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Abstract. We study practically efficient methods for performing condiorial
group testing. We present efficient non-adaptive and tagestcombinatorial
group testing algorithms, which identify the at masitems out of a given set
of n items that are defective, using fewer tests for all pratBeasizes. For ex-
ample, our two-stage algorithm matches the informatiowritic lower bound
for the number of tests in a combinatorial group testingmegj.
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1 Introduction

The problem of combinatorial group testing dates back tolt\@far Il, for the prob-
lem of determining which in a group of blood samples contain the syphilis antigen
(hence, are contaminated). Formally, in combinatorialigrieesting, we are given a set
of n items, at mostl of which are defective (or contaminated), and we are intedsis
identifying exactly which of the: items are defective. In addition, items can be “sam-
pled” and these samples can be “mixed” together, so testsdistamination can be
applied to arbitrary subsets of these items. The result estamhay be positive, indicat-
ing that at least one of the items of that subset is defeativaggative, indicating that
all items in that subset are good. Example applicationdfithiais framework include:

— Screening blood samples for diseadeghis application, items are blood samples
and tests are disease detections done on mixtures takerséleated samples.

— Screening vaccines for contaminatidn this case, items are vaccines and tests are
cultures done on mixtures of samples taken from selectetines.

— Clone libraries for a DNA sequenddere, the items are DNA subsequences (called
cloneg and tests are done on pools of clones to determine whiclesloontain a
particular DNA sequence (calledozobé [8].

— Data forensicsin this case, items are documents and the tests are apptisadf
one-way hash functions with known expected values applisdiected collections
of documents.

The primary goal of a testing algorithm is to identify all defive items using as
few tests as possible. That is, we wish to minimize the faltgfunction:

— t(n,d): The number of tests needed to identify upitdefectives among items.

This minimization may be subject to possibly additionalstoaints, as well. For exam-
ple, we may wish to identify all the defective items in a sanfflon-adaptiviround of
testing, we may wish to do this in twpdrtially-adaptivg rounds, or we may wish to
perform the tests sequentially one after the otherfinlg adaptivefashion.



In this paper we are interested in efficient solutions to dowmorial group testing
problems for realistic problem sizes, which could be amptie solve the motivating
examples given above. That is, we wish solutions that mizerin, d) for practical
values ofn andd as well as asymptotically. Because of the inherent delagsahe
built into fully adaptive, sequential solutions, we areesigisted only in solutions that
can be completed in one or two rounds. Moreover, we desitgieok that are efficient
not only in terms of the total number of tests performed, Bsiv or the following
measures:

— A(n,t): Theanalysistime needed to determine which items are defective.

— S(n,d): The samplingrate—the maximum number of tests any item may be in-

cluded in.

An analysis algorithm is said to tefficientif A(n,t) is O(tn), wheren is the number
of items andt is the number of tests conducted. Itisie-optimalif A(n,t) is O(t).
Likewise, we desire efficient sampling rates for our aldoris; that is, we desire that
S(n,d) beO(t(n,d)/d). Moreover, we are interested in this paper in solutionsithat
prove previous results, either asymptotically or by comtdfiactors, for realistic problem
sizes. We do not define such “realistic” problem sizes folynhlit we may wish to con-
sider as unrealistic a problem that is larger than the toahory capacity (in bytes) of
all CDs and DVDs in the world< 102°), the number of atomic particles in the earth
(< 10°9), or the number of atomic particles in the universel(0%°).

Viewing Testing Regimens as Matricéssingle round in a combinatorial group testing
algorithm consists of a test regimen and an analysis algoritvhich, in a non-adaptive
(one-stage) algorithm, must identify all the defectiv$)e test regimen can be mod-
eled by at x n Boolean matrix,\/. Each of then columns ofM corresponds to one
of then items. Each of the rows of M represents a test of items whose corresponding
column has a 1-entry in that row. All tests are conductedredfte results of any test is
made available. The analysis algorithm uses the resulteotésts to determine which

of then items are defective.

As described by Du and Hwang [5](p. 133), the mathik is d-disjunctif the
Boolean sum of anyl columns does not contain any other column. In the analysis
of ad-disjuncttesting algorithm, items included in a test with negativecome can be
identified as pure. Using @disjunct matrix enables the conclusion that if there dre
or fewer items that cannot be identified as pure in this matieesr all those items must
be defective and there are no other defective items. If ni@ed items remain then at
leastd + 1 of them are defective. Thus, usinglalisjunct matrix enables an efficient
analysis algorithm, wittd(n, t) beingO(tn).

