
STREAMLINING CONTEXT MODELS FOR DATA COMPRESSION

Debra A. Lelewer and Daniel S. Hirschberg

Department of Information and Computer Science

University of California, Irvine, CA 92717

Abstract

Context modeling has emerged as the most promising new approach to com-

pressing text. While context-modeling algorithms provide very good compression,

they su�er from the disadvantages of being slow and requiring large amounts of

main memory in which to execute. We describe a context-model-based algorithm

that runs signi�cantly faster, uses much less space, and provides compression ratios

close to those of earlier context modeling algorithms. We achieve these improvements

through the use of self-organizing lists.

Introduction

The most widely used data compression algorithms, including the Unix utility

compress, are based on the work of Ziv and Lempel [ZL78]. These are dynamic

algorithms that build a dictionary representative of the input text and code dic-

tionary entries using �xed-length codewords. Compress typically reduces a �le to

approximately 50% of its original size and is extremely fast, but has a large memory

requirement (450 Kbytes). Algorithm FG, an updated version of the Ziv-Lempel

algorithm, requires less memory (186 Kbytes for encoding and 130 Kbytes for de-

coding) and achieves compression that is about 30% better than that provided by

compress [FG89].

Newer approaches to data compression tend to focus on �les of one partic-

ular type, and text �les are most commonly studied. The most promising new

methodology is one that predicts successive characters taking into account the con-

text provided by characters already seen. What is meant by predict here is that

previous characters are used in determining the number of bits used to encode the

current character. A method of this type is referred to as a context model and, if

the number of previous characters used to make a prediction is constant, an order-i

context model. When i = 0, no context is used and the text is coded using uncon-

ditioned character counts (i.e., one character at a time). When i = 1, the previous

character is used in encoding the current character; when i = 2, the previous two

characters are used, and so on. A context model provides a frequency distribution

for each context (each character in the order-1 case and each pair of characters

1



in the order-2 case). Arithmetic coding is used to map frequencies into code bits.

Context modeling is generally used adaptively so that it compresses the data in a

single pass. The state-of-the-art in context modeling is represented by Algorithm

PPMC [BCW90].

A disadvantage of context modeling is that the memory requirement of the

model frequently exceeds the size of the �le being compressed. Bell et al. report av-

erage compression ratios (compressed �le size divided by original �le size expressed as

a percentage) for PPMC of approximately 30% [BCW90]. PPMC uses 500 Kbytes

of memory to represent a blended order-3 context model. While this quantity of

memory may be available on research or production machines, it is not generally

available. In particular, microcomputer implementations must greatly reduce mem-

ory utilization. Another disadvantage of context models is that they tend to be much

slower than the Lempel-Ziv style of compression. Bell et al. report encoding and

decoding speeds of 2000 characters per second (cps) for the order-3 context model

as compared with 12000 cps for compress and 6000 cps for algorithm FG.

The algorithm we describe improves the practicality of the context modeling

concept. Our modi�cations of the basic �nite-context model improve its speed and

decrease its memory requirements. Empirical experiments show our algorithm to

be competitive with algorithms FG and PPMC. The advantage of algorithm FG

is its speed; its compression e�ectiveness is less than that of algorithm PPMC.

To achieve the superior compression performance of algorithm PPMC, speed is

sacri�ced and more than twice as much memory is required. Our method is closer in

speed to algorithm FG, and with a space requirement of approximately 100 Kbytes

(far less than both FG and PPMC) we achieve much of the improved compression

evidenced by algorithm PPMC over algorithm FG. We present our algorithm from

the point of view of the encoder, describing the way in which the encoder maintains

a context model and uses corresponding frequency values to code characters. As

in any adaptive data compression algorithm, the decoder must maintain the same

model and use the frequency information in a compatible way so as to correctly

interpret data received from the encoder.

