Using Activity Theory to Understand Contradictions
in Collabor ative Softwar e Development

Cleidson R. B. de Souza' and David F. Redmiles
School of Information and Computer Science
University of California, Irvine
{cdesouza, redmiles} @ics.uci.edu

Abstract

Activity theory is an analytical framework that has been
used successfully to understand and explain collective
work. Software development is of course one particular
kind of collective work. In this paper, we use activity
theory to analyze the collaborative work of a software
development team. Using this framework, we were able
to identify different tensions within and contradictions
between activities performed by the developers in the
team, including software tools and practices. We argue
that these tensions and contradictions illuminate
opportunities for improvements in the work and for
software engineering researchers. Additionally, we
believe that the successful application of activity theory
to understanding collaborative software development isa
step towards further understanding this framework and
adapting it to general use.

Keywords. Computer-supported cooperative work,
requirements engineering, human-computer interaction,
maintenance and evolution, activity theory, and team
work.

1. Introduction

Software engineers have sought for quite some time to
understand their own work of software development as
an important instance of cooperative work, especially
seeking ways to provide better software tools to support
developers [5]. However, before developing tools, one
needs to properly understand different factors that
influence the adoption and use of these tools, such as
organizational aspects, the environment where the work
is performed, the developers and their history as a
community, and the practices used by these developers
and so on [23]. Furthermore, the inclusion of the users
has been shown to be an important factor for software
tool adoption. All these factors need to be taken into
account to avoid that the introduction of the tools disrupt
the workplace, leading to unsuccessful tool adoption.

The HCI / CSCW community has applied different
approaches to guarantee that the aforementioned factors
are not disregarded during the analysis of workplaces.
Examples of such approaches are ethnomethodology
[13], distributed cognition [15], activity theory [20] [4],

among others.

In this paper, we use the activity theory framework to
analyze the collective effort of a collaborative software
development team. Using this framework, we were able
to identify different tensions within the activity and
contradictions between activities performed by the
developers in the team. We argue that these tensions and
contradictions illuminate opportunities for improvements
in the work, through better software tools and practices.
Additionally, we believe that the successful application of
activity theory to understanding collaborative software
development is a step for further understanding this
framework and adapting it for more general use.

The rest of the paper is organized as follow. Sections
2 and 3 describe the setting where the software
development team is located and methods used to study
it. Section 4 describes the analysis of our observations
using activity theory. More specifically, tensions within
elements of the software development activity are
described, as well as, the “fixes” that team members
adopted to handle these tensions. The following section,
5 presents the discussion about the tensions and fixes
identified and their implications for software engineering
tools. Section 6 discusses the implications for future use
of the activity theory framework in the analysis of
software development efforts. Finally, conclusions and
future work are discussed.

2. The Setting

2.1. Introduction

The first author spent eight weeks during the summer of
2002 interning as a software developer of a large-scale
software development team at the NASA / Ames
Research Center. As a member of this team, he was able
to make observations and collect information about a
variety of aspects, including the organization of the team,
the formal and informal practices that this team adopted,
and the tools that they used. The software development
team develops a software application we will call MVP
(not the real name), which is composed of ten different
tools that are deployed in different parts of the United

T Also at the Department of Informatics, Universdade Federal do Parg,
Belém, PA, Brazil.

States. The source code is approximately one million
lines of C and C++.

2.2. MVP Software

As mentioned before, MVP is composed of several
different tools. Each one of these tools uses a specific set
of “processes.” A process for the MV P team isa program
that runs with the appropriate run-time options and it is
not formally related with the concept of processes in
operating systems and/or distributed systems. Processes
typically run on distributed Sun workstations and
communicate using a TCP/IP socket protocol. Running a
tool means running the processes required by this toal,
with their appropriate run-time options.

2.3. The Software Development Team

The software development team is divided into two
groups. the V&V saff and the developers. The
developers are responsible for writing new code, for bug
fixing, and adding new features. This group is composed
of 25 members, where three of them are also researchers
that write their own code to explore new ideas. The
experience of these developers range between 3 months
to more than 25 years. Experience within the MV P group
ranges anywhere between 2% months to 9 years. This
group is spread out into several offices across two floors
in the same building.

V&V members are responsible for testing and
reporting bugs identified in the software, keeping a
running version of the software for demonstration
purposes and for maintaining the documentation (mainly
user manuals) of the software. This group is composed of
6 members. Half of this group is located on theV & V
Laboratory, while the rest is located in several offices
located in the same floor and building as this laboratory.
Both, the V&V Lab and developers offices arelocated in
the same building.

2.4. The Softwar e Development Process

The MVP group adopts a formal software devel opment
process that prescribes the steps that need to be
performed by the MVP developers during the software
development activities. For example, all developers, after
finishing the implementation of a change, should
integrate their code with the main basdine. In addition,
each developer is responsible for testing its code to verify
if his integration did not insert bugs in the code, or,
“break the code’, as informally characterized by MVP
developers. After checking-in files in the repository, a
developer must send an email to the software
development mailing list describing the problem report
associated with the changes, the files that were changed,
the branch where the check-in will be performed among
other pieces of information.

