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Abstract. We study practically efficient methods for performing combinatorial
group testing. We present efficient non-adaptive and two-stage combinatorial
group testing algorithms, which identify the at mostd items out of a given set
of n items that are defective, using fewer tests for all practical set sizes. For ex-
ample, our two-stage algorithm matches the information theoretic lower bound
for the number of tests in a combinatorial group testing regimen.
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1 Introduction
The problem of combinatorial group testing dates back to World War II, for the prob-
lem of determining which in a group ofn blood samples contain the syphilis antigen
(hence, are contaminated). Formally, in combinatorial group testing, we are given a set
of n items, at mostd of which are defective (or contaminated), and we are interested in
identifying exactly which of then items are defective. In addition, items can be “sam-
pled” and these samples can be “mixed” together, so tests forcontamination can be
applied to arbitrary subsets of these items. The result of a test may be positive, indicat-
ing that at least one of the items of that subset is defective,or negative, indicating that
all items in that subset are good. Example applications thatfit this framework include:

– Screening blood samples for diseases.In this application, items are blood samples
and tests are disease detections done on mixtures taken fromselected samples.

– Screening vaccines for contamination.In this case, items are vaccines and tests are
cultures done on mixtures of samples taken from selected vaccines.

– Clone libraries for a DNA sequence.Here, the items are DNA subsequences (called
clones) and tests are done on pools of clones to determine which clones contain a
particular DNA sequence (called aprobe) [8].

– Data forensics.In this case, items are documents and the tests are applications of
one-way hash functions with known expected values applied to selected collections
of documents.
The primary goal of a testing algorithm is to identify all defective items using as

few tests as possible. That is, we wish to minimize the following function:
– t(n, d): The number of tests needed to identify up tod defectives amongn items.

This minimization may be subject to possibly additional constraints, as well. For exam-
ple, we may wish to identify all the defective items in a single (non-adaptive) round of
testing, we may wish to do this in two (partially-adaptive) rounds, or we may wish to
perform the tests sequentially one after the other in afully adaptivefashion.



In this paper we are interested in efficient solutions to combinatorial group testing
problems for realistic problem sizes, which could be applied to solve the motivating
examples given above. That is, we wish solutions that minimize t(n, d) for practical
values ofn andd as well as asymptotically. Because of the inherent delays that are
built into fully adaptive, sequential solutions, we are interested only in solutions that
can be completed in one or two rounds. Moreover, we desire solutions that are efficient
not only in terms of the total number of tests performed, but also for the following
measures:

– A(n, t): Theanalysistime needed to determine which items are defective.
– S(n, d): The samplingrate—the maximum number of tests any item may be in-

cluded in.
An analysis algorithm is said to beefficientif A(n, t) is O(tn), wheren is the number
of items andt is the number of tests conducted. It istime-optimalif A(n, t) is O(t).
Likewise, we desire efficient sampling rates for our algorithms; that is, we desire that
S(n, d) beO(t(n, d)/d). Moreover, we are interested in this paper in solutions thatim-
prove previous results, either asymptotically or by constant factors, for realistic problem
sizes. We do not define such “realistic” problem sizes formally, but we may wish to con-
sider as unrealistic a problem that is larger than the total memory capacity (in bytes) of
all CDs and DVDs in the world (< 1025), the number of atomic particles in the earth
(< 1050), or the number of atomic particles in the universe (< 1080).

Viewing Testing Regimens as Matrices.A single round in a combinatorial group testing
algorithm consists of a test regimen and an analysis algorithm (which, in a non-adaptive
(one-stage) algorithm, must identify all the defectives).The test regimen can be mod-
eled by at × n Boolean matrix,M . Each of then columns ofM corresponds to one
of then items. Each of thet rows ofM represents a test of items whose corresponding
column has a 1-entry in that row. All tests are conducted before the results of any test is
made available. The analysis algorithm uses the results of thet tests to determine which
of then items are defective.

