Theaoretical Computer Science 3 (1976) 293-304,
© North-Holland Publishing Company

APPROXIMATE ALGORITHMS FOR SOME GENERALIZED
KNAPSACK PROBLEMS

Ashok K. CHANDRA, D.S. HIRSCHBERG', C.K. WONG
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, U.S.A,

Communicated by Richard Karp
Received 5 January 1976
Revised 14 April 1976

Abstract. In this paper we construct approximate algorithms for the following problems: integer
multiple-choice knapsack problem, binary multiple-choice knapsack problem and multi-
dimensional knapsack problem. The main result can be described as follows: for every £ >0 one
can construct a polynomial-time algorithm for each of the above problems such that the ratio of
the value of the objective function by this algorithm and the optimal value is bounded below by
1—e

1. Introduction

In a recent study of the problem of secondary index selection for a large data base
in a multi-level storage, the following optimization problem arose [8, p. 319]:

Given ay, b, ¢, with O0<¢y, 0=<ay, i=1,2,...,n j=1,2,...,k, find a binary
n-vector x = (X1, ..., %n;), (i.e. x,;, is 0 or 1 only) such that 27, a,;x,;, < b and
271 ¢ X, is maximized. ’

This is a generalized knapsack problem. (For details of the knapsack problem,
see [1], for example). In [8), it is solved by dynamic programming methods. But the
computation time becomes prohibitively large as the size of the problem grows, In
fact, it has been shown that both the integer knapsack problem and the binary
knapsack problem are NP-complete. (See, for example, [4, 6].) Consequently, the
present generalized knapsack problem is also NP-complete. In view of this, it is
necessary to find good heuristics. The approach which we adopt in this paper was
first discovered by Johnson [3] and has been successfully applied by various
authors. (See, for example, [2, 7].)

However, for this approach to work, one has first to find a heuristic which yields
results within some suitable additive constant of the optimum. Such a heuristic is

' Current address: Rice University, Department of Electrical Engineering, Houston, Texas 77001,
U.S.A.

293

294 . A.K. Chandra et al.

proposed in the paper. To show that it satisfies the requirement, we resort to a
“continuous” argument.

In addition to the above-mentioned problem, which will be referred to as the
binary multiple-choice knapsack problem, we also consider the integer multiple-
choice knapsack problem, i.e., the components of the solution vector x =
(X1,ji> - -5 X j,) in the above problem can be any non-negative integers. Finally, we
also study the integer multi-dimensional knapsack problem:

n

maximize . ¢
i=1

subject to D, anxi < by,

i=]

2 AuX; < by,
i=1
where the solution {x;} are non-negative integers.

We shall solve the integer multiple-choice knapsack problem first since it is much
simpler and demonstrates the general approach better. The solution to the binary
version of the multi-dimensional knapsack problem is still not known. The results
obtained in this paper can be briefly described as follows: for every ¢ >0, we can
find a polynomial-time algorithm (z-algorithm) such that for each input for which
the optimum value of the objective function Cy # 0,%, Cs/Cy=1— &, where C, is
the value of the objective function by the algorithm.

It should be pointed out that throughout this paper the algorithms are presented
in their simplest forms for the sake of clarity. They can be modified to take
advantage of various programming techniques to yield slightly better results.

2. The integer multiple-choice knapsack problem

The problem is: Given positive integers n, k, and non-negative rationals b, ¢, aj;,
i=1,...,nj=1,...,k find n-vectors of integers x = (xi,..., %), J = 1y ..+ Jn)s
0=<x, 1=j, <k, such that

() Zfay ayx; < b,

(i) 2ty ¢ ;% is maximized.
The problem may be reformulated as follows: Given positive integers n, k, and
non-negative rationals b, ay, ¢y, find an nk-vector of integers (X, Xz, ..., X),
0= xy, subject to

() B2k, ay < b,

(i) for each i =1,...,n there is at most one j for which x,; >0,

(iif) 2y, 2, cyx; is maximized.
We first consider the following algorithm:

Approximate algorithms 295

Algorithm IM. If all a; > b, or all ¢; = 0, the solution is x = (0,..., 0) and if for any
I,j, a; =0 and ¢; >0 then the objective function is unbounded. Otherwise, let
pi = cila; for 1< i<n, 1<j <k, (excluding those i,j for which ¢; = a; = 0) and
let py = Max{p; |0 < a; < b}. Asasolution take x; = | b/a;], and other x; = 0. The
value of the objective function is ¢; {b/ay].