M is d-separable(d-separabl@ if the Boolean sums ofl (up to d) columns are
all distinct. Thed-separable property implies that each selection of ugp defective
items induces a different set of tests with positive outcaniédus, it is possible to
identify which are the up td defective items by checking, for each possible selection,
whether its induced positive test set is exactly the obthpmsitive outcomes. However,
it might not be possible to detect that there are more ttdafective items. This analysis
algorithm takes tim&(n?) or requires a large table mappitigubsets ta-subsets.

Generally,d-separable matrices can be constructed with fewer rows ¢aanl-
disjunct matrices having the same number of columns. Alghdhe analysis algorithm



described above fal-separable matrices is not efficient, sodhseparable matrices that
are notd-disjunct have an efficient analysis algorithm.

Previous Related WorkCombinatorial group testing is a rich research area withyman
applications to many other areas, including communicatienyptography, and net-
working [3]. For an excellent discussion of this topic, tkeader is referred to the book
by Du and Hwang [5]. For generd) Du and Hwang [5](p. 149) describe a slight modi-
fication of the analysis of a construction due to Hwang argl[Sfthat results in ax n
d-disjunct matrix, withn > (2/3)3%/164° and sat < 16d2(1 + logs 2 + (logs 2)1gn).
For two-stage testing, Debonés al. [4] provide a scheme that achieves a number of
tests within a factor off.54(1 + o(1)) of the information-theoretic lower bound of
dlog(n/d). Ford = 2, Kautz and Singleton [10] construct a 2-disjunct matrixhwit
t = 39t andn = 3%, for any positive integeq. Macula and Reuter [11] describe a
2-separable matrix and a time-optimal analysis algorithihwi= (¢*> + 3¢)/2 and

n = 29 — 1, for any positive integeg. Ford = 3, Du and Hwang [5](p. 159) describe
the construction of &-separable matrix (but do not describe the analysis alyo)it
with ¢ = 4(%) = 18¢® — 6g andn = 27 — 1, for any positive integey.

Our Results.In this paper, we consider problems of identifying defezdivsing non-
adaptive or two-stage protocols with efficient analysioathms. We present several
such algorithms that require fewer tests than do previaym#hms for practical-sized
sets, although we omit the proofs of some supporting lemmahis paper, due to
space constraints. Our general case algorithm, which isdbaa a method we call
the Chinese Remainder Sieve, improves the constructiomairig and Sés [9] for all
values ofd for real-world problem instances as well as for n'/> andn > ¢'°. Our
two-stage algorithm achieves a bound fot, d) that is within a factor oft(1 + o(1))

of the information-theoretic lower bound. This bound imys the bound achieved by
Deboniset al.[4] by almost a factor of. Likewise, our algorithm forl = 2 improves
on the number of tests required for all real-world problemesiand is time-optimal
(that is, withA(n,t) € O(t)). Our algorithm ford = 3 is the first known time-optimal
testing algorithm for thaé-value. Moreover, our algorithms all have efficient samglin
rates.

2 The Chinese Remainder Sieve

In this section, we present a solution to the problem formeit@ng which items are de-
fective when we know that there are at mdst n defectives. Using a simple number-
theoretic method, which we call tighinese Remainder Siexreethod, we describe the
construction of al-disjunct matrix witht = O(d? log® n/(log d + loglogn)). As we
will show, our bound is superior to that of the method of Hwamgl So6s [9], for all
realistic instances of the combinatorial group testingofarm.

Suppose we are givem items, numbere@, 1,...,n — 1, such that at mosi <
n are defective. Le{p{', p5*,...,p;*} be a sequence of powers of distinct primes,
multiplying to at least:?. That is,[]; p;’ > n?. We construct & x n matrix M as
the vertical concatenation &f submatricesp), Mo, ..., M. Each submatri¥V/; is

at; x n testing matrix, wherg; = p’’; hencet = Z’;:lpjj. We form each row



of M; by associating it with a non-negative valueless thanpjj. Specifically, for
eachr, 0 < z < pj.j, form a test inM; consisting of the item indices (in the range
0,1,...,n — 1) that equal: (mod p}’). For example, ift = 2 andp;’ = 32, then the
row for z in M; has al only in columns2, 11, 20, and so on.