As described by Du and Hwang [5](p. 133), the matrixM is d-disjunct if the
Boolean sum of anyd columns does not contain any other column. In the analysis
of ad-disjuncttesting algorithm, items included in a test with negative outcome can be
identified as pure. Using ad-disjunct matrix enables the conclusion that if there ared
or fewer items that cannot be identified as pure in this mannerthen all those items must
be defective and there are no other defective items. If more thand items remain then at
leastd + 1 of them are defective. Thus, using ad-disjunct matrix enables an efficient
analysis algorithm, withA(n, t) beingO(tn).

M is d-separable(d-separable) if the Boolean sums ofd (up to d) columns are
all distinct. Thed-separable property implies that each selection of up tod defective
items induces a different set of tests with positive outcomes. Thus, it is possible to
identify which are the up tod defective items by checking, for each possible selection,
whether its induced positive test set is exactly the obtained positive outcomes. However,
it might not be possible to detect that there are more thand defective items. This analysis
algorithm takes timeΘ(nd) or requires a large table mappingt-subsets tod-subsets.

Generally,d-separable matrices can be constructed with fewer rows thancan d-
disjunct matrices having the same number of columns. Although the analysis algorithm



described above ford-separable matrices is not efficient, somed-separable matrices that
are notd-disjunct have an efficient analysis algorithm.

Previous Related Work.Combinatorial group testing is a rich research area with many
applications to many other areas, including communications, cryptography, and net-
working [3]. For an excellent discussion of this topic, the reader is referred to the book
by Du and Hwang [5]. For generald, Du and Hwang [5](p. 149) describe a slight modi-
fication of the analysis of a construction due to Hwang and Sós [9] that results in at×n

d-disjunct matrix, withn ≥ (2/3)3t/16d2

, and sot ≤ 16d2(1 + log3 2 + (log3 2) lg n).
For two-stage testing, Deboniset al. [4] provide a scheme that achieves a number of
tests within a factor of7.54(1 + o(1)) of the information-theoretic lower bound of
d log(n/d). For d = 2, Kautz and Singleton [10] construct a 2-disjunct matrix with
t = 3q+1 andn = 32q

, for any positive integerq. Macula and Reuter [11] describe a
2-separable matrix and a time-optimal analysis algorithm with t = (q2 + 3q)/2 and
n = 2q − 1, for any positive integerq. Ford = 3, Du and Hwang [5](p. 159) describe
the construction of a3-separable matrix (but do not describe the analysis algorithm)
with t = 4

(

3q
2

)

= 18q2 − 6q andn = 2q − 1, for any positive integerq.

Our Results.In this paper, we consider problems of identifying defectives using non-
adaptive or two-stage protocols with efficient analysis algorithms. We present several
such algorithms that require fewer tests than do previous algorithms for practical-sized
sets, although we omit the proofs of some supporting lemmas in this paper, due to
space constraints. Our general case algorithm, which is based on a method we call
the Chinese Remainder Sieve, improves the construction of Hwang and Sós [9] for all
values ofd for real-world problem instances as well as ford ≥ n1/5 andn ≥ e10. Our
two-stage algorithm achieves a bound fort(n, d) that is within a factor of4(1 + o(1))
of the information-theoretic lower bound. This bound improves the bound achieved by
Deboniset al. [4] by almost a factor of2. Likewise, our algorithm ford = 2 improves
on the number of tests required for all real-world problem sizes and is time-optimal
(that is, withA(n, t) ∈ O(t)). Our algorithm ford = 3 is the first known time-optimal
testing algorithm for thatd-value. Moreover, our algorithms all have efficient sampling
rates.

2 The Chinese Remainder Sieve
In this section, we present a solution to the problem for determining which items are de-
fective when we know that there are at mostd < n defectives. Using a simple number-
theoretic method, which we call theChinese Remainder Sievemethod, we describe the
construction of ad-disjunct matrix witht = O(d2 log2 n/(log d + log log n)). As we
will show, our bound is superior to that of the method of Hwangand Sós [9], for all
realistic instances of the combinatorial group testing problem.