Finite-Context Modeling

In this section we present an introduction to context modeling. We include

only that information needed to understand our approach to the use of context. A

more comprehensive discussion can be found in the book by Bell et al. [BCW90].

In the previous section, we de�ned an order-i context model to be one in which

2



the previous i characters are used to code the current character. Such a model

should more accurately be referred to as a pure order-i model to distinguish it from

the more common blended model. A blended model of order i is one in which the

prediction of the order-i model is combined with predictions by models of lower

orders (e.g., i� 1; i � 2; . . . ; 0) to form a �nal prediction. Blending is desirable and

essentially unavoidable in an adaptive setting where the model is built from scratch

as encoding proceeds. When the �rst character of a �le is read, the model has no

history on which to base predictions. Larger contexts become more meaningful as

compression proceeds.

In a typical blended order-i model, the number of bits used to code character

c will be dictated by the preceding i characters if c has occurred in this particular

context before. Otherwise, models of lower order are consulted, typically beginning

with order i�1, until one of them supplies a prediction. For each order-j model that

fails to predict the current character, the encoder must emit an escape code, a signal

to the decoder that a lower-order model is being consulted. The order-0 model

may be initialized to provide a prediction for each character so that the process

of consulting lower-order models terminates. Alternatively, the order-0 model may

be used only for characters that have appeared before but are now appearing in a

novel context. In this case, a model of order �1 (in which each character is equally

likely) is used for predicting characters when they occur for the �rst time. When

a character occurs in a novel context, this new information is added to the model

being constructed.

We call an order-i context model full if for all j � i, every j-gram (sequence

of j contiguous characters) that occurs in the �le being encoded forms an order-

j context in the model being constructed. A full model of even order 3 is rare

since the space required to store context information for every 3-gram, 2-gram, and

single character in the �le is prohibitive. The PPMC algorithm of Bell et al. uses

a full context model of order 3 stored in a tree data structure that is allowed to

grow to 500 Kbytes [BCW90]. The model is rebuilt from scratch when it reaches

this limit. We consider strategies that use less space, execute faster and achieve

very close to the same compression performance. There are two earlier approaches

to the problem of context modeling with modest memory requirements. Context-

model-based algorithms by Abrahamson ([A89]) and Langdon and Rissanen ([LR83])

are described in [LH90]. These algorithms use order-1 context only and provide

compression comparable to that of compress. Neither of these methods compresses

3



as e�ectively as algorithms FG and PPMC; nor do they generalize naturally to

higher-order contexts.

In order to de�ne a context-model-based algorithm, we need to determine

maximum order and the type of blending strategy (if any) to be used. In addition,

we must de�ne data structures that represent the context model and the associated

frequency information. Our approach di�ers from that of PPMC in both the method

of blending and the choice of data structures.

Fast Order-3 Context Models in Limited Memory

In this section we describe an approach to context modeling in which the

maximum order of the model, the amount of internal memory used, and the exact

method of blending are parameters. In essence, the approach de�nes a family of

algorithms where each algorithm in the family corresponds to a di�erent set of

parameter values. We have experimented extensively with models of maximum

orders 2 and 3. In an earlier paper we describe experiments with order-2 modeling

that include an order-2-and-0 model that achieves approximately 40% compression

using only 48 Kbytes of internal storage [LH90]. In this paper we focus on the

blended order-3 context model that gives the best overall results. These results

include achieving 90% of the compression performance of algorithm PPMC using

only 20% as much space.

The best algorithm in our family is based on an order-3-1-and-0 context model.

That is, we construct a prediction for the character being encoded by blending

predictions based on the previous three characters, the previous character, and

unconditioned character counts. The order-3 and order-1 context information is

maintained in the form of self-organizing lists and associated frequency values. The

space requirements of the algorithm are determined by two parameters, s1 and s3,

the sizes of the self-organizing lists for contexts of order 1 and order 3 respectively.