Next, we construct an e-algorithm:

Algorithm IM.. If, for any i,j, a; =0 and ¢; >0 then the objective function is
unbounded. Otherwise, let & = be/(1+ ¢). Parition the coefficients {a;} into two
parts: those larger than or equal to 8, and those less than 8. Without loss of
generality, we assume that a; =8 fori=1,...,n, j=1,...,p 0<sp <k), and
a; < 6 otherwise. Let {2 be the set of all nk-vectors x = (x1,..., X«) of integers
x; =0, x; =0 for j > p,, for each i at most one x; >0, and = 2 a;x; < b. For each
x € {2, apply algorithm IM to the following problem P(x):

Find an nk-vector x'= (x1{),..., Xm) such that

(i) X alxy<b-2 T agxy,

(ii) For each i =1,...,n there is at most one j for which x}>0,

(iii) =X cyx!; is maximized,
where

{b +1 if j<p, or for some s, x; >0,
Cl’,',' =

ai; otherwise,

Note: if some af;= b + 1, that effectively enforces x};= 0. Let Cyw(x) be the value
obtained from IM, and let C(x)=Z X ¢;x;. Then, algorithm IM, chooses that
solution x + x’ which maximizes C(x)+ Cw(x), i.e., the objective function has
value '

C]M,, = I;Iclea&((C(x)+ C[M(x)).

Theorem 2.1. (i) Algorithm IM, can be implemented in O((kn)"*!*") time and
O(n) space.
(1i) If Co 7£ O,OO, then CIM‘,/C() >1-ec

Proof. (i) |2]= O((kn)"*I""), the elements can be enumerated in this much time,
and for each x €4, Cm(x) can be computed in time O(1). To do this, we
- precompute for each i, that value j; which is the value of j that maximizes p; = ¢;/ay
for j > p. These n values are sorted in descending order of p; ;, and we may assume
that p,;, = p.;, - --. As the elements x € {2 are enumerated, one keeps track
of b—2 X aux,, and the minimum i for which x; =0 for all j. Space required is
O(n). .

(ii) Let y be an optimal solution. Let x = (xy, ..., Xu), Where x; = y; if j < p,

296 . A.K. Chandra et al.

and x; =0 otherwise. Then x & (. Consider the application of algorithm
IM to problem P(x), having value Cw(x). If c;/a; is the largest among
{ci/a; |0 < a; < b,} where b, = b — £ T ayx,, the optimal value Cy(x) for problem
P(x) is bounded above by ¢;bi/a;, hence

Co— Ci, = (C(x)+ Co{x)) ~ (Cx)+ Cru(x)) < c55.

On the other hand, for problem P(x,) where x,=(0,...,0), let c;/a; maximize
{ci/ay IO < a; < b}. Then

b b-8 b—-28 b—956_cy
CIM(xO)chl'l::z;:l>C'7 a; = Cy ag >y 5 =_8£L

(as ay < 8). Thus

CIM. Cn— CXM, Ciy
=M., _ —_—e T e] — e 1—e. D
Cy ! Co (C,‘]‘)/E £

Remark. For £ =3, algorithm IM, could be improved to run in time Q(kn) by
making it identical with algorithm IM.

3. The binary multiple-choice knapsack problem

The problem is: Given positive integers n, k, and non-negative rationals b, a;, ¢y,
i=1,...,n j=1,...,k find n-vectors of integers x = (x;,...,%,) and j=
(oo sda), 031, 0, Sk, such that

(@) 21 a,x < b,

(i) 2P ¢ % is maximized.

The problem may be reformulated as follows: Given positive integers, n, k, and
non-negative rationals b, ay, ¢y, find an nk-vector of integers (X1, Xiz,..., Xu),
0=<x; <1, subject to

(i) 2;;1 2;;1 Xy <= b,

(i) 2 x5 <1 fori=1,...,n, 1)

(i) 27, 2k cyxy is maximized.

Let R be the “continuous” version of the above problem, the only change being
that x; can be real numbers (0 < x; < 1), not just integers. In the sequel we will
assume that there is no i, j for which a; > b (without loss of generality), or a; =0
and ¢; >0 (for the solution is trivial).

Lemma 3.1. For problem R, if there is an integer s, and distinct p,q, such that
spy Qugs Cop = 0, Cop/ Ay = g/ Asgy aNd Cyp = Coy then if x = (X1, - .., Xk) I8 any solution,
there is another solution x' = (x1,,..., x) for which x4, =0, and for all i, j, if x; =0
then x3=0 except x5, (if a, = a, =0 and ¢, > ¢, We consider ¢y /ayp > €/ asy).