Suppose we are givenn items, numbered0, 1, . . . , n − 1, such that at mostd <
n are defective. Let{pe1

1 , pe2

2 , . . . , pek

k } be a sequence of powers of distinct primes,
multiplying to at leastnd. That is,

∏

j p
ej

j ≥ nd. We construct at × n matrix M as
the vertical concatenation ofk submatrices,M1, M2, . . . , Mk. Each submatrixMj is
a tj × n testing matrix, wheretj = p

ej

j ; hence,t =
∑k

j=1 p
ej

j . We form each row



of Mj by associating it with a non-negative valuex less thanpej

j . Specifically, for
eachx, 0 ≤ x < p

ej

j , form a test inMj consisting of the item indices (in the range
0, 1, . . . , n − 1) that equalx (mod p

ej

j ). For example, ifx = 2 andp
ej

j = 32, then the
row for x in Mj has a1 only in columns2, 11, 20, and so on.

The following lemma shows that the test matrixM is d-disjunct.

Lemma 1. If there are at mostd defective items, and all tests inM are positive fori,
theni is defective.

Proof. If all k tests fori (one for each prime powerpej

j ) are positive, then there exists
at least one defective item. With each positive test that includesi (that is, it has a1 in
columni), let p

ej

j be the modulus used for this test, and associate withj a defective
index ij that was included in that test (choosingij arbitrarily in case testj includes
multiple defective indices). For any defective indexi′, let Pi′ =

∏

j s.t.ij=i′ p
ej

j . That
is, Pi′ is the product of all the prime powers such thati′ caused a positive test that
includedi for that prime power. Since there arek tests that are positive fori, eachpej

j

appears in exactly one of these products,Pi′ . So
∏

Pi′ =
∏

p
ej

j ≥ nd. Moreover, there

are at mostd products,Pi′ . Therefore,maxi′ Pi′ ≥ (nd)1/d = n; hence, there exists
at least one defective indexi′ for which Pi′ ≥ n. By construction,i′ is congruent to
the same values to whichi is congruent, modulo each of the prime powers inPi′ . By
the Chinese Remainder Theorem, the solution to these commoncongruences is unique
modulo the least common multiple of these prime powers, which isPi′ itself. Therefore,
i is equal toi′ modulo a number that is at leastn, soi = i′; hence,i is defective.

The important role of the Chinese Remainder Theorem in the proof of the above
lemma gives rise to our name for this construction—the Chinese Remainder Sieve.

Analysis. As mentioned above, the total number of tests,t(n, d), constructed in the
Chinese Remainder Sieve is

∑k
j=1 p

ej

j , where
∏

p
ej

j ≥ nd. If we let eachej = 1,

we can simplify our analysis to note thatt(n, d) =
∑k

j=1 pj, wherepj denotes the

j-th prime number andk is chosen so that
∏k

j=1 pj ≥ nd. To produce a closed-form
upper bound fort(n, d), we make use of the prime counting function,π(x), which is
the number of primes less than or equal tox. We also use the well-knownChebyshev
function, θ(x) =

∑π(x)
j=1 ln pj . In addition, we make use of the following (less well-

known) prime summation function,σ(x) =
∑π(x)

j=1 pj . Using these functions, we bound
the number of tests in the Chinese Remainder Sieve method ast(n, d) ≤ σ(x), wherex
is chosen so thatθ(x) ≥ d lnn, sinceln

∏

pj≤x pj = θ(x). For the Chebyshev function,
it can be shown [1] thatθ(x) ≥ x/2 for x > 4 and thatθ(x) ∼ x for largex. So if
we letx = ⌈2d lnn⌉, thenθ(x) ≥ d lnn. Thus, we can bound the number of tests in
our method ast(n, d) ≤ σ(⌈2d lnn⌉). To further boundt(n, d), we use the following
lemma, which may be of mild independent interest.

Lemma 2. For integerx ≥ 2,

σ(x) <
x2

2 lnx

(

1 +
1.2762

lnx

)

.



Proof. Let n = π(x). Dusart [6, 7] shows that, forn ≥ 799, (1/n)
∑n

j=1 pj < pn/2;
that is, the average of the firstn primes is half the value of thenth prime. Thus,

σ(x) =

π(x)
∑

j=1

pj <
π(x)

2
pn ≤

π(x)

2
x,

for integerx ≥ 6131 (the799th prime). Dusart [6, 7] also shows that

π(x) <
x

lnx

(

1 +
1.2762

lnx

)

,

for x ≥ 2. Therefore, for integerx ≥ 6131,

σ(x) <
x2

lnx

(

1 +
1.2762

lnx

)

.