The following lemma shows that the test mathikis d-disjunct.

Lemma 1. If there are at most! defective items, and all tests i are positive fori,
theni is defective.

Proof. If all k tests fori (one for each prime pOW@ﬁj) are positive, then there exists
at least one defective item. With each positive test thdudesi (that is, it has d in
columnyi), let p’ be the modulus used for this test, and associate yvihdefective
index i; that was included in that test (choosifgarbitrarily in case tesj includes
multiple defective indices). For any defective indéxet P = [[; st ;,— p; . That
is, P, is the product of all the prime powers such thiataused a positive test that
included: for that prime power. Since there akdests that are positive far eachpjj
appears in exactly one of these produéts, So[[ Py = Hpj.j > n. Moreover, there

are at most/ products,P;,. Thereforemax;: Py > (n‘i)l/d = n; hence, there exists
at least one defective indek for which P;; > n. By construction;’ is congruent to
the same values to whichis congruent, modulo each of the prime powergn By
the Chinese Remainder Theorem, the solution to these cornorgruences is unique
modulo the least common multiple of these prime powers, wisi®; itself. Therefore,
1 is equal toi’ modulo a number that is at leastso: = i’; hencej is defective.

The important role of the Chinese Remainder Theorem in tbefpf the above
lemma gives rise to our name for this construction—the G3eriRemainder Sieve.

Analysis. As mentioned above, the total number of tests, d), constructed in the
Chinese Remainder Sieve E’;le;j, where[Tp;’ > n. If we let eache; = 1,

we can simplify our analysis to note thgt, d) = Z;?:lpj, wherep; denotes the
j-th prime number andé is chosen so theif[f:lpj > n<. To produce a closed-form

upper bound fot(n, d), we make use of the prime counting functiar{y), which is
the number of primes less than or equaktoNe also use the well-know@hebyshev
function 0(z) = Z;Ti””l) Inp;. In addition, we make use of the following (less well-
known) prime summation functioa(z) = Z;.rfl) p;. Using these functions, we bound
the number of tests in the Chinese Remainder Sieve methdd af < o(z), wherex

is chosen so tha@(x) > dlnn, sinceln Hpjgm p; = 6(x). For the Chebyshev function,
it can be shown [1] tha#(z) > z/2 for x > 4 and thatd(x) ~ z for largez. So if
we letz = [2dInn], thenf(z) > dInn. Thus, we can bound the number of tests in
our method a$(n,d) < o([2dInn]). To further bound(n, d), we use the following
lemma, which may be of mild independent interest.

Lemma 2. For integerx > 2,

(2) < x? 14 1.2762
o 2Inz Inx '




Proof. Letn = w(z). Dusart [6, 7] shows that, for > 799, (1/n) 327, p; < pn/2;
that is, the average of the firgtprimes is half the value of theth prime. Thus,

for integerz > 6131 (the 799th prime). Dusart [6, 7] also shows that

T 1.2762
m(x) < — (14 ,
Inx Inx

for x > 2. Therefore, for integer > 6131,

2
ole) < & (14_1.2762)'

Inz Inx

In addition, we have verified by an exhaustive computer $etdyat this inequality also
holds for all integerg < x < 6131. This completes the proof.

Thus, we can characterize the Chinese Remainder Sieve dhashfollows.

Theorem 1. Given a set of: items, at mostl of which are defective, the Chinese Re-
mainder Sieve method can identify the defective items asmgnber of tests

r2d1nn]? 1.2762
Hn,d) < 21In[2d1Inn| L+ In[2dInn] /-

By calculating the exact numbers of tests required by the€ds Remainder Sieve
method for particular parameter values and comparing thaesgers to the claimed
bounds for Hwang and Sos [9], we see that our algorithm isrgamovement when:

ed=2andn < 10°7 ed = 3 andn < 10%
ed=4andn < 107° e d =5andn < 10™
ed=6andn < 107" e d > 7 andn < 108°.

Of course, these are the most likely cases for any expectadlanstance of the
combinatorial group testing problem. In addition, our s shows that our method
is superior to the claimed bounds of Hwang and Sos [9)for n'/> andn > €0,
Less precisely, we can say théb, d) is O(d? log® n/(log d + loglog n)), thatS(n, d)
is O(dlogn/(logd+loglogn), andA(n, t) is O(tn), which isO(d*n log? n/(log d +
loglogn)).