Approximate algorithms 297

Proof. Choose

Cs,
Xop = Xgp T Xgq,
Cop

xo =0,

xi=x; fori#sorj#pgq
Then

n n

k
C
2 x'l 2 E AyXy — QepXsp — Qsq Xsq + Asp (xsp + 'C—Si x,,,)
=1 sp

i=1j=1 j=1
X
<h- Eﬂ (c:pasq - quasp) = b,

and for all i,

and
n k " X
) ; o = 2 ,Z, ey O

Lemma 3.2. For problem R, if there is an integer s, and distinct p, q,r such that
Cop S Coq S Cary Qg S Gy < A, and either o = €4y OF Gy = Asq OF (Cog = Cop)(sg —) <
(Cor = €0)5 — Gsq), then if x = (Xu,...,Xw) is any solution, then there is another
solution x" = (xh,, ..., x%) for which x4 =0, and for all i,j, if x; =0 then x; =0
except x;, and X..

Proof. If c,, # ¢,, and a,# a,, then choose

Csy — C
Xop = Xop + Xeg 0,
Cor — Csp

xe =0,

Csy — C
Xip = X + X —2
Cor — Cep

3

xip=1xy fori#sorj#p,q,r
Then

k n k
Cor = Cy, C
E agxj; = 2 2 aXy + X (asp —L ag; t as "‘g“"‘—sﬂ)

Cor sp - Csp

< b+ (= (Cor =€) (@ag = A3p) + (€5 — Cop) (@ = 1))

and for all i,

298 A.K. Chandra et al.

and

k n k

2 cyXiy = Z 2 CyXij -

i=1j=1 i=1 j=1

On the other hand, if ¢, = ¢,, then choose x; = X + X X5 =0, X5 = X, and if
a, = a,, then choose xg = xg, X =0, Xi = X, + X, In both cases the lemma is
easily verified. [

Given problem R, we can eliminate variables using Lemmas 3.1, 3.2 such that we
have the reduced problem R":
(1) E?=l 2;‘,;1 QX = b,
(i) 2, x; =1 fori=1,...,n,
(i) 2/-s Zf, ¢yxy is maximized,
where for each i:

0<C“<C,-2<"'<C,»'q‘

Lu -, Giz o> Lha
an Qiz a, g ’
ie. < < < Qi q and
Loy Lem G Lia” Cigmt
aiin Q2 ap Qi.q ™ Qi g1

~ We now transform R’ into the “easier” knapsack-like problem R" below, whose
objective function has value at least as large as that of R'. As it will turn out, the
two are equal. R" is:

Given n=1, ¢, =0 for i = 1, ..., n, positive rationals aj, ¢/, b, find a vector of
real numbers y = (¥i1,..., Ynq.) Such that

(i) Zi-1 2 alyy < b,

(i) For each Lj 0sy; <1,

(i) 2ro; 28y chy; is maximized.
For a given problem R’, the corresponding problem R" has

ai for] = 1,
a; =

ay — a,j- for j>1,

Cj for j =1,
¢ =

Cij — Ci j—1 for] >1.

Lemma 3.3. The maximum value of the objective function for problem R' is the
same as that for the corresponding problem R".

Approximate algorithms 299

Proof. we first show that the objective function for R” can be at least as large as
that for R’. Given a solution (xi,...,%ns) of R, we have a corresponding
Y=, Yuq) Where

ki
Yy = 2 Xise
s=i

Then
n % n i 4
2 Z agyy = 2 Aikis
=1 j= i=1 5155
n 4 s
= QX
i=1s=1 /=1
n i
= x.-s(a“ + (aiz" a;|)+ et (ais - al,s—l))
i=1 s=1
n G
= Xishis = b
i=] s=1
and
ZEIE S|
s=1
and
n 4 n il
Z 2 Ciyy = 2 2 XisCis
i=t1 j=1 =1 s=1

(like the above) i.e., the value of the objective function is the same.