For each trigram (i.e., context of order 3) appearing in the �le we maintain a list of

s3 successor characters and a corresponding frequency distribution. For each single

character (context of order 1) we maintain a list of s1 successors and corresponding

frequency information. The order-0 data consists of a frequency for each character.

Each character to be encoded may be said to occur in some three-character

context; we arbitrarily select three predecessors for the �rst character of a �le. We

encode character z occurring in context wxy by event k if z occurs in position k of

the list for context wxy. If z does not appear on wxy's list, we code an escape and

4



consult the list for the order-1 context y; if z occurs in position j of list y we code

j; otherwise we emit another escape code. When neither context wxy nor context y

predicts z we follow the two escape codes with an order-0 prediction (i.e., we code

the character itself). If the list for context wxy (likewise context y) is empty, the

corresponding escape code is not necessary. The decoder maintains the same model

of the data as the encoder and knows that since context wxy has never occurred

before it cannot supply a prediction.

Our prediction strategy is similar to that of algorithm PPMC except that

PPMC uses orders 3, 2, 1, 0, and �1 while we use only models of orders 3, 1,

and 0. Eliminating the models of order 2 and order �1 contributes to both the

decreased memory requirement and increased speed of our method. Maintaining

only s3 successors for each order-3 context (respectively s1 successors per order-

1 context) also contributes to time and space savings. Limiting the number of

predictions per context limits the space needed to store the model and the time

needed to update it.

The update strategy we use is one that Bell et al. call update exclusion

[BCW90]. That is, we update only those lists and frequency distributions that

contribute to the prediction of the current character, z. If list wxy exists, we update

it by either adding z (if it has never appeared in context wxy before) or transposing

z with its predecessor on the list. If no wxy list exists then one will be created.

If context wxy does not predict z and context y exists, then the y list is updated

using the transpose heuristic. If the wxy context predicts z, context y is not used;

if the y list exists it is not consulted and if it does not exist it will not be created.

We also update each frequency distribution used in the prediction. When list wxy

exists, the wxy frequency distribution is updated after it is used to encode either a

list position or an escape. When context wxy does not predict and list y exists, the

y frequency distribution is updated. The order-0 frequency distribution is updated

whenever the character itself is coded.

An obvious disadvantage to �xing the sizes of the order-3 and order-1 context

lists is that the lists are likely to be too short for some contexts and too long for

others. When an order-3 list (say, list wxy) has s3 items and a new character

z occurs in context wxy, we delete the bottom item (call it t) from the list and

add z. Context wxy no longer predicts t. This does not a�ect the correctness of

our algorithm; when t occurs again in context wxy it will be predicted by either

context y or by the order-0 model. The fact that encoder and decoder maintain

5



identical models ensures correctness. In addition, the rationale behind the use of

self-organizing lists is that we expect to have the s3 most common successors on

the list at any point in time. As characteristics of the �le change, successors that

become common replace those that fall into disuse.

When an order-3 list contains fewer than s3 items we are subject to the criticism

that we are not putting our memory resources where we need them. In fact, �xing

the number of successors suggests the use of an array data structure rather than a

linked structure; thus we avoid the space required for links and the time involved

in creating and updating linked nodes. The links in a linked structure may also be

viewed as consuming memory without directly representing information needed for

prediction. Another advantage of the �xed-size structure is that it is not necessary

to monitor its growth. In algorithm PPMC, the size of the trie is monitored until it

reaches a limit at which time it is discarded and rebuilt. When rebuilding takes place,

all of the information constructed from the pre�x of the �le is lost. By contrast, our

model loses only the ability to predict certain successors in certain contexts, and

only when they have ceased to occur frequently.

At this point it may not be clear that the memory requirements of our algorithm

are modest. Even for small values of s3 and s1, storing a successor list for every

order-3 context occurring in the �le being compressed is very expensive. In order to

conserve memory and have ready access to the lists, we store them in hash tables.