3 A Two-Stage Rake-and-Winnow Protocol

In this section, we present a randomized construction forgtage group testing. This
two-stage method uses a number of tests within a constatat fatthe information-
theoretic lower bound. It improves previous upper boundi®jdalmost a factor op.

In addition, it has an efficient sampling rate, wiin, d) being onlyO(log(n/d)). All
the constant factors “hiding” behind the big-ohs in thesertats are small.



Preliminaries. One of the important tools we use in our analysis is the falhglemma
for bounding the tail of a certain distribution. It is a forrh@hernoff bound [12].

Lemma 3. Let X be the sum of. independent indicator random variables, such that
X =", X;, where eachX; = 1 with probabilityp;, fori =1,2,... n. If E[X] =
St pi < fi < 1, then, for any integek > 0, Pr(X > k) < (ep/k)".

Proof. Let u = E[X] be the actual expected value ¥t Then, by a well-known Cher-
noff bound [12], for any > 0,

)

Pr[X > (1 +6)y] < [(HQW] .

(The bound in [12] is for strict inequality, but the same bdunolds for nonstrict in-
equality.) We are interested in the case wlien- §)u = k, that is, whenl 4+ 6 = k/p.
Observing thad < 1 + §, we can therefore deduce that

ek/n : ek e
pex 20 < e | = = (%)

Finally, noting thatu < i, Pr(X > k) < (efi/k)".

Lemma 4. If d < n, then(?) < (en/d)".

Identifying Defective Items in Two Stageés with our Chinese Remainder Sieve
method, our randomized combinatorial group testing cociin is based on the use of
a Boolean matrix\/ where columns correspond to items and rows correspondti) tes
so that if M[i, j] = 1, then itemj is included in tesj. Let C' denote the set of columns
of M. Given a setD of d columns inM, and a specific colump € C — D, we say
thatj is distinguishablérom D if there is a rowi of M such thatM s, j] = 1 buti
contains &) in each of the columns i®. Such a property is useful in the context of
group testing, for the sdd could correspond to the defective items and if a colymn
is distinguishable from the sé?, then there would be a test in our regimen that would
determine that the item corresponding to colujris not defective.

An alternate and equivalent definition [5](p. 165) for a mafv/ to bed-disjunctis
if, for any d-sized subseb of C, each column i’ — D is distinguishable fronD. Such
a matrix determines a powerful group testing regimen, mfpntunately, building such
a matrix requires\/ to haves2(d?logn/ log d) rows, by a result of Ruszinko [13] (see
also [5], p. 139). The best known constructions hée? log(n/d)) rows [5], which is
a factor ofd greater than information-theoretic lower bound, whickigl log(n/d)).

Instead of trying to use a matriX/ to determine all the defectives immediately, we
will settle for a weaker property fat/, which nevertheless is still powerful enough to
define a good group testing regimen. We say fifais (d, k)-resolvableif, for any d-
sized subseb of C, there are fewer thalncolumns inC'— D that are not distinguishable
from D. Such a matrix defines a powerful group testing regimen, &indhg tests
according to the rows of d@resolvable matrix allows us to restrict the set of defexctiv
items to a groufD’ of smaller thani + & size. Given this set, we can then perform an



additional round of individual tests on all the itemsini. This two-stage approach is
sometimes called the trivial two-stage algorithm; we rédethis two-stage algorithm
as therake-and-winnovapproach.

Thus, a(d, k)-resolvable matrix determines a powerful group testingmeg. Of
course, a matrix igl-disjunct if and only if it is(d, 1)-resolvable. Unfortunately, as
mentioned above, constructing(& 1)-resolvable matrix requires that the number of
rows (which correspond to tests) be significantly greatan the information theoretical
lower bound. Nevertheless, if we are willing to usédak)-resolvable matrix, for a
reasonably small value df, we can come within a constant factor of the information
theoretical lower bound.

Our construction of dd, k)-resolvable matrix is based on a simple, randomized
sample-injectiorstrategy, which itself is based on the approach popularigethe
Bloom filter [2]. This novel approach also allows us to pravia strong worst-case
bound for the sample raté(n, d), of our method. Given a parameterwhich is a
multiple of d that will be set in the analysis, we construcRiax n matrix M in a
column-wise fashion. For each colunif M, we choose/d rows at random and we
set the values of these entriesitoThe other entries in columpare set td. In other
words, we “inject” the samplg into each of the /d random tests we pick for the cor-
responding column (since rows &8f correspond to tests and the columns correspond
to samples). Note, then, that for any setlafefective samples, there are at motsts
that will have positive outcomes and, therefore, at ledssts that will have negative
outcomes. The columns that correspond to samples thatsirggtiishable from the de-
fectives ones can be immediately identified. The remairgsge, then, is to determine
the value oft needed so that, for a given valuelaf M is a(d, k)-resolvable matrix
with high probability.