In addition, we have verified by an exhaustive computer search that this inequality also
holds for all integers2 ≤ x < 6131. This completes the proof.

Thus, we can characterize the Chinese Remainder Sieve method as follows.

Theorem 1. Given a set ofn items, at mostd of which are defective, the Chinese Re-
mainder Sieve method can identify the defective items usinga number of tests

t(n, d) <
⌈2d lnn⌉2

2 ln⌈2d lnn⌉

(

1 +
1.2762

ln⌈2d lnn⌉

)

.

By calculating the exact numbers of tests required by the Chinese Remainder Sieve
method for particular parameter values and comparing thesenumbers to the claimed
bounds for Hwang and Sós [9], we see that our algorithm is an improvement when:

• d = 2 andn ≤ 1057 • d = 3 andn ≤ 1066

• d = 4 andn ≤ 1070 • d = 5 andn ≤ 1074

• d = 6 andn ≤ 1077 • d ≥ 7 andn ≤ 1080.
Of course, these are the most likely cases for any expected actual instance of the

combinatorial group testing problem. In addition, our analysis shows that our method
is superior to the claimed bounds of Hwang and Sós [9] ford ≥ n1/5 andn ≥ e10.
Less precisely, we can say thatt(n, d) is O(d2 log2 n/(log d + log log n)), thatS(n, d)
is O(d log n/(log d+ log log n), andA(n, t) is O(tn), which isO(d2n log2 n/(log d+
log log n)).

3 A Two-Stage Rake-and-Winnow Protocol
In this section, we present a randomized construction for two-stage group testing. This
two-stage method uses a number of tests within a constant factor of the information-
theoretic lower bound. It improves previous upper bounds [4] by almost a factor of2.
In addition, it has an efficient sampling rate, withS(n, d) being onlyO(log(n/d)). All
the constant factors “hiding” behind the big-ohs in these bounds are small.



Preliminaries.One of the important tools we use in our analysis is the following lemma
for bounding the tail of a certain distribution. It is a form of Chernoff bound [12].

Lemma 3. Let X be the sum ofn independent indicator random variables, such that
X =

∑n
i=1 Xi, where eachXi = 1 with probabilitypi, for i = 1, 2, . . . , n. If E[X ] =

∑n
i=1 pi ≤ µ̂ < 1, then, for any integerk > 0, Pr(X ≥ k) ≤ (eµ̂/k)

k.

Proof. Let µ = E[X ] be the actual expected value ofX . Then, by a well-known Cher-
noff bound [12], for anyδ > 0,

Pr[X ≥ (1 + δ)µ] ≤

[

eδ

(1 + δ)1+δ

]µ

.

(The bound in [12] is for strict inequality, but the same bound holds for nonstrict in-
equality.) We are interested in the case when(1 + δ)µ = k, that is, when1 + δ = k/µ.
Observing thatδ < 1 + δ, we can therefore deduce that

Pr(X ≥ k) ≤

[

ek/µ

(k/µ)k/µ

]µ

=
ek

(k/µ)k
=

(eµ

k

)k

.

Finally, noting thatµ ≤ µ̂, Pr(X ≥ k) ≤ (eµ̂/k)
k.

Lemma 4. If d < n, then
(

n
d

)

< (en/d)
d.

Identifying Defective Items in Two Stages.As with our Chinese Remainder Sieve
method, our randomized combinatorial group testing construction is based on the use of
a Boolean matrixM where columns correspond to items and rows correspond to tests,
so that ifM [i, j] = 1, then itemj is included in testj. Let C denote the set of columns
of M . Given a setD of d columns inM , and a specific columnj ∈ C − D, we say
that j is distinguishablefrom D if there is a rowi of M such thatM [i, j] = 1 but i
contains a0 in each of the columns inD. Such a property is useful in the context of
group testing, for the setD could correspond to the defective items and if a columnj
is distinguishable from the setD, then there would be a test in our regimen that would
determine that the item corresponding to columnj is not defective.

