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Abstract

Adaptive context modeling has emerged as one of the most promising new

approaches to compressing text. A �nite-context model is a probabilistic model

that uses the context in which input symbols occur (generally a few preceding

characters) to determine the number of bits used to code these symbols. We

provide an introduction to context modeling and recent research results that

incorporate the concept of context modeling into practical data compression

algorithms.

1. Introduction

One of the more important developments in the study of data compres-

sion is the modern paradigm �rst presented by Rissanen and Langdon [RL81].

This paradigm divides the process of compression into two separate components:

modeling and coding. A model is a representation of the source that generates

the data being compressed. Modeling is the process of constructing this repre-

sentation. Coding entails mapping the modeler's representation of the source

into a compressed representation. The coding component takes information
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supplied by the modeler and translates this information into a sequence of bits.

Recognizing the dual nature of compression allows us to focus our attention on

just one of the two processes.

The problem of coding input symbols provided by a statistical modeler

has been well studied and is essentially solved. Arithmetic coding provides

optimal compression with respect to the model used to generate the statistics.

That is, given a model that provides information to the coder, arithmetic coding

produces a minimal-length compressed representation. Witten et al. provide a

description and an implementation of arithmetic coding [WNC87]. The well-

known algorithm of Hu�man is another statistical coder [H52]. Hu�man coding

is inferior to arithmetic coding in two important respects. First, Hu�man coding

is constrained to represent every event (e.g., character) using an integral number

of bits. While information theory tells us that an event with probability
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bits, Hu�man coding will assign 1 bit to represent this event. The accuracy

of arithmetic coding is limited only by the precision of the machine on which

it is implemented. The second advantage of arithmetic coding is that it can

represent changing models more e�ectively. Updating a Hu�man tree is much

more time consuming. Researchers continue to re�ne arithmetic coding for

purposes of e�ciency.

Given the existence of an optimal coding method, modeling becomes

the key to e�ective data compression. The selection of a modeling paradigm

and its implementation determine the resource requirements and compression

performance of the system. Context modeling is a very promising new approach

to statistical modeling for text compression. Context modeling is a special

case of �nite-state modeling, or Markov modeling, and in fact the term Markov

modeling is frequently used loosely to refer to �nite-context modeling. In

this section we describe the strategy of context modeling and the parameters

involved in implementing context models.

y lg denotes the base 2 logarithm
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1.1. Basics of Context Modeling

A �nite-context model uses the context provided by characters already

seen to determine the encoding of the current character. The idea of a context

consisting of a few previous characters is very reasonable when the data being

compressed is natural language. We all know that the character following q in an

English text is all but guaranteed to be u and that given the context now is the

time for all good men to come to the aid of, the phrase their country is bound

to follow. One would expect that using knowledge of this type would result

in more accurate modeling of the information source. Although the technique

of context modeling was developed and is clearly appropriate for compressing

natural language, context models provide very good compression over a wide

range of �le types.

We say that a context model predicts successive characters taking into

account the context provided by characters already seen. What is meant by

predict here is that the frequency values used in encoding the current character

are determined by its context. The frequency distribution used to encode

a character determines the number of bits it contributes to the compressed

representation. When character x occurs in context c and the model for context

c does not include a frequency for x we say that context c fails to predict x.

A context model may use a �xed number of previous characters in its

predictions or may be a blended model, incorporating predictions based on

contexts of several lengths. A model that always uses i previous characters

to predict the current character is a pure order-i context model. When i = 0,

no context is used and the text is simply coded one character at a time. When

i = 1, the previous character is used in encoding the current character; when

i = 2, the previous two characters are used, and so on. A blended model may

use the previous three characters, the previous two characters when the three-

character context fails to predict, and one predecessor if both the order-3 and

order-2 contexts fail. A blended model is composed of two or more submodels.

An order-i context model consists of a frequency distribution for each i-character
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sequence occurring in the input stream. In the order-1 case, this means that

the frequency distribution for context q will give a very high value to u and very

little weight to any other letter, while the distribution for context t will have

high frequencies for a, e , i, o, u, and h among others and very little weight for

letters like q, n and g.

A blended model is fully blended if it contains submodels for the

maximum-length context and all lower-order contexts. That is, a fully-blended

order-3 context model bases its predictions on models of orders 3, 2, 1, 0, and

�1 (the model of order �1 consists of a frequency distribution that weights all

characters equally). A partially-blended model uses some, but not all, of the

lower-order contexts.

Context modeling may also be either static or dynamic. A model is static

if the information of which it consists remains unchanged throughout the encod-

ing process. A dynamic, or adaptive, model modi�es its representation of the

input as encoding proceeds and it gathers information about the characteristics

of the source. Most static data compression models have adaptive equivalents

and the adaptive counterparts generally provide more e�ective compression.

In fact, Bell et al. prove that over a large range of circumstances there is an

adaptive model that will be only slightly worse than any static model, while a

static model can be arbitrarily worse than an adaptive counterpart [BCW90].

We will con�ne our discussion to adaptive context models.

A context model is generally combined with arithmetic coding to form

a data compression system. The model provides a frequency distribution for

each context (each character in the order-1 case and each pair of characters in

the order-2 case). Each frequency distribution forms the basis of an arithmetic

code and these are used to map events into code bits. Hu�man coding is not

appropriate for use with adaptive context models for the reasons given above.
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1.2. Methods of Blending

Blending is desirable and essentially unavoidable in an adaptive setting

where the model is built from scratch as encoding proceeds. When the �rst

character of a �le is read, the model has no history on which to base predictions.

Larger contexts become more meaningful as compression proceeds. The general

mechanism of blending, weighted blending, assigns a probability to a character

by weighting probabilities (or, more accurately, frequencies) provided by the

various submodels and computing the weighted sum of these probabilities.