The solution of problem R” is easy. Simply order the multiset {c{;/aj;} such that
Cloiol @lojo= €yl @l =<+, then let r be the integer such that Zf;laa’iw,psb <
Zp=0ah,, (assuming -, 2., a};> b, for otherwise the problem is trivial: choose all
yij = 1), then -

1 forp=sr-1
Vinjy =y forp=r
0 forp>r,
where
r-1
a = (b - 2 a"’qrfq>/ a‘{r-fr<1'
q=1

If, however, there is an R' to which this problem R” corresponds, this also yields a
solution of the problem R’ below, having the same value of the objective function:

Xij = @

X ;-1=1—a (unless j, =1 in which case this is meaningless),
%,; =0 for j# ji-ipm

Xp=1 for i# i, (i defined below),

x; =0 otherwise,

300 A.K. Chandra et al

where for each i, ji=the maximum j for which the pair (i,j) appears in the
sequence (iy, jo), - - - » (k-1, ji-1), and ji= 0 if there is no such j.
Then

n

S ke = 2 D WXt D, G Xis

i=1 s=1 Isisn Iss<qg; l=s<g;
iEip

= 2 A+ Qi1 — @) + a, e
Isi=n
i,

= 2 Qi F (@2 — an)+ - ot (@3 @i ji1)
1=isn
i#i

+ @+ (@2 @) T (@~ Qi)

+ a (@, = Gj-1)

= > X alyl+ 2, al.wyi.

lsi=n i=tssig; l==s=iq
i, "
= b.
And similarly
n 4 n qi
> D Gt = D, D, Chyk O
i=1s=1 i=1 s=1

We now return to the integer version of problem R, i.e. the problem (1), and
consider the following algorithm.

Algorithm BM. Convert the problem to R" and find the integer r as above. Then
choose, for all i,
1 if j=ji,
Xy =
0 otherwise,

(Note: jjis defined above and j/,= j, — 1 by definition.) Compare 2., 2, cyx; with
Ci» J» and if the former is at least as large as the latter, the algorithm returns {x;} as
solution, otherwise it returns as solution x;,; = 1 and all other x; = 0.

Let Cam be the value of this algorithm. The optimum value C; for the continuous
version of this algorithm is, from the solution above,

n
Co= 2, cpt a(Ciy = Ciopm)

i=1
n
<t
i=1

<2Cpm. 2)

Approximate algorithms 301

Also
C() - CBM < C,'"j,. (3)

We now construct an g-algorithm:

Algorithm BM,. Let 8§ = [(1/e)—2], and let {2 be the set of all binary nk vectors
x=(xpn,..., %) with at most § components being 1, and such that for each
i=1,...,n 2Zf,x;=1 and 2L, 2% ,ax;<b For each x&Q, let ¢=
min{c; lx,-,- =1}, and apply algorithm BM to the following problem T.:

n k
maximize , >, cix)
i=1 =1

k k
subject to En‘, > axh <b- j > agxy,
=1 j=1

i=1j=1

> xi=<1 fori=1,...,n,

j=1

x:’,E{O,l} fori:l,‘--vnﬁj:]”""k’
where

ch =

{O if xy =1 forany [orif ¢; >¢,

c; otherwise.

If x' is the output, then x + x' is a feasible solution of the original problem since
x/; =0 whenever ¢/ =0. Let C(x)=2Zcyxj, and Cpu(x)= 22 c/xf. The al-
gorithm BM, chooses that solution which has value

Com, = max (C(x), Cam(x)).

Theorem 3.4. (i) Algorithm BM, takes time O((nk)'"/"""log n) and space O(nk).
(i) If Co# 0,0, then Cam,/Co>1—¢.

Proof. (i) |2]=< (nk)® = (nk)' "™ and for each x € ||, C(x), Csu(x) can be
computed in time O(nk log n). ‘

(ii) Let y be an optimal solution having value Cy= 2 X ¢;y;. If the number of
nonzero elements of y =<8, BM, produces an optimal solution. Otherwise let
x = (xn,..., %) be defined to be the same as y for the § largest values yy, and 0
otherwise. Then x € {2, and

Com, . C(x)+ Com(x) _ 1 22 ¢ (yy = %4) ~ Cam(¥)
G ~ 2oy, 22 ci(yy ~xy)+ Cx)

But, from (3) above,

302 A.K. Chandra et al

2 2 ci(yi — X4)— Cam(x) < i < é <% C(x),

S)

(note: ¢ defined in the description of BM,), and since from (2)

z 2 C"i(yii - x"i)<2CBM(x)a

22 vy = xy) = Com(x) <3 2 2 cy(yy — x4),

we have

4. The integer Multi-Dimensional Knapsack Problem
For a fixed positive integer k, the k-dimensional knapsack problem is the following:

n
maximize », ¢

i=1
subject to Z ax <b, j=1,...,k,
i=1

where n is a given positive integer, and ¢; b, a; are given non-negative rationals;
the solution is to be in non-negative integers. Without loss of generality, we assume
that for each i there is a j for which a; > 0.