Let D be a fixed set ofl defectives samples. For each (column) iteimC — D, let
X, denote the indicator random variable thal i 7 is falsely identified as a positive
sample byM (that is,i is not included in the set of (negative) items distinguisfiech
those inD), and is) otherwise. Observe that tt&’s are independent, sincg; depends
only on whether the choice of rows we picked for coluirgollide with the at most
rows of M that we picked for the columns corresponding to item®irFurthermore,
this observation implies that ar¥; is 1 (a false positive) with probability at mogt /4,
Therefore, the expected value®t E[X], is at mosfi = n/2!/?. This fact allows us to
apply Lemma 3 to bound the probability thaf does not satisfy théd, k)-resolvable
property for this particular choicé), of d defective samples. In particular,

AN\ K en\k
e\ (%)
Pr(X 2 k) < ( k ) = 20/

Note that this bound immediately implies thakit= 1 andt > d(e + 1) logn, thenM
will be completely(d, 1)-resolvable with high probabilityl(— 1/n) for any particular
set of defective itemd).

We are interested, however, in a bound implying thateoy subsetD of d de-
fectives (of which there ar€’})) < (en/d)?, by Lemma 4), our matrixX\/ is (d, k)-
resolvable with high probability, that is, probability &@glstl — 1/n. That is, we are
interested in the value @fsuch that the above probability boundis:/d) =% /n. From



the above probability bound, therefore, we are interestedMalue oft such that

d k
(t/d)k ~ (EM\T (ET
SR ( d ) ( k ) "
This bound will hold whenever > (d?/k)log(en/d) + dlog(en/k) + (d/k)logn.
Thus, we have the following.

Theorem 2. If t > (d?/k)log(en/d)+dlog(en/k)+(d/k) logn, then &t x n random
matrix M constructed by sample-injection {d, k)-resolvable with high probability,
that is, with probability at least — 1/n.

As mentioned above, a productive way of using the sampégidign construction is
to build a(d, k)-resolvable matrix}/ for a reasonably small value bf We can then use
this matrix as the first round in a two-round rake-and-winriesting strategy, where
the second round simply involves our individual testinghe tit most + k& samples
left as potential positive samples from the first round.

Corollary 1. Ift > 2dlog(en/d)+logn, then the2t x n random matrix)/ constructed
by sample-injection iéd, d)-resolvable with high probability.

This corollary implies that we can construct a rake-andneim algorithm where
the first stage involves performin@(dlog(n/d)) tests, which is within a (small) con-
stant factor of the information theoretic lower bound, ane $econd round involves
individually testing at mos2d samples.

4 Improved Bounds for Small d Values

In this section, we consider efficient algorithms for theciplecases whed = 2 and
d = 3. We present time-optimal algorithms for these cases; thatith A(n,t) being
O(t). Our algorithm ford = 3 is the first known such algorithm.

Finding up to Two DefectivesConsider the problem of determining which items are
defective when we know that there are at most two defecteslescribe 2-separable
matrix and a time-optimal analysis algorithm witk= (¢> + 5¢)/2 andn = 3¢, for any
positive integer,.

Let the number of items be = 37, and let the item indices be expressed in radix 3.
IndexX = X,_1 - -- Xy, where each digik,, € {0,1, 2}.

Hereafter,X ranges over the item index numbéfs ... n — 1}, p ranges over the
radix positions{0, ... ¢ — 1}, andv ranges over the digit valug$, 1, 2}.

For our construction, matrix/ is partitioned into submatrice8 andC'. Matrix B
is the submatrix of\/ consisting of its firsBq rows. Row(p, v) of B is associated with
radix positionp and valuev. B[(p,v), X] = 1 iff X, = v.

Matrix C' is the submatrix of\/ consisting of its Ias(g) rows. Row(p, p’) of C'is
associated with distinct radix positiopsandp’, wherep < p’. C[(p,p’), X] = 1 iff
Xp=Xp.