An alternate and equivalent definition [5](p. 165) for a matrix M to bed-disjunctis
if, for anyd-sized subsetD of C, each column inC−D is distinguishable fromD. Such
a matrix determines a powerful group testing regimen, but, unfortunately, building such
a matrix requiresM to haveΩ(d2 log n/ log d) rows, by a result of Ruszinkó [13] (see
also [5], p. 139). The best known constructions haveΘ(d2 log(n/d)) rows [5], which is
a factor ofd greater than information-theoretic lower bound, which isΩ(d log(n/d)).

Instead of trying to use a matrixM to determine all the defectives immediately, we
will settle for a weaker property forM , which nevertheless is still powerful enough to
define a good group testing regimen. We say thatM is (d, k)-resolvableif, for any d-
sized subsetD of C, there are fewer thank columns inC−D that are not distinguishable
from D. Such a matrix defines a powerful group testing regimen, for defining tests
according to the rows of ad-resolvable matrix allows us to restrict the set of defective
items to a groupD′ of smaller thand + k size. Given this set, we can then perform an



additional round of individual tests on all the items inD′. This two-stage approach is
sometimes called the trivial two-stage algorithm; we referto this two-stage algorithm
as therake-and-winnowapproach.

Thus, a(d, k)-resolvable matrix determines a powerful group testing regimen. Of
course, a matrix isd-disjunct if and only if it is(d, 1)-resolvable. Unfortunately, as
mentioned above, constructing a(d, 1)-resolvable matrix requires that the number of
rows (which correspond to tests) be significantly greater than the information theoretical
lower bound. Nevertheless, if we are willing to use a(d, k)-resolvable matrix, for a
reasonably small value ofk, we can come within a constant factor of the information
theoretical lower bound.

Our construction of a(d, k)-resolvable matrix is based on a simple, randomized
sample-injectionstrategy, which itself is based on the approach popularizedby the
Bloom filter [2]. This novel approach also allows us to provide a strong worst-case
bound for the sample rate,S(n, d), of our method. Given a parametert, which is a
multiple of d that will be set in the analysis, we construct a2t × n matrix M in a
column-wise fashion. For each columnj of M , we chooset/d rows at random and we
set the values of these entries to1. The other entries in columnj are set to0. In other
words, we “inject” the samplej into each of thet/d random tests we pick for the cor-
responding column (since rows ofM correspond to tests and the columns correspond
to samples). Note, then, that for any set ofd defective samples, there are at mostt tests
that will have positive outcomes and, therefore, at leastt tests that will have negative
outcomes. The columns that correspond to samples that are distinguishable from the de-
fectives ones can be immediately identified. The remaining issue, then, is to determine
the value oft needed so that, for a given value ofk, M is a (d, k)-resolvable matrix
with high probability.

Let D be a fixed set ofd defectives samples. For each (column) itemi in C −D, let
Xi denote the indicator random variable that is1 if i is falsely identified as a positive
sample byM (that is,i is not included in the set of (negative) items distinguishedfrom
those inD), and is0 otherwise. Observe that theXi’s are independent, sinceXi depends
only on whether the choice of rows we picked for columni collide with the at mostt
rows ofM that we picked for the columns corresponding to items inD. Furthermore,
this observation implies that anyXi is1 (a false positive) with probability at most2−t/d.
Therefore, the expected value ofX , E[X ], is at most̂µ = n/2t/d. This fact allows us to
apply Lemma 3 to bound the probability thatM does not satisfy the(d, k)-resolvable
property for this particular choice,D, of d defective samples. In particular,

Pr(X ≥ k) ≤

(

eµ̂

k

)k

=

(

en
k

)k

2(t/d)k
.

Note that this bound immediately implies that ifk = 1 andt ≥ d(e + 1) logn, thenM
will be completely(d, 1)-resolvable with high probability (1 − 1/n) for any particular
set of defective items,D.