This method of blending is too slow to be practical and has the additional

disadvantage that there is no theoretical basis for assigning weights to the

models of various orders. In a simpler and more practical blended order-i

model, the number of bits used to code character c is dictated by the preceding

i characters if c has occurred in this particular context before. In this case, only

the order-i frequency distribution is used. Otherwise, models of lower orders are

consulted until one of them supplies a prediction. When the context of order i

fails to predict the current character, the encoder emits an escape code, a signal

to the decoder that the model of lower order is being consulted. Some lowest-

order model must be guaranteed to supply a prediction for every character in

the input alphabet.

The frequencies used by the arithmetic coder may be computed in a

number of ways. One of the more straightforward methods is to assign to

character x in context c the frequency f where f is the number of times that

context c has been used to predict character x. Alternatively, f may represent

the number of times that x has occurred in context c. An implementation may

also require x to occur in context c some minimal number of times before it

allocates frequency to the event.

1.3. Escape Strategy

In order for the encoder to transmit the escape code, each frequency

distribution in the blended model must have some frequency allocated to escape.
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A simple strategy is to treat the escape event as if it were an additional symbol

in the input alphabet. Like any other character, the frequency of the escape

event is the number of times it occurs. Other strategies involve relating the

frequency of the escape code to the total frequency of the context and the

number of di�erent characters occurring in the context. On one hand, as the

number of di�erent characters increases, the probability of prediction increases

and the use of the escape code becomes less likely. On the other hand, if a

context has occurred frequently and predicted the same character (or small

number of characters) every time, the appearance of a new character (and the

need to escape) would seem unlikely. There is no theoretical basis for selecting

one of these escape strategies over another. Fortunately, empirical experiments

indicate that compression performance is largely insensitive to the selection of

escape strategy.

1.4. Exclusion

The blending strategy described in Section 1.3 has the e�ect of exclud-

ing lower-order predictions when a character occurs in a higher-order model.

However, it does not exclude as much lower-order information as it might. For

example, when character x occurs in context abc for the �rst time the order-2

context bc is consulted. If character y has occurred in context abc it can be

excluded from the order-2 prediction. That is, the fact that we escape from

the order-3 context abc informs the decoder that the character being encoded

is not y. Thus the bc model need not assign any frequency to y in making this

prediction. By excluding y from the order-2 prediction x may be predicted more

accurately. Excluding characters predicted by higher-order models can double

execution time. The gain in compression performance is on the order of 5%,

which hardly justi�es the increased execution time [BCW90]. Another type of

exclusion that is much simpler and has the e�ect of decreasing execution time

is update exclusion. Update exclusion means updating only those models that

contribute to the current prediction. Thus if, in the above example, context bc
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predicts x, only the order-3 model for abc and the order-2 model for bc will be

updated. The models of lower order remain unchanged.

1.5. Memory Limitations

We call an order-i context model complete if for every character x occur-

ring in context c, the model includes a frequency distribution for c that contains

a count for x. That is, the model retains all that it has learned. Complete

context models of even order 3 are rare since the space required to store all of

the context information gleaned from a large �le is prohibitive. There are two

obvious ways to impose a memory limit on a �nite context model. The �rst is

to monitor its size and freeze the model when the size reaches some maximum.

When the model is frozen, it can no longer represent characters occurring in

novel contexts, but we can continue to update the frequency values already

stored in the model. The second approach is to rebuild the model rather than

freeze it. The model can be rebuilt from scratch or from a bu�er representing

recent history. The use of the bu�er may lessen the degradation in compression

performance due to rebuilding. On the other hand, the memory set aside for

the bu�er causes rebuilding to occur earlier. A third approach, which is not

strictly a solution to the problem of limited memory, is to monitor compres-

sion performance as well as the size of the data structure. Rebuilding when

compression begins to degrade may be more opportune than waiting until it

becomes necessary. We will say more about the data structures used to repre-

sent context models in later sections. The representation of the model clearly

impacts the amount of information it can contain and the ease with which it

can be consulted and updated.

1.6. Measuring Compression Performance

Compression performance is generally presented in one of two forms:

compression ratio and number of bits per character in the compressed represen-

tation. Compression ratio is the ratio (size of compressed representation)/(size

of original input) and may be expressed as a percentage of the original input
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remaining after compression. Each of these de�nitions has the virtue that it

makes no assumptions (e.g., ergodicity) about the input stream, the model, or

the coding component of the algorithm. Reporting compression in terms of

number of bits per character also factors out the representation of the symbols

in the original input.

The performance of a data compression technique clearly depends on

the type of data to which it is applied, and further, on the characteristics of a

particular data �le. In order to measure the e�ectiveness of a data compression

system, it should be applied to a large corpus of �les representing a variety of

types and sizes. A reliable comparison of techniques can be made only if they

are applied to the same data.

2. Early Context-Modeling Algorithms

A variety of approaches to the use of context modeling have been de-

veloped. The algorithms di�er in the selection of the parameters described in

Section 1 and in terms of the data structures used to represent the models.

We describe the most successful of the early context modeling algorithms in

Sections 2.1 through 2.6. The compression performance, memory requirements,

and execution speeds of the methods are compared in Section 2.7.

2.1. Algorithm LOEMA

The earliest use of context modeling for text compression is the Local

Order Estimating Markov Analysis method developed by Roberts in his dis-

sertation [R82]. Algorithm LOEMA is fully-blended and uses weights on the

models to form a single prediction for each character in the text. The weights

represent con�dence values placed on each prediction. The data structure used

to represent the model is a backward tree stored in a hash table. Roberts

investigates methods of growing and storing the models so as to conserve mem-

ory. As discussed in Section 1, weighted blending is ine�cient and algorithms
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that employ the escape strategy of blending provide a much more practical

alternative to LOEMA.