The self-organizing lists for order-3 contexts are stored in a hash table to which every

trigram can be mapped. The order-1 lists are stored in a table indexed by single

characters. Since there are only n order-1 lists where n is the size of the character

set, hashing is not needed here.

An obvious disadvantage to the use of hashing is the possibility of collision. If

two or more contexts (say wxy and abc) hash to the same table position, the lists

for these contexts are coalesced into a single self-organizing list used to represent

both contexts. We can view this as wxy's successors vying with those of abc for

position on the list. Intuitively, it would seem that our predictions are more accurate

when wxy and abc are represented by separate lists. However, intuition is frequently

unreliable when applied to the problem of compressing text. In fact, coalescing lists

may actually improve compression performance. Hash con
icts have no impact on

the correctness of the approach. We mitigate the negative e�ects of hashing in two

ways. First, we select the hash function so as to minimize the occurrence of collisions.

Second, we use linear probing to resolve collisions. We detect collisions by storing

6



with the self-organizing list an indication of the context to which it corresponds.

We have found that a short linear probe is su�cient to provide good performance

without a large cost in terms of speed.

Another way in which we conserve space is by limiting the number of frequency

distributions more severely than the number of self-organizing lists. Our order-

3 model is, then, essentially a two-level hashing scheme. A context hashes �rst

to a position in the table of self-organizing lists and then to a smaller table of

frequency distributions. Thus, even when contexts are not coalesced it is likely that

frequency distributions are. The disadvantages of coalescing frequency distributions

are essentially the same as those of coalescing lists. In addition to the parameters s3

and s1 that represent the lengths of the self-organizing lists for order-3 and order-1

contexts, respectively, we have additional parameters: h3, the size of the order-3 hash

table for lists (i.e., number of order-3 lists stored); f3, the size of the order-3 hash

table that stores frequency distributions (i.e., the number of order-3 distributions);

and f1, the number of order-1 frequency distributions. The space requirements,

speed, and compression performance of our method depend on the values of these

parameters. The frequency information is stored in three tables, one for order 3, one

for order 1 and one for order 0. For order 3 we have f3 sets of frequency information,

each consisting of s3 frequency values, cumulative frequency values, and map values

(assigning list positions to frequency values). The order-1 frequency data is stored

in the same way. For order 0 we need only n frequency, cumulative frequency, and

map values for the n symbols of our alphabet (n = 256 for 8-bit bytes).

Experimental Results

We compare the performance of our order-3-1-and-0 model to that of compress,

algorithm FG and algorithm PPMC on a corpus of 14 �les used by Bell et al. to

measure the performance of a collection of data compression methods [BCW90].

The �les represent a variety of sizes and types; obj1 and obj2 are executable �les for

two di�erent machines, geo is a �le of 32-bit numbers representing seismic data, pic

is a bit map of a black and white facsimile picture. The remaining �les are ASCII

�les of various types; progc is the source of compress, progp and progl are source �les

of LISP and Pascal programs, respectively.

In Table 1 we display compression performance achieved by algorithms FG,

PPMC, and our order-3-1-and-0 model in terms of the number of bits per character

in the compressed �le. Original �le sizes (in bytes) are given in column 2. The order-

3-1-and-0 model used here has parameter settings: s3 = 3, h3 = 12000, f3 = 900,

7



s1 = 25, f1 = 128; and uses approximately 100 Kbytes of internal memory. The

compression data for algorithms compress, FG and PPMC are taken from [BCW90].