We are interested, however, in a bound implying that forany subsetD of d de-
fectives (of which there are

(

n
d

)

< (en/d)d, by Lemma 4), our matrixM is (d, k)-
resolvable with high probability, that is, probability at least1 − 1/n. That is, we are
interested in the value oft such that the above probability bound is(en/d)−d/n. From



the above probability bound, therefore, we are interested in a value oft such that

2(t/d)k ≥
(en

d

)d (en

k

)k

n.

This bound will hold whenevert ≥ (d2/k) log(en/d) + d log(en/k) + (d/k) log n.
Thus, we have the following.

Theorem 2. If t ≥ (d2/k) log(en/d)+d log(en/k)+(d/k) logn, then a2t×n random
matrix M constructed by sample-injection is(d, k)-resolvable with high probability,
that is, with probability at least1 − 1/n.

As mentioned above, a productive way of using the sample-injection construction is
to build a(d, k)-resolvable matrixM for a reasonably small value ofk. We can then use
this matrix as the first round in a two-round rake-and-winnowtesting strategy, where
the second round simply involves our individual testing of the at mostd + k samples
left as potential positive samples from the first round.

Corollary 1. If t ≥ 2d log(en/d)+log n, then the2t×n random matrixM constructed
by sample-injection is(d, d)-resolvable with high probability.

This corollary implies that we can construct a rake-and-winnow algorithm where
the first stage involves performingO(d log(n/d)) tests, which is within a (small) con-
stant factor of the information theoretic lower bound, and the second round involves
individually testing at most2d samples.

4 Improved Bounds for Smalld Values
In this section, we consider efficient algorithms for the special cases whend = 2 and
d = 3. We present time-optimal algorithms for these cases; that is, withA(n, t) being
O(t). Our algorithm ford = 3 is the first known such algorithm.

Finding up to Two Defectives.Consider the problem of determining which items are
defective when we know that there are at most two defectives.We describe a2-separable
matrix and a time-optimal analysis algorithm witht = (q2 +5q)/2 andn = 3q, for any
positive integerq.

Let the number of items ben = 3q, and let the item indices be expressed in radix 3.
IndexX = Xq−1 · · ·X0, where each digitXp ∈ {0, 1, 2}.

Hereafter,X ranges over the item index numbers{0, . . . n − 1}, p ranges over the
radix positions{0, . . . q − 1}, andv ranges over the digit values{0, 1, 2}.

For our construction, matrixM is partitioned into submatricesB andC. Matrix B
is the submatrix ofM consisting of its first3q rows. Row〈p, v〉 of B is associated with
radix positionp and valuev. B[〈p, v〉, X ] = 1 iff Xp = v.

Matrix C is the submatrix ofM consisting of its last
(

q
2

)

rows. Row〈p, p′〉 of C is
associated with distinct radix positionsp andp′, wherep < p′. C[〈p, p′〉, X ] = 1 iff
Xp = Xp′ .

Let testB(p, v) be the result (1 for positive, 0 for negative) of the test of items
having a 1-entry in row〈p, v〉 in B. Similarly, let testC(p, p′) be the result of testing



row 〈p, p′〉 in C. Let test1(p) be the number of different values held by defectives in
radix positionp. test1(p) can be computed bytestB(p, 0)+ testB(p, 1)+ testB(p, 2).

The analysis algorithm is shown in the Appendix in Figure 1.
It is easy to determine how many defective items are present.There are no defective

items whentest1(0) = 0. There is only one defective item whentest1(p) = 1 for all
p, since if there were two defective items then there must be atleast one positionp in
which their indices differ andtest1(p) would then have value 2. The one defective item
has indexD = Dq−1 · · ·D0, where digitDp is the valuev for which testB(p, v) = 1.

Otherwise, there must be 2 defective items,D = Dq−1 · · ·D0 andE = Eq−1 · · ·E0.
We iteratively determine the values of the digits of indicesD andE.

For radix positions in which defective items exist for only one value of that digit,
both D andE must have that value for that digit. For each other radix position, two
distinct values for that digit occur in the defective items.

The first radix position in whichD andE differ is recorded in the variablep∗ and
the value of that digit inD (respectively,E) is recorded inv∗1 (respectively,v∗2).