If we relax the constraints on x; to allow non-negative real numbers (this problem
will be referred to as §), it is well-known in linear programming that the new
problem admits an optimal solution where at most k of x's are non-zero. (See e.g.
[5}, Sec. 12-4)) Therefore we have only to examine all k-combinations of
(1,2,...,n) and for each k-combination, solve a problem of the following from:

k
maximize 2 diy:
i=1

k
Subject to 2 €;y: = b,', j = 1, ey k,
=

which can be solved in time 2°* (using the big-oh notation). Therefore the whole
process takes time O(n*). (Note that k is a constant.)
We have the following algorithm.

Algorithm MD. Let x,,..., x, be an optimal solution of S. Take |x.],..., |x,] as
an approximate solution for the original problem.
Let Cs be the optimal cost of problem S, let Cyp be the value of algorithm MD

Approximate algorithms 303

and let C, be the optimal value of the original multidimensional knapsack problem.
Then

Co— CMD$ Cs" CMDS Ci +ee ¢y, = ké, where ¢ = max{cl, ey C,.}.
We now construct an e-algorithm,

Algorithm MD.. Order the x,’s such that ¢, = ¢, =+ = ¢, Let § = [k((1/e)-1)].
Let {2 be the set of all vectors x = (x,,...,x.) where each x; is a non-negative
integer, 2!_,x, <8, and 2., ax <b, j=1,...,k For every x € {), apply al-
gorithm MD to the following problem:

Let m be the maximum integer i for which x,# 0 (if all x, = 0 choose m = 0),

n
maximize ., Gz 4)

i=m+1

n

subject to D agzi<b — > agx, j=1,...,k
i=1

i=m+1

Let Cup(x) be its value, and let C(x)= 2/, ¢x.. Then algorithm MD, chooses as
solution the vector that achieves

Cup, = max (C(x)+ Cwo(x)).

Theorem 4.1. (i) Algorithm MD, takes time O(n'™") and O(n) space.
(i) If Co# 0, then Cyp,/Cy>1~ & (where C, is the optimum value).

Proof. (i) |2]=0(n?), and for each x € 2, Cyup(x) can be computed in O(n*),
thus total time is O(n '),

(ii) Suppose C, is attained by a vector y = (yi,...,y.). If 2.y <38 then
Cup, = Co. Otherwise let x = (y1,..., Yw-1, Xm 0,0,...,0) where y,+ - 4y +
X = 8 % # 0. Then x € (0, and for this x, Co(x) — Cun(x) < k¢, where Cy(x) is the
optimum value for problem (4) above. Then

Cwp, o Cx)+ Cun(x) | _ Co(x)~ Cun(x)
Co = Cx)+Co(x) ~ C(x)+ Co(x)— Cun(x)

But C(x)= 8¢ and Cy(x)— Cup(x) < ke, so that

Cyvn ke
£] —
C() 1 SCm + ka

=l—¢

(since x/(a+x), a,x >0, is maximized when x is maximized). [J

304 A.K. Chandra et al,
Note added in proof

It has been pointed out by David S. Johnson that the algorithms IM, and BM,
can be improved using the ideas of Ibarra and Kim [2], so as to run in time
O (kP(n)/e) where P(n) is a low-order polynomial in n. However, we are unaware
of any such improvement for the algorithm MD..

References

{1] R.S. Garfinkel and G.L. Nemhauser, Integer Programming (John Wiley and Sons, New York, 1972).

[2] O.H. Ibarra and C.E. Kim, Fast approximation algorithms for the knapsack and sum of subset
problems J. Assoc. Comput. Mach. 22 (1975) 463-468.

[3] D.S. Johnson, Approximation algorithms for combinatorial problems, J. Comput. System Sci, 9
(1974) 256-278.

{4] R.M. Karp, Reducibility among combinatorial problems in: R.E. Miller, J.W. Thatcher (Eds.),
Complexity of Computer Computations (Plenum Press, N.Y., 1972) 85-104.

[5] C.L. Liv, Introduction to Combinatorial Mathematics (McGraw-Hill, N.Y., 1968).

[6] G.S. Lueker, Two polynomial complete problems in non-negative integer programming, Computer
Science Report TR-178, Princeton University (March 1975).

[7] S. Sahni, Approximate Algorithms for the 0/1 Knapsack Problem, J. Assoc. Comput. Mach. 22
(1975) 115-124.

[8] P.C. Yue and C.K. Wong, Storage cost considerations in secondary index selection, Int. J. Comp. Inf.
Sci. 4 (1975) 307-327.