2.2. Algorithm DAFC

Langdon and Rissanen's Double-Adaptive File Compression algorithm is

one of the �rst methods that employs blending in an adaptive data compression

scheme [LR83]. DAFC is a partially-blended model consisting of z order-1

contexts and an order-0 context (z is a parameter associated with the algorithm

and determines its memory requirements). When encoding begins, the order-0

model is used since no characters have yet occurred in any order-1 context. In

a complete order-1 model, when a character occurs for the �rst time it becomes

an order-1 context. In algorithm DAFC, only z contexts will be constructed:

corresponding to the �rst z characters that occur at least N times in the text

being encoded (N is another parameter of the algorithm). The suggested values

z = 31 and N = 50 provide approximately 50 percent compression with a very

modest space requirement and very good speed [BCW90].

DAFC employs neither explicit blending nor exclusion. Explicit blending

is not required because once a model is activated it can predict any character in

the input. That is, every model contains a frequency value for every character

in the input alphabet. If character x occurs in context c and context c has

occurred N times then x is predicted by c. Otherwise x is predicted by the

order-0 model.

DAFC also employs run-length encoding when it encounters a sequence of

three or more repetitions of the same character. This is equivalent to employing

an order-2 model for this special case. Coding is performed by decomposition

using the simple binary arithmetic code [LR82].

2.3. The PPM Algorithms

The PPM, or Prediction by Partial Match, algorithms are variable-order

adaptive methods that implement the escape mechanism for blending. A PPM

algorithm stores its context models in a single forward tree. The maximum
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number of characters of context (the order of the model) is a parameter of the

PPM paradigm. The optimal order varies with �le type and size. For text �les,

three or four appears to be the best choice. PPM algorithms are fully blended,

so that an order-3 model uses submodels of order 3, 2, 1, 0, and �1. Members of

the PPM family di�er in terms of exclusion strategy and memory management.

PPMC, the best of the PPM family, employs only update exclusion and imposes

a limit on model size. Other PPM algorithms use full exclusion and allow the

data structure to grow without bound.

The implementation of PPMC that proves most e�ective is an order-3

model that permits the tree to grow to a size of 500 Kbytes. The model is

rebuilt using the previous 2048 characters when it reaches this limit.

2.4. Algorithm WORD

WORD is an algorithm that employs context models based on words

and non-words, where a word is a sequence of alphabetic characters and a non-

word a sequence of non-alphabetic characters [Mo89]. Each of the word and

non-word submodels is a partially-blended model of orders 1 and 0. Words are

predicted by preceding words if possible, and if not they are predicted without

context. Similarly, non-words are predicted in the context of non-words. A

model of order �1 is inappropriate for words that have not been seen before

since we cannot allocate frequency to all possible words. Instead, when a word

(respectively, non-word) occurs for the �rst time, its length is encoded using

an order-0 model for lengths and then its letters (non-letters) are coded using

a fully-blended model of order 1. WORD employs 12 submodels in total. For

each mode (word and non-word) there are: order-1 submodels for words and

letters; order-0 submodels for words, letters, and lengths; and a model of order

�1 for letters. The escape mechanism is used for blending. Update exclusion is

performed while prediction exclusion is rejected for reasons of e�ciency. Hash

tables are used to store words and non-words, and the arithmetic codes are

represented by tree structures.

10



Mo�at also experimented with including word (and non-word) models

of order 2 and found that this did not provide signi�cant improvement over

the order 1 model described above. WORD provides good compression and is

reasonably fast; its speed derives from the fact that the arithmetic encoder is

only invoked about 20% as often as in a character-based compression system

(the average length of an English word being about �ve characters).

2.5. Algorithm DHPC

Williams's Dynamic-History Predictive Compression technique is similar

to the PPM algorithms. The two major di�erences explored by Williams are

the use of a backward tree and the use of thresholds[W88]. Whereas PPM

extends its tree every time it is presented with new context information, DHPC

grows a branch only if the occurrence count of the parent node is su�ciently

high. In addition, DHPC avoids rebuilding its tree by setting a limit on its size

and applying no changes to the tree once the maximum size has been reached.

DHPC is also similar to algorithm DAFC in that both use thresholding to limit

the size of the data structure representing the context information. However,

the threshold in DAFC requires that the child node occur su�ciently often to

justify its inclusion as a submodel while DHPC requires the parent node to

have su�cient frequency before it spawns any children. DHPC provides better

compression than DAFC due to its use of higher-order context information.

DHPC is faster than the PPM algorithms but yields poorer compression.

2.6. Algorithm ADSM

Abrahamson's Adaptive Dependency Source Model is a pure order-1

context model with modest memory requirements. Abrahamson describes his

model as follows:

\If, for example, in a given text, the probability that the character h follows

the character t is higher than that for any other character following a t and

the probabilityof an e following a v is higher than that for any other character

following a v, then the same symbol should be used to encode an h following

a t as an e following a v. It should be noted that this scheme will also increase

the probability of occurrence of the encoded symbol. . . . the source message
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abracadabra can be represented by the sequence of symbols abracadaaaa.

Notice how a b following an a and an r following a b (and also an a following

an r) have all been converted into an a, the most frequently occurring source

character [A89, p 78]."

In simpler terms, Abrahamson's model is an order-1 context model that

employs a single frequency distribution and encodes symbol y following symbol

x as symbol k, where k is the position of y on x's list of successors and where

successor lists are maintained in frequency count order. Thus, in the example

above we think of bra as being encoded by 111 rather than aaa. The other

characters in the string abracadabra will also be encoded as list positions, but

these positions cannot be inferred from the example. While this characterization

may not be obvious from the description given above, it becomes clear from the

implementation details given in Abrahamson's article [A89].

Thus, Abrahamson is modifying the basic order-1 model by:

(1) employing a single frequency distribution rather than a distribution for

each 1-character context and

(2) employing self-organizing lists to map characters to frequency values.