For any subsequent positionp in which D and E differ, the digit values of the
defectives in that position areva andvb, which are two distinct values from{0, 1, 2},
as arev∗1 andv∗2 , and therefore there must be at least one value in common between
{va, vb} and{v∗1 , v∗2}.

Let a common value beva and, without loss of generality, letva = v∗1 .

Lemma 5. The digit assignment forp is Dp = va andEp = vb iff testC(p∗, p) = 1.

We have determined the values of defectives D and E for all positions – those where
they are the same and those where they differ. For each position, only a constant amount
of work is required to determine the assignment of digit values. Therefore, we have
proven the following theorem.

Theorem 3. A 2-separable matrix that has a time-optimal analysis algorithm can be
constructed witht = (q2 + 5q)/2 andn = 3q, for any positive integerq.

Comparison of the Number of Tests Required ford = 2 Method. For all n ≤ 363, our
d = 2 algorithm uses the smallest number of tests. For higher values ofn ≤ 3130,
the Kautz/Singleton and ourd = 2 and general (Chinese Remainder Sieve) algorithms
alternate being dominant. For alln ≥ 3131, the Hwang/Sós algorithm uses the fewest
tests.

Finding up to Three Defectives.Consider the problem of determining which items
are defective when we know that there are at most three defectives. We describe a3-
separable matrix and a time-optimal analysis algorithm with t = 2q2 − 2q andn = 2q,
for any positive integerq.

Let the number of items ben = 2q, and let the item indices be expressed in radix 2.
IndexX = Xq−1 · · ·X0, where each digitXp ∈ {0, 1}.

Hereafter,X ranges over the item index numbers{0, . . . n − 1}, p ranges over the
radix positions{0, . . . q − 1}, andv ranges over the digit values{0, 1}.



Matrix M has2q2 − 2q rows. Row〈p, p′, v, v′〉 of M is associated with distinct
radix positionsp andp′, wherep < p′, and with valuesv andv′, each of which is in
{0,1}. M [〈p, p′, v, v′〉, X ] = 1 iff Xp = v andXp′ = v′.

Let testM (p, p′, v, v′) be the result (1 for positive, 0 for negative) of testing items
having a 1-entry in row〈p, p′, v, v′〉 in M . For p′ > p, definetestM (p′, p, v′, v) =
testM (p, p′, v, v′).

The following three functions can be computed in terms oftestM .
– testB(p, v) has value 1 (0) if there are (not) any defectives having valuev in radix

positionp. Hence,testB(0, v) = 0 if testM (0, 1, v, 0)+ testM (0, 1, v, 1) = 0, and
1 otherwise. Forp > 0, testB(p, v) = 0 if testM (p, 0, v, 0)+testM (p, 0, v, 1) = 0,
and 1 otherwise.

– test1(p) is the number of different binary values held by defectives in radix position
p. Thus,test1(p) = testB(p, 0) + testB(p, 1).

– test2(p, p′) is the number of different ordered pairs of binary values held by defec-
tives in the designated ordered pair of radix positions. Therefore, test2(p, p′) =
testM (p, p′, 0, 0) + testM (p, p′, 0, 1) + testM (p, p′, 1, 0) + testM (p, p′, 1, 1).
The analysis algorithm is shown in the Appendix in Figure 1.
We determine the number of defective items and the value of their digits. There are

no defective items whentest1(0) = 0. At each radix positionp in which test1(p) = 1,
all defective items have the same value of that digit. If all defectives agree on all digit
values, then there is only one defective. Otherwise there are at least two defectives, and
we need to consider how to assign digit values for only the setof positionsP in which
there is at least one defective having each of the two possible binary digit values.

Lemma 6. There are only two defectives if and only if, forp, p′ ∈ P, test2(p, p′) = 2.

Accordingly, if there is no pair of positions for whichtest2 has value 3, we can
conclude that there are only two defectives. Otherwise, there are positionsp1, p2 for
which test2(p1, p2) = 3, and one of the four combinations of two binary values will
not appear. Let that missing combination bev1, v2. Thus, while positionp1 uniquely
identifies one defective, sayD, as the only defective having valuev1 at that position,
positionp2 uniquely identifies one of the other defectives, sayE, as having valuev2.