Original Order Unix

File Size 3-1-0 Compress LZFG PPMC

bib 111261 2:57 3:89 2:90 2:11

book1 768771 3:03 4:06 3:62 2:48

book2 610856 2:69 4:25 3:05 2:26

geo 102400 5:14 6:10 5:70 4:78

news 377109 3:22 4:90 3:44 2:65

obj1 21504 4:10 6:15 4:03 3:76

obj2 246814 3:33 5:19 2:96 2:69

paper1 53161 2:87 4:43 3:03 2:48

paper2 82199 2:85 3:98 3:16 2:45

pic 513216 0:90 0:99 0:87 1:09

progc 39611 2:87 4:41 2:89 2:49

progl 71646 2:06 3:57 1:97 1:90

progp 49379 2:12 3:92 1:90 1:84

trans 93965 2:02 3:94 1:76 1:77

Averages 2:84 4:26 2:95 2:48

Memory (Kbytes) 100 450 186 500

Table 1 Performance on selected �les.

The parameter settings used to produce the results in Table 1 demonstrated

the best overall compression given a limit on encode/decode memory of 100 Kbytes.

Changing the parameter settings may provide improved compression on selected

�les. As an example, reducing the size of an order-3 list to 2 produced better

results for �les geo (5.05 bpc), obj1 (4.08 bpc), and pic (.88 bpc). We have done

some preliminary investigation into models of maximum order 4; an order-4-1-and-0

model provides improved compression for �les progl (2.05 bpc), progp (2.11 bpc),

and trans (1.93 bpc) using only 99 Kbytes of memory. An order-2-1-and-0 model

8



with a 99 Kbyte requirement provides much better performance on �le obj2 than

any of our other limited-memory methods (3.13 bpc).

Future Research

Our algorithm provides an order-3 model that makes very e�cient use of inter-

nal storage. The parameters of our model can be set at run time, so that it provides

an unlimited variety of algorithms. We are attempting to develop guidelines for

setting parameters depending on size and type of the �le being compressed and

on amount of internal memory available. We have not optimized our programs for

speed. Preliminary experiments indicate that they are only slightly slower than the

speeds reported by Bell et al. for algorithm FG [BCW90]. Our programs need to be

tuned in order for speed comparisons to be really meaningful. We will also compare

our results with state-of-the-art microcomputer compression programs. Our algo-

rithms represent a major improvement over compress; it seems likely that our work

represents an even more valuable improvement over limited-memory microcomputer

versions of Lempel-Ziv coding. We are continuing to experiment with order-4 context

modeling; our early experiments have produced limited success. None of our order-

4 algorithms provide average compression that rivals that of the order-3-1-and-0

method, given approximately the same restrictions on the use of internal memory.

It is possible that with a di�erent selection of parameter values an order-4 model

may provide improved performance.

Summary

We describe an order-3-1-and-0 �nite context model that provides compression

performance similar to that provided by algorithm PPMC using only 20% as much

internal memory during encoding/decoding. Our method also runs faster than algo-

rithm PPMC. We are able to achieve average compression factors of approximately

2.3 bits per character for source code �les and approximately 2.8 bits per character

for a large variety of �le types using only 100 Kbytes of internal memory. In addition,

we believe that our model is conceptually simple and easy to implement.

9



References

[A89] Abrahamson, D. M. An adaptive dependency source model for data

compression. Commun. ACM 32, 1 (Jan., 1989), 77{83.

[BCW90] Bell, T., Cleary, J. G., and Witten, I. H. Text Compression, Pren-

tice-Hall, Englewood Cli�s, N.J., 1990.

[FG89] Fiala, E. R. and Greene, D. H. Data compression with �nite windows.

Commun. ACM 32, 4 (Apr., 1989), 490{505.

[LR83] Langdon, G. G. and Rissanen, J. J. A double-adaptive �le compression

algorithm. IEEE Trans. Comm. 31, 11 (Nov., 1983), 1253{1255.

[LH90] Lelewer, D. A. and Hirschberg, D. S. An order-2 context model

for data compression with reduced time and space requirements. Tech.

Rep. 90-33. Dept. of Information and Computer Science, University of

California, Irvine (Sept., 1990).

[ZL78] Ziv, J. and Lempel, A. Compression of individual sequences via variable-

rate coding. IEEE Trans. Inf. Theory 24, 5 (Sept., 1978), 530{536.

10