ADSM employs a pure order-1 context model. For any pair x; y of successive

characters, y is coded using the k

th

frequency value where y is the k

th

most

frequent successor of x. There is intuitive appeal in the use of the frequency

count list organizing strategy in ADSM since the coding technique employed

is based on frequency values. On the other hand, the frequency values used

for coding are aggregate values. The frequency used for encoding character y

in context x is not the frequency with which y has occurred after x, but the

number of times that position k has been used to encode an event.

2.7. Comparison of the Methods

Recently, progress has been made toward standardizing methods of

reporting compression performance. In the past, researchers reported perfor-

mance of their approaches using only a few private data �les. This provided no
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reliable basis for comparing algorithms. In addition, measures of compression

varied widely and were occasionally either ill-de�ned or multiply de�ned (i.e., a

single term was used to mean di�erent things by di�erent authors). Today the

majority of researchers have settled on the two measures de�ned in Section 1.6,

compression ratio and number of bits per character. In addition, a corpus of

�les of a variety of types and sizes is now available in the public domain to

facilitate legitimate comparisons. Descriptions of the �les in the corpus and

methods of accessing them are given in [BCW90]. The data reported here is

drawn from the books by Bell et al. and Williams[BCW90, W91a].

Algorithm PPMC represents the state of the art in context modeling.

PPMC provides very good compression (approximately 30 percent on average),

but has a large memory requirement (500 Kbytes) and executes slowly (en-

coding and decoding approximately 2000 cps on a 1MIP machine. Over the

compression corpus PPMC achieves average compression of 2.48 bits per char-

acter (bpc). DAFC and ADSM fare worst among the methods described here,

providing average compression of 4.02 bpc and 3.95 bpc, respectively. DAFC's

performance in terms of both compression and use of memory falls between that

of an order-0 and an order-1 method. ADSM also uses far less memory than a

complete order-1 model, and the information lost results in a loss of compression

performance. WORD provides compression close to that achieved by PPMC,

2.76 bits per character over the corpus. WORD is the fastest of the methods

and achieves the 2.76 bpc performance with approximately the same memory

resources as PPMC. DHPC is neither as fast nor as e�ective as WORD. The

average number of bits per character for the corpus when compressed by DHPC

is 2.98. Compression results are not available for LOEMA. Williams reports

only that LOEMA provides compression comparable to that of PPMC[W91a].

LOEMA is of little practical interest, however, because it executes very slowly.
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2.8. Other Competing Methods

At present, the most commonly-used data compression systems are not

context-modeling methods. The UNIX utility compress and other Ziv-Lempel

algorithms represent the current state of the art in practical data compression.

Ziv-Lempel algorithms employ dictionary models and �xed codes. The books by

Storer and Bell et al. provide complete descriptions of the Ziv-Lempel family

of algorithms[St88, BCW90]. We mention the Ziv-Lempel methods only as

competitors that must be reckoned with. Compress encodes and decodes using

450 Kbytes of internal memory and at a rate of approximately 15,000 cps

[BCW90]. Its speed is its primary virtue and its compression performance is

less than stellar. Over the corpus compress reduces �les to an average of 3.64

bpc. A more recent Ziv-Lempel technique, algorithm FG, provides superior

compression performance (2.95 bpc over the corpus) using less memory (186

Kbytes for encoding and 130 Kbytes for decoding), but executes only about

half as fast as compress (encoding 6,000 cps and decoding 11,000 cps)[FG89].

Research continues on the Ziv-Lempel technique. A recent article by Williams

proposes techniques for combining the compression performance of algorithm

FG with the throughput of compress[W91b].

3. Context Modeling in Limited Memory

While context-modeling algorithms provide very good compression, they

su�er from the disadvantages of being relatively slow and requiring large

amounts of main memory in which to execute. Algorithm PPMC achieves

an average compression ratio of approximately 30 percent. However, PPMC

uses 500 Kbytes to represent the model it employs. As memory becomes less

expensive and more accessible, machines are increasingly likely to have 500

Kbytes of internal memory available for the task of data compression. There

are applications, however, for which it is unreasonable to require this much

memory. Examples of these applications include mass-produced special-purpose

machines, modems, and software systems in which compressors/decompressors
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are embedded in larger application programs. Algorithm PPMC has the addi-

tional disadvantage of executing at only 2000 characters per second. In the next

two sections we describe e�orts to improve the practicality of the �nite-context

modeling concept by streamlining the representation of the model.

Algorithms DAFC and ADSM described in Section 2 employ simpli-

�ed order-1 context models that require less run-time memory than algorithm

PPMC and execute faster. These methods sacri�ce a great deal of compression

performance in achieving gains in memory requirement and execution speed. In

Section 4 we describe an order-2 context modeling algorithm that requires far

less memory and executes faster than ADSMwhile achieving better compression

performance. In Section 5 we extend our work on context modeling in limited

memory to context models of order 3. The algorithmwe describe achieves much

of the compression performance of PPMC using far less space and executing

much faster.

The improvements provided by the algorithms described in Sections 4

and 5 are achieved through the use of self-organizing lists and a restrained

approach to blending. Both ADSM and DAFC apply the strategy of limited

blending. ADSM uses self-organizing lists as well, applying the frequency count

list organizing strategy. Self-organizing lists have also been used as the basis

of non-context-based data compression systems. A move-to-front scheme was

independently invented by Ryabko, Horspool and Cormack, Bentley et al. and

Elias [BCW90]. Each of these authors evaluates several variations on the basic

idea. The paper by Bentley et al. provides a great deal of data structure detail

for maintaining a move-to-front list of words e�ciently[BSTW86]. Horspool

and Cormack investigated a variety of list organizing strategies for use in a

word-based model[HC87]. Finally, the common implementation of arithmetic

coding uses frequency count organization for faster access.
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4. Space-Limited Context Models of Order 2

The algorithm we describe in this section employs a blended order-2

context model. It can be implemented so as to provide compression performance

that is better than that provided by compress and much better than that

provided by algorithm ADSM, using far less space than either of these systems

(10 percent as much memory as compress). In Section 4.1 we describe the

method of blending we employ, and in Section 4.2 we provide more detail on our

use of self-organizing lists. In Section 4.3 we describe the frequency distributions

maintained by our algorithm, and Section 4.4 presents our escape strategy. We

discuss the memory requirement of our algorithm and its execution speed in

Section 4.5, and consider the use of dynamic memory to improve the memory

requirement. In Section 4.6 we show that hashing is a much more e�ective

means to this end. We present some experimental data on the performance

of our order-2-and-0 method in Section 4.6. A more detailed comparison with

competing algorithms is given in [L91], and a comparison with our order-3

algorithm appears in Section 5.