Let testp(p,v) be the result (1 for positive, 0 for negative) of the test efris
having a 1-entry in rowp, v) in B. Similarly, lettestc(p, p’) be the result of testing



row (p,p’) in C. Lettest1(p) be the number of different values held by defectives in
radix positionp. test1(p) can be computed biest g (p, 0) + testg(p, 1) + tests(p, 2).

The analysis algorithm is shown in the Appendix in Figure 1.

It is easy to determine how many defective items are pre$éste are no defective
items whentest1(0) = 0. There is only one defective item whesst1(p) = 1 for all
p, since if there were two defective items then there must besat one positiop in
which their indices differ antest1(p) would then have value 2. The one defective item
has indexD = D,_; - - - Dy, where digitD, is the valuev for whichtestg(p, v) = 1.

Otherwise, there must be 2 defective itets= D,_; - -- DpandE = E,_; - - - Ey.
We iteratively determine the values of the digits of indi¢eandE.

For radix positions in which defective items exist for onlyeovalue of that digit,
both D and E must have that value for that digit. For each other radix tpmsi two
distinct values for that digit occur in the defective items.

The first radix position in whictD and E differ is recorded in the variablg® and
the value of that digit inD (respectivelyF) is recorded inyj (respectivelyys).

For any subsequent positignin which D and E' differ, the digit values of the
defectives in that position arg, andv, which are two distinct values frodq0, 1, 2},
as arev; andvs;, and therefore there must be at least one value in commorebatw
{vq,vp} and{vj,v3}.

Let a common value be, and, without loss of generality, let, = v].

Lemma 5. The digit assignment faris D, = v, andE,, = v iff testc(p*, p) = 1.

We have determined the values of defectives D and E for aitipos — those where
they are the same and those where they differ. For eachqugitnly a constant amount
of work is required to determine the assignment of digit ealuTherefore, we have
proven the following theorem.

Theorem 3. A 2-separable matrix that has a time-optimal analysis aldguritcan be
constructed witht = (¢* + 5¢)/2 andn = 34, for any positive intege.

Comparison of the Number of Tests Requireddfer 2 Method. For alln < 353, our

d = 2 algorithm uses the smallest number of tests. For higheresgatdin < 3!30,

the Kautz/Singleton and odr= 2 and general (Chinese Remainder Sieve) algorithms
alternate being dominant. For all > 33!, the Hwang/Sos algorithm uses the fewest
tests.

Finding up to Three DefectivesConsider the problem of determining which items
are defective when we know that there are at most three defsciVe describe a-
separable matrix and a time-optimal analysis algorithrhwit: 2¢% — 2¢ andn = 29,
for any positive integed.

Let the number of items be = 27, and let the item indices be expressed in radix 2.
IndexX = X,_ --- X, where each digi,, € {0,1}.

Hereafter,X ranges over the item index numbéfs ...n — 1}, p ranges over the
radix positions{0, ... ¢ — 1}, andv ranges over the digit valug®, 1}.



Matrix M has2q? — 2q rows. Row(p, p’,v,v’') of M is associated with distinct
radix positiong andp’, wherep < p’, and with values) andv’, each of which is in
{0,1}. M[(p,p’,v,v"), X| = 1iff X, =vandX, ="

Let testn(p,p’,v,v") be the result (1 for positive, 0 for negative) of testing ifem
having a 1-entry in rowp, p’,v,v’') in M. Forp’ > p, definetesty(p’,p,v’,v) =
testyr (p,p’,v,0").

The following three functions can be computed in termseof ;.

— testp(p,v) has value 1 (0) if there are (not) any defectives having valimeradix
positionp. Hencefestp(0,v) = 0if testar(0,1,v,0)+testpr(0,1,v,1) = 0, and
1 otherwise. Fop > 0, testp(p,v) = 0if testps (p, 0,v,0)+testp(p,0,v,1) =0,
and 1 otherwise.

— test1(p) is the number of different binary values held by defectivesdix position
p. Thus,testl(p) = testp(p,0) + testp(p, 1).

— test2(p, p’) is the number of different ordered pairs of binary values gl defec-
tives in the designated ordered pair of radix positions.r&twee, test2(p,p’) =
testrr(p,p’,0,0) + testar(p, p’,0,1) + testar(p, p', 1,0) + testrr(p, ', 1, 1).

The analysis algorithm is shown in the Appendix in Figure 1.