Lemma 7. If the positionp∗ uniquely identifies the defectiveX to have valuev∗, then
the value of the defectiveX at any other positionp will be that valuev such that
testM (p∗, p, v∗, v) = 1.

Since we have positions that uniquely identifyD and E, we can determine the
values of all their other digits and the only remaining problem is to determine the values
of the digits of defectiveF .

Since positionp1 uniquely identifiesD, we know thatFp1
= v1. For any other

positionp, after determining thatEp = v, we note that iftestM (p1, p, v1, v) = 1 then
there must be at least one defective,X , for whichXp1

= v1 andXp = v. DefectiveD
is ruled out sinceDp1

= v1, and defectiveE is ruled out sinceEp = v. Therefore, it
must be thatFp = v. Otherwise, if thattestM = 0 thenFp = v, sinceFp = v would
have causedtestM = 1.



We have determined the values of defectives D, E and F for all positions. For each
position, only a constant amount of work is required to determine the assignment of
digit values. Therefore, we have proven the following theorem.

Theorem 4. A 3-separable matrix that has a time-optimal analysis algorithm can be
constructed witht = 2q2 − 2q andn = 2q, for any positive integerq.

Comparison of the Number of Tests Required ford = 3 Method. The generald al-
gorithm due to Hwang and Sós [9] requires fewer tests than does the algorithm for
d = 3 suggested by Du and Hwang [5]. Forn < 1010, our (d = 3) algorithm requires
even fewer tests and our general (Chinese Remainder Sieve) algorithm fewest. How-
ever, asymptotically Hwang/Sós uses the fewest tests. We note that, unlike these other
efficient algorithms, our (d = 3) algorithm is time-optimal.
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if test1(0) = 0 then
return there are no defective items

p∗ ← −1
for p← 0 to q − 1 do

if test1(p) = 1 then
Let Dp andEp be the (same)

valuev such thattestB(p, v) = 1
else// test1(p) has value 2

Let v1, v2 be the two values
of v such thattestB(p, v) = 1

if p∗ < 0 then
p∗ ← p

v∗

1 ← Dp ← v1

v∗

2 ← Ep ← v2

else
if testC(p∗, p) = 1

and ( v∗

1 = v1 or v∗

2 = v2 ) then
Dp ← v1

Ep ← v2

else
Dp ← v2

Ep ← v1

if p∗ < 0 then
return one defective,D

else
return two defectives,D andE

if test1(0) = 0 then
return there are no defective items

P ← ∅
for p← 0 to q − 1 do

if test1(p) = 1 then
Let Dp, Ep, andFp be the (same)

valuev such thattestB(p, v) = 1
elseP ← P ∪ {p}

if P = ∅ then return there is one defective itemD
if test2(p1, p2) = 2 for all p1, p2 ∈ P then

p∗ ← −1
for p ∈ P do

if p∗ < 0 then
p∗ ← p

v∗ ← Dp ← 0
else iftestM(p∗, p, v∗, 0) = 1 then

Dp ← 0
elseDp ← 1

Ep ← 1−Dp

return there are two defective itemsD, E

else
Let p1, p2 be positions s.t.test2(p1, p2) = 3
Let v1, v2 be values s.t.testM(p1, p2, v1, v2) = 0
Dp1
← v1

Fp1
← Ep1

← 1− v1

Ep2
← v2

Fp2
← Dp2

← 1− v2

for p ∈ P − {p1, p2} do
if testM(p1, p, v1, 0) = 1 then

Dp ← 0
elseDp ← 1
if testM(p2, p, v2, 0) = 1 then

Ep ← 0
elseEp ← 1
v ← Ep

if testM(p1, p, 1− v1, 1− v) = 1 then
Fp ← 1− v

elseFp ← v

return there are three defective itemsD, E, andF

(a) (b)

Fig. 1. Analysis algorithms. (a) for up to 2 defectives; (b) for up to3 defectives.