4.1. Blending Strategy

One of the ways in which we conserve on both memory and execution

time is by blending only models of orders 2 and 0, rather than orders 2, 1,

0, and �1. Thus we refer to our model as an order-2-and-0 context model.

We have experimented with order-2-and-1 and order-2-1-and-0 models. The

order-2-and-1 model did not provide satisfactory compression performance and

the order-2-1-and-0 model produces compression results that are very close to

those of our order-2-and-0 algorithm. The order-2-and-0 model allows faster

encoding and decoding since it consults at most two contexts per character.

We provide more details on the models of orders 2 and 0 and how they are

blended in Section 4.2.

16



4.2. Self-Organizing Lists

In our order-2-and-0 model, we maintain a self-organizing list of size s

for each two-character context (s is a parameter of the algorithm). We encode

z when it occurs in context xy by event k if z is in position k of list xy. When z

does not appear on list xy we encode z itself using the order-0 model. Encoding

entails mapping the event (k or z) to a frequency and employing an arithmetic

coder. To complete the description of the algorithm, we need to specify a list

organizing strategy and the method of maintaining frequencies. The frequency

count list organizing strategy is inappropriate because of the large number of

counts required. We employ the transpose strategy because it provides faster

update than move-to-front.

When character z occurs in context xy and z appears on the context list

for xy, the list is updated using the transpose strategy. If z does not appear

on the xy list, it is added. If the size of list xy is less than s (size < s), the

item currently in position size moves into position size + 1 and z is stored in

position size. If the list is full when z is to be added, z will replace the last

item. An obvious disadvantage to �xing the size of the order-2 context lists is

that the lists are likely to be too short for some contexts and too long for others.

When an order-2 list (say, list xy) contains s items and a new character z occurs

in context xy, we delete the bottom item (call it t) from the list and add z.

Context xy no longer predicts t. This does not a�ect the correctness of our

algorithm. When t occurs again in context xy it will be predicted by the order-

0 model. The fact that encoder and decoder maintain identical models ensures

correctness. In addition, the rationale behind the use of self-organizing lists is

that we expect to have the s most common successors on the list at any point

in time. As characteristics of the �le change, successors that become common

replace those that fall into disuse. The method of maintaining frequencies and

using them to encode is described in Section 4.3.
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4.3. Frequency Distributions

In order to conserve memory we do not use a frequency distribution for

each context. Instead, we maintain a frequency value for each feasible event.

Since there are s + 1 values of k (the s list positions and the escape code) and

n+1 values for z (the n characters of the alphabet and an end-of-�le character),

the number of feasible events is s+n+2. We can maintain the frequency values

either as a single distribution or as two distributions, an order-2 distribution to

which list positions are mapped and an order-0 distribution to which characters

are mapped. Our experiments indicate that the two-distribution model is

slightly superior. When z occurs in context xy we use the two frequency

distributions in the following way: if list xy exists and z occupies position k, we

encode k using the order-2 distribution. If list xy exists but does not contain

z, we encode an escape code (using the order-2 distribution) as a signal to the

decoder that an order-0 prediction (and the order-0 frequency distribution) is

to be used, and then encode the character z. When list xy has not been created

yet, the decoder knows this and no escape code is necessary; we simply encode

z using the order-0 distribution. Our limited use of frequency distributions is

similar to that of algorithm ADSM.

4.4. Escape Strategy

We adopt the strategy of treating the escape event as if it were an

additional list position. Given this decision, there are two reasonable choices

for the value of escape. One choice is to use the value s + 1, as it will never

represent a list position. The second choice is to use the value size + 1, where

size is the current size of list xy (and ranges from 1 to s). In the �rst case, the

escape code is the same for every context and all of the counts for escape accrue

to a single frequency value while in the second case, the value of escape depends

on the context and generates counts that accrue to multiple frequency values.

The two escape strategies produce similar compression results. The algorithm

we describe here uses the �rst alternative.
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We apply update exclusion in dealing with both lists and frequency

distributions. That is, a list or frequency distribution is updated when it is

used. Thus, when list xy exists, both the list and the frequency distribution

are updated after being used to encode either a list position or an escape. The

order-0 distribution is used and updated each time context xy fails to predict.

4.5. Memory Requirement and Execution Speed

The data stored for our method is a function of the list size s and the

alphabet size n. When the self-organizing lists are implemented as arrays, the

total memory requirement of our method is O(n

2

s). With an s value as low

as 2, our method is faster than ADSM and provides better compression with

less storage required. Based on empirical data, s = 7 provides the best average

compression over a suite of test �les. With s = 7 we use approximately three

times as much memory as ADSM but achieve compression that is 20 percent

better on average (3.16 bits per character as opposed to 3.94) and execute faster.

Our method also provides better compression than compress (approximately

15 percent better with s = 7) using essentially the same memory requirement

for n = 256 and far less for n = 128.

Using dynamic memory allocation to implement the self-organizing lists

results in a much more e�cient use of space. We allocate an array of n

2

pointers to potential lists, and allocate space for list xy only if xy occurs in

the text being compressed. The memory requirement becomes O(n

2

+ us),

where u represents the number of distinct character pairs occurring in the text.