We determine the number of defective items and the valuesif digits. There are
no defective items whetest1(0) = 0. At each radix positiop in whichtest1(p) = 1,
all defective items have the same value of that digit. If aflettives agree on all digit
values, then there is only one defective. Otherwise therateast two defectives, and
we need to consider how to assign digit values for only thefpbsitionsP in which
there is at least one defective having each of the two p@sbkibhry digit values.

Lemma 6. There are only two defectives if and only if, fop’ € P, test2(p,p’) = 2.

Accordingly, if there is no pair of positions for whidest2 has value 3, we can
conclude that there are only two defectives. Otherwisagtlaee position;, po for
which test2(p1, p2) = 3, and one of the four combinations of two binary values will
not appear. Let that missing combinationdew,. Thus, while positionp; uniquely
identifies one defective, say, as the only defective having value at that position,
positionp, uniquely identifies one of the other defectives, #gyas having values.

Lemma 7. If the positionp* uniquely identifies the defective to have value*, then
the value of the defectiv& at any other positiorp will be that valuev such that

testpr (p*, p,v*,v) = 1.

Since we have positions that uniquely identiy and E/, we can determine the
values of all their other digits and the only remaining pesbiis to determine the values
of the digits of defective'.

Since positionp; uniquely identifiesD, we know thatF,, = ;. For any other
positionp, after determining thak,, = v, we note that itest s (p1,p,71,7) = 1 then
there must be at least one defecti¥g, for which X,,, = 7, andX, = v. DefectiveD
is ruled out sinceD,, = v;, and defectiveF is ruled out since®,, = v. Therefore, it
must be tha¥, = ©. Otherwise, if thatest; = 0 thenF, = v, sinceF,, = 7 would
have causetkst); = 1.



We have determined the values of defectives D, E and F foioaitipns. For each
position, only a constant amount of work is required to datee the assignment of
digit values. Therefore, we have proven the following tieeor

Theorem 4. A 3-separable matrix that has a time-optimal analysis alduritcan be
constructed witht = 2¢%2 — 2¢ andn = 29, for any positive integey.

Comparison of the Number of Tests Requireddor 3 Method. The generall al-
gorithm due to Hwang and Sbés [9] requires fewer tests thas dloe algorithm for
d = 3 suggested by Du and Hwang [5]. Fer< 10, our (d = 3) algorithm requires
even fewer tests and our general (Chinese Remainder Sig@)tlam fewest. How-
ever, asymptotically Hwang/So6s uses the fewest tests.déethat, unlike these other
efficient algorithms, ourd = 3) algorithm is time-optimal.
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if test1(0) = 0 then
return there are no defective items
pt -1
forp«— 0tog— 1do
if test1(p) = 1 then
Let D, andE, be the (same)
valuev such thatestg(p,v) =1
elsell test1(p) has value 2
Let vy, v2 be the two values
of v such thatests(p,v) =1
if p* < 0then
p*—p
v} «— Dp — v1
vy — E, — v
else
if testc(p*,p) =1
and (v = v1 or v5 = vy ) then
Dy — vy
Ep «— V2
else
Dy — v2
Ep «— U1
if p* < 0then
return one defectiveD
else
return two defectivesD andFE

(@)

if test1(0) = 0 then
return there are no defective items
P10
forp«— 0tog—1do
if test1(p) = 1 then
Let D,, E,, andF), be the (same)
valuev such thatestg(p,v) =1
elseP — P U {p}

if P = 0 then return there is one defective iteid

if test2(p1,p2) = 2 for all p1,p2 € P then
pr -1
for p € P do
if p* < 0then
pte—p
v*«— D, 0
else iftesta (p*, p,v*,0) = 1 then
D, —0
elseD, — 1
E,—1-D,
return there are two defective items, £
else
Let p1, p2 be positions s.test2(p1,p2) = 3

Letvi, va be values s.ttest s (pl,pQ, U1, 'Uz) =0

Dy, — v
Fpy — Epy —1-u
Ep, — v2
Fpy — Dpy —1 -2
for p € P — {p1,p2} do
if testar(p1,p,v1,0) = 1then
D, —0
elseD, — 1
if testar(p2, p,v2,0) = 1then
E,—0
elseE, — 1
v— B,
if testar(p1,p,1 —v1,1 —v) = 1then
Fp—1—-vwv
elseF, «— v

return there are three defective itemis F, andF’

(b)

Fig. 1. Analysis algorithms. (a) for up to 2 defectives; (b) for uBtdefectives.



