CENTER in common, and 
(iv) assign the same directions to all edges in a loop. 
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THEOREM 9. FW k < e - 1, let q be the q~Qt~e~t of e - [k/21 - 1 
divided by [k/2] + 1, and r the remainder. Then 

n(e, k) 3 e - q, if r=o 
>,e-q-l, if r > 0. 

n(e, e - 1) = e 
n(e, e) = e + 1. 

Proof. For k < e - 1, construct a flower graph G,,,; . Then q is the 
number of loops of [k/2] + 1 edges each. If r = 0, the total number of 
loops is q + 1. Thus, the total number of nodes is e - (q + 2) + 1 = e - q. 
If r > 0, the total number of loops is q + 2. Thus, the total number of nodes 
ise-(q+2)+1=e-q-l. 

For k = e - 1, construct a single loop with e edges with the same direction 
on ah edges, Then it has e nodes and is clearly optimal. 

THEOREM 18. n(e, k) < [(ek + k + 2)/(k + 2)], for k < e - 1. 

Pvoo$ Solving the inequality e > n - 1 + 2(tz - 1)/k in Theorem 2 
for n, one obtains the desired inequality. 

COROLLARY 11. The flower graph is optimal for k even, and is asymptoti- 
cally optimal when k(odd) is$xed and n tends to infinity. 

ProoJ If k is even, then q = [(2e - k - 2)j(k + 2)J. 

Hf r = 0, 

2e-k-2 ek ?- 
9= 

k-l-2 
k-l-2 

and e-q= kj-2 . 

If I” > 0, 

e-q--l=e- L 
Ze-k-2, --I 

k+2 I 

= e-2e----- 
i- k+2 -I 

-1 

since (ek + k + 2)/(k + 2) is not an integer. The result follows from 
Theorem 10. Similar arguments can be applied to the case when k is o&L 
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COROLLARY 12. (i) when k is even, circular graphs andflower graphs that 
have the same number of edges and the same value of k also have the same 
number of nodes. 

(ii) circular graphs are always optimal. 
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