In our suite of test �les, the maximum value of u was 4721. This value was

encountered in a 0:69 megabyte �le of messages extracted from the bulletin

board comp.windows.x. Even in this worst case, the dynamic-memory version

of the order-2-and-0 algorithm results in a 95 Kbyte space savings over ADSM

(when both methods use k = 256 and with s = 7, our space requirement is

approximately half that of ADSM). The compression performance is, of course,

the same as that provided by an array-based implementation.

19



The dynamic-memory implementation is slightly slower than the static

version due to overhead incurred by dynamic allocation, but this algorithm is

still faster than Abrahamson's implementation of ADSM. C-language versions

of ADSM and our dynamic-memory implementation compress approximately

1900 and 3000 characters per second, respectively. We estimate that if our

implementation were optimized, its speed would be competitive with that of

algorithm FG. The execution time of our algorithm is determined by the size of

the input �le, the size of the output �le, and the lengths of the self-organizing

lists. For each input character we consult and update one or both models,

and use and update the corresponding frequency distribution(s). The time

contribution due to the order-2 model consists of the time required to search

for the current character on an order-2 list and the time required to update

the order-2 list and corresponding frequency distribution. The time to search

and update the model is limited by the current size of the self-organizing

list (which is in turn bounded by the maximum list size, s). We expect the

frequently-occurring characters to be near the front of the context lists, so that

the average time spent in manipulating the order-2 model should be much less

than the maximum list length, s. When the order-2 model does not supply a

prediction, the order-0 model must be consulted. Consulting the order-0 model

requires very little time since the order-0 model is stored in frequency-count

order. Updating the order-0 model involves maintaining frequency-count order,

so that a single update could require n operations. However, the frequency-

count strategy maintains popular characters near the front of the list so that

the average cost is again much less than the maximum.

When an order-2 list contains fewer than s items, we are subject to the

criticism that we are not putting our memory resources where we need them. In

fact, �xing the number of successors represents a tradeo� of the ability to predict

any character against the ability to predict quickly while using a reasonable

amount of space. Fixing the number of successors suggests the use of an array

data structure rather than a linked structure; thus we avoid the space required
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for links and the time involved in creating and updating linked nodes. The links

in a linked structure may also be viewed as consuming memory without directly

representing information needed for prediction. Another disadvantage of the

linked structure is that it is more di�cult to control its growth. In algorithm

PPMC, the tree is simply allowed to grow until it reaches a limit and then

is discarded and rebuilt. Rebuilding can result in loss of prediction accuracy.

When rebuilding takes place, all of the information constructed from the pre�x

of the �le is lost. By contrast, our model loses only the ability to predict

certain successors in certain contexts, and only when they have ceased to occur

frequently. Finally, we must keep in mind that a dynamic data compression

system attempts to \hit a moving target". When characteristics of the �le

being compressed change, it may be advantageous to lose some of the data

collected in compressing the early part of the �le. Unfortunately, we can only

make an intelligent guess at what information to collect and when to discard it.

4.6. Using Hashing to Improve Memory Requirement

We have described an algorithm that allocates n

2

self-organizing lists of

size s and another that uses dynamic memory to allocate lists of size s only

when they are needed. The second algorithm, however, statically allocates n

2

pointers, one for each of the n

2

possible contexts. In this section we describe an

order-2-and-0 strategy that uses hashing rather than dynamic memory. This

algorithm employs a hash table into which all n

2

contexts are hashed. Each hash

table entry is a self-organizing list of size s. An implementation of this strategy

provides better average compression than the earlier methods and requires much

less memory.

Encoding and decoding proceed as in the earlier algorithms. When z

occurs in context xy and no xy list exists we encode z using the order-0

frequency distribution. When an xy list exists but does not contain z, we

emit an escape code and then code z using the order-0 distribution. When z

is contained on the list for xy we code its position. An obvious disadvantage
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of the use of hashing is the possibility of collision. If two or more contexts

(say xy and ab) hash to the same table position, the lists for these contexts

are coalesced into a single self-organizing list used to represent both contexts.

We can view this as xy's successors vying with those of ab for position on the

list. Intuitively, it would seem that our predictions are more accurate when xy

and ab are represented by separate lists. However, we repeat our admonitions

on the unreliability of intuition in compressing text. It is possible that when

we expect it least the characteristics of our �le change and our good statistics

become bad. Thus, we can be optimistic and hope that coalescing two lists will

a) happen infrequently, b) not degrade performance, or c) will actually improve

performance.

Hash con
icts have no impact on the correctness of the approach; they

may, however, impact compression performance. We mitigate the negative

e�ects of hashing in three ways. First, we select the hash function so as to

minimize the occurrence of collisions. Second, we use double hashing to resolve

collisions. In order to resolve collisions, we must be able to detect them. We

detect collisions by storing with the self-organizing list an indication of the

context to which it corresponds. When context xy hashes to position h but the

check value at position h does not correspond to context xy, we know that we

have collision. In order to maintain reasonable running time we perform only a

small number of probes. If the short probe sequence does not resolve the hash

con
ict, we allow the two lists to coalesce.

The third way in which we minimize the negative e�ects of hashing is to

use some of the space gained by eliminating n

2

pointers to provide m > 1

order-2 frequency distributions. The value of m is is signi�cantly smaller

than the size of the hash table (H) so that we are coalescing H=m lists into

each frequency distribution. Thus the cost is less than that of providing a

frequency distribution for each context while compression results are better

than those achieved when we use a single frequency distribution for all lists.

The disadvantages of coalescing frequency distributions are the same as those
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of coalescing lists except that coalescing lists is likely to cause loss of the ability

to predict some characters (since two contexts now have s list positions between

them instead of s each), and limiting the number of frequency distributions does

not cause this problem. Because the number of frequency distributions is very

small relative to the number of contexts of order 2 we consider hash collisions

to be inevitable and do not attempt to resolve them.

An implementation of the hash-based algorithmwith H = 4800,m = 70,

s = 7, and n = 256 provides approximately 6 percent more compression than

the order-2-and-0 algorithmdescribed above and uses only 45 Kbytes of memory

(less than half of the requirement of the dynamic-memory method). The use of

hashing provides improved compression performance overall.

5. Space-Limited Context Models of Order 3

In this section we extend our work on context modeling in limited

memory to context models of order 3y. The use of hashing to store context infor-

mation permits the extension of the strategy developed in Section 3 to blended

models of arbitrary order. The primary problem in designing an order-3 algo-

rithm with modest memory requirements is that of deciding which lower-order

models to blend with the order-3 model. We concentrate our discussion on the

blended order-3 context model that gives the best overall results. Our algorithm

has a much more modest memory requirement than competing algorithms FG

and PPMC and provides compression performance that is superior on average

to that provided by FG. In addition, it runs much faster than PPMC. When

tuned, we expect encode speed comparable to that of the faster algorithm FG.

In Section 5.1 we discuss the method of blending we employ, and in Section 5.2

the data structures used. Section 5.3 details the way in which the predictions

y A preliminary version of these results was presented at the 1991 Data

Compression Conference[LH91]
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supplied by our model are coded, and in Section 5.4 we discuss the memory re-

quirements and execution speed of our order-3 algorithm. Section 5.5 contains

experimental results comparing our order-3 method with PPMC and FG.

5.1. Blending Strategy

The best algorithm in our family is based on an order-3-1-and-0 context

model. That is, we construct a prediction for the character being encoded

by blending predictions based on the previous three characters, the previous

character, and unconditioned character counts. We considered order-3-and-0

models and order-3-2-and-0 models as well as the order-3-1-and-0 approach

that we describe here. The addition of order-2 context information to the

order-3-and-0 model generally did not improve compression performance, while

the addition of contexts of order 1 does provide signi�cantly better results.

Eliminating some of the models of lower order contributes to both the decreased

memory requirement and increased speed of our methods. Thus we limited the

total number of contexts to be blended to three, and did not consider models

that blended orders 3, 2, 1, and 0, for example. In Section 5.2 we describe the

way in which we store context information.

5.2. Data Structures

We use self-organizing lists to maintain the order-3 and order-1 context

information. As in the order-2-and-0 model, we employ the transpose list

organizing strategy. The order-3 context information is stored in two hash

tables, table H3 of size h3 whose elements are self-organizing lists of size

s3, and table F3 containing f3 frequency distributions. Thus, each trigram

(i.e., context of order 3) appearing in the �le being compressed is mapped to

a position in table H3, where a list of s3 successor characters is stored. A

second hash function maps the trigram to a position in table F3 that stores

the frequency distribution corresponding to the s3 successor characters. Since

there are only n order-1 lists (where n is the size of the alphabet), hashing is

not used to store the self-organizing lists of order 1. We maintain a list of s1
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successors for each single character (context of order 1). However, we maintain

just f1 (where f1 < n) frequency distributions for the collection of order-1 lists.

Thus while the order-3 model is a essentially a two-level hashing scheme, where

a context hashes �rst to a position in the table of self-organizing lists and then

to a smaller table of frequency distributions, the order-1 model employs just

one level of hashing, mapping the n contexts to f1 frequency distributions. The

order-0 data consists of frequency data for the n symbols of our alphabet.

5.3. Coding the Model

The models of order 3, 1, and 0 are used to form a prediction of the

current character in much the same way as we used them in the order-2-and-0

algorithm. We encode character z occurring in context wxy by event k if z

occurs in position k of the list for context wxy. If z does not appear on wxy's

list, we code an escape and consult the list for the order-1 context y. An order-

3 frequency distribution is used to code either k or escape. When the order-1

model is consulted, an order-1 frequency distribution is used to code either j

(if z occurs in position j of list y) or escape. When neither context wxy nor

context y predicts z we follow the two escape codes with an order-0 prediction

(i.e., we code the character itself). If the list for context wxy (likewise context

y) is empty, the corresponding escape code is not necessary.

The escape codes are represented as list positions s3 + 1 and s1 + 1,

respectively. As in our order-2-and-0 algorithm we apply update exclusion so

that lists and frequency distributions are updated only when they contribute to

the prediction of the current character, z. If list wxy exists, we update it using

the transpose heuristic. If no wxy list exists one will be created. If context

wxy does not predict z, then the y list is updated using the transpose method.

If list y is not used in the prediction, it is not updated. When list wxy exists,

the wxy frequency distribution is updated after it is used to encode either a

list position or an escape. When context wxy does not predict and list y exists,
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the y frequency distribution is updated. The order-0 frequency distribution is

updated whenever the character itself is coded.

5.4. Memory Requirement and Execution Speed

Our order-3-1-and-0 algorithm is in fact a family of algorithms where each

algorithm in the family corresponds to a di�erent set of values for the parameters

s3, h3, f3, s1, and f1. The space requirements, speed, and compression

performance of a particular algorithm depend on the values of these parameters.

We report results in Section 5.5 for an algorithm that executes in 100 Kbytes

of memory and encodes and decodes approximately 2800 cps. Bell et al. report

compression speeds for competing algorithms running on a 1-MIP VAX 11/780

[BCW90]. In order to provide a meaningful comparison of running times, we

execute on our research machine the order-3-1-and-0 algorithm and the version

of compress used by Bell et al. Using the execution time of compress as a

baseline, we adjust the running time of our algorithm to re
ect the di�erence in

machines. While this approach is obviously imperfect, it provides a reasonable

basis for comparison. Our programs are part of a research testbed and have not

been optimized for speed. We believe that with some attention to optimization

they can be tuned to compress at approximately the same rate as algorithmFG.

5.5. Experimental Results

We compare the performance of our order-3-1-and-0 model to that of

compress and the 45-Kbyte method of Section 3 on the corpus used by Bell et

al. to measure the performance of a collection of data compression methods

[BCW90]. The �les represent a variety of sizes and types: obj1 and obj2

are executable �les for two di�erent machines, geo is a �le of 32-bit numbers

representing seismic data, pic is a bit map of a black and white facsimile picture.

The remaining �les are ASCII �les of various types including program source

�les (the prog �les). In Table 1 we display compression ratios for the order-2-

and-0 model, the order-3-1-and-0 models, and compress. The order-3-1-and-0

model used here has parameter settings: s3 = 3, h3 = 12000, f3 = 900,
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Order Order Unix

File 2-0 3-1-0 Compress

bib 3:27 2:49 3:35

book1 3:39 3:03 3:46

book2 3:23 2:69 3:28

geo 5:18 5:14 6:08

news 3:68 3:22 3:86

obj1 4:28 4:10 5:23

obj2 3:55 3:33 4:17

paper1 3:34 2:87 3:77

paper2 3:27 2:85 3:52

pic 0:91 0:90 0:97

progc 3:24 2:87 3:87

progl 2:58 2:06 3:03

progp 2:63 2:12 3:11

trans 2:71 2:02 3:27

Averages 3:23 2:84 3:64

Memory (Kbytes) 45 186 500

Table 1

Comparison of order-3-1-0, order-2-and-0, and compress

s1 = 20, f1 = 256 and uses less than 100 Kbytes of internal memory. The

performance of the order-3-1-and-0 model is signi�cantly better than that of

the order-2-and-0 method which, in turn, provides signi�cant gains over the

state-of-the-art compress. The order-3-1-and-0 algorithm reduces a �le to an

average of 35 percent of its original size, while the order-2-and-0 method reduces
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Original Order

File Size 3-1-0 FG PPMC

bib 111261 2:49 2:90 2:11

book1 768771 3:03 3:62 2:48

book2 610856 2:69 3:05 2:26

geo 102400 5:14 5:70 4:78

news 377109 3:22 3:44 2:65

obj1 21504 4:10 4:03 3:76

obj2 246814 3:33 2:96 2:69

paper1 53161 2:87 3:03 2:48

paper2 82199 2:85 3:16 2:45

pic 513216 0:90 0:87 1:09

progc 39611 2:87 2:89 2:49

progl 71646 2:06 1:97 1:90

progp 49379 2:12 1:90 1:84

trans 93965 2:02 1:76 1:77

Averages 2:84 2:95 2:48

Memory (Kbytes) 100 186 500

Table 2

Comparison of order-3-1-0, FG, and PPMC

�les to 39 percent of original size on average, and compress leaves 45 percent of

the original size.

We compare the performance of our order-3-1-and-0 model to the perfor-

mance of algorithms FG and PPMC in Table 2. The data for FG and PPMC is

taken from [BCW90]. The compression performance of our method is superior
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on average to that provided by algorithm FG. The order-3-1-and-0 model re-

quires only 20 percent as much internal memory as algorithm PPMC and half

as much as FG. Without tuning, the speed of the order-3-1-and-0 algorithm is

superior to that of PPMC, and we expect to achieve speed comparable to that

of FG when we take advantage of optimization techniques such as the use of

registers and incorporating assembly-language code.

6. The Future of Context Modeling

Context modeling is a relatively new and very promising method for

data compression. Early context modeling algorithms require large amounts of

runtime memory and execute slowly. Algorithm PPMC, for example, provides

excellent compression when 500 Kbytes of memory are available and speeds of

2000 cps are adequate. Our work provides an alternative to PPMC for applica-

tions in which 500 Kbytes of internal memory is not a reasonable requirement.

Our order-3-1-and-0 method achieves much of the compression performance of

PPMC without the large memory requirement (in fact it requires only one-

�fth as much run-time memory). Our method has the additional advantage of

executing much faster. We are able to achieve compression factors of less than

2.4 bits per character for source code �les and less than 2.8 bits per character

for a large variety of �le types using less than 100 Kbytes of internal memory.

The order-2-and-0 algorithm of Section 3 achieves respectable compression us-

ing only 48 Kbytes of internal memory. The compression performance of this

method is superior to that of compress and uses less than 10 percent as much

memory.

The work we describe in Sections 3 and 4 is applicable to context models

of any order. The use of self-organizing lists and hashing provides a means of

representing context models of any order in any available amount of memory.

The restriction on internal memory and the values of the parameters (list sizes,

hash table sizes, blending method, etc.) must be carefully balanced so as to

achieve satisfactory performance in terms of compression ratio and execution
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speed. We have conducted limited experiments in order-4 context modeling. We

have not yet identi�ed a combination of parameters that provides performance

that is consistently superior to that of our order-3-1-and-0 algorithm, given

approximately the same restrictions on the use of internal memory. It is possible

that with a di�erent selection of parameter values an order-4 model may provide

improved performance.

Finite-state modeling is an extension of �nite-context modeling that per-

mits exploitation of characteristics of the input that cannot be represented in

�nite-context models. For instance, �nite-state models can represent informa-

tion such as \every fourth character in the �le is a zero" or \every sequence of

a's has even length". Horspool and Cormack describe an adaptive �nite-state

model DMC (for dynamic Markov compression) [HC86, CH87]. Due to the way

in which states are added to the model, however, DMC does not attain the

potential power of �nite-state models. Bell and Mo�at show that the DMC

model is equivalent to a �nite-context model [BM89].

Thus, the increased power of the �nite-state model is attractive but,

to date, successful use of this increased potential has eluded researchers.

Developing methods of constructing �nite-state models dynamically is an

open problem the solution to which has considerable value. It is likely that

straightforward methods of representing �nite-state models, when they are de-

veloped, will consume large amounts of memory like the early context models.

Representing �nite-state models in limited memory is another challenging open

problem.
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