2.5. Division of Labor in the MVP group
As mentioned before, each MVP tool uses a specific set
of processes with their run-time options. Processes are
used to divide the work, i.e., each developer is assigned
to one or more processes and tends to specialize on it.
For example, there are process leaders and process
developers, who, most of the time, work only with this
process. This is an important aspect because it allows
these developers to understand its behavior more deeply
and familiarize with its structure, therefore helping them
in dealing with the complexity of the code. Indeed,
during the software development activity, managers tend
to assign work according to these processes to facilitate
this learning process. However, it is not unusua to find
developers working on different processes. This might
happen due to different circumstances. For instance,
before launching a new release, the entire workforce is
needed to fix bugs in the code. Another reason for
allowing one developer to work in a different process is
the complexity of the code. One bug might seem to be
located in a process and therefore it is allocated to the
developer who works with this process. But, later he
might find out that the bug actually is located in another
process. In this casg, it is better to let the developers
finish the work since so much time was invested in it. As
a side effect, this allows the devel opers to have a general
view of the MVP software, understanding other
processes. Indeed, according to the MVP software
manager:
“(..) while we want to try to keep people
concentrated on their process (...) so they get to know
them really well, on the other hand, it's always nice
for them to go outside of it and take a look and see
what’s going on in some of the other processes, gives
them a better understanding of how MVP works.”

3. Methods

3.1. Data Collection
As mentioned in section 2, the first author spent eight
weeks during the summer of 2002 as a member of the
MVP team. As a member of this team, he was able to
make observations and collect information about severa
aspects of the team. He also talked with his colleagues to
learn more about their work. Additional material was
collected by reading manuals of the MV P tools, manuals
of the software development tools used, formal
documents (like the description of the software
development process and the 1SO 9001 procedures),
training documentation for new developers, problem
reports (PR’s), and so on.

Some of the team members agreed to let the intern
shadow them for a few days so that he could learn about

their functions and responsibilities better. These team
members belonged to different groups and played diverse
roles in the MVP team: the documentation expert, some
V&V members, leaders, and devel opers.

3.2. Data Analysis: Activity Theory

Activity theory is a way of examining phenomena in the
world by considering the relationships of agents, objects,
means, and in the case of human collective activity,
objectives, community, rules, and division of labor [7].
Activity theory was pioneered in the 1920s and 30s by
the psychologists, Vygotsky, Leontiv, and Luria and
today is actively being developed into a methodology of
analysis and design by alarge community of researchers.
A good introduction to the origins, methodology, state of
the research and applications, as well as current
researchers in the field is provided by the collections of
articles by Engestrém, Miettinen, and Punaméki [9], by
Nardi [20], and by Nardi and Redmiles[21].

The activity theory framework alows a variety of
ways of analyzing phenomena. For example, Collins et
al. [4] emphasizes Engestrom’'s triadic model of
individual and collective activity [7]. This model
suggests important information to the analyst through the
identification of contradictions. Contradictions revea
themselves as breakdowns, conflicts, problems, tensions
or misfits between elements of an activity or between
activities [17]. The tensions identified by Collins et al.
had important implications for tools, practices, and
divison of labor for the staff members. A different
approach might apply the three-level hierarchica
dstructure of a collaborative activity proposed by
Engestrom [8]. This approach is used by Barthelmess
and Anderson [2] to analyze the capabilities of software
engineering environments.

In this study, Engestrom’s activity theory model [7]
was used in the analysis of findings. This modd is
presented in Figure 1. Activities are associated with
objectives called, “outcomes.” People working within a
community share activities. They work to create objects
and rely on tools referred to as artifacts to support their
activity. Rules instantiate division of labor and practices
of the community.

4. The MVP Software Development Activity

4.1. Introduction

To begin, we will describe the software development
activity as performed by the MVP team. Figure 2 is
basically an “instantiation” of the framework described
in Figure 1 as applied to the MV P software devel opment
team.

Mediating Artefacts

Subject Object — Outcome

Rules Community Division of labour

Figure 1. Elements of the Activity Theory
Framework (see[7]).

Artefacts (CM tools,
bug tracking, e-mail)

Subject Object (MVP software)
(developers) — Outcome (MVP SW
ithout bugs, etc)

Rules Community Division of Labour
(MVP team) (developers and V&V

(software process, saff)

conventions)

Figure 2: The Softwar e Development Activity as
applied tothe MVP Team

The main outcome of the software development activity
is the high-quality MVP software, i.e., bug-free software
that is easy to evolve, delivered on schedule, and meeting
the customers specifications. Of course, this includes
executables, source code and bug repositories, manuals,
specifications and so on. The object of this activity is the
MVP software while being modified. This includes, for
example, the changes being introduced in the code,
reported bugs not yet solved and so on. The mediating
artifacts or tools, are the set of tools used by the team to
manipulate the object so that they achieve their goal or
outcome, such as configuration management and bug
tracking tools, e-mail, etc. Rules consist of formal
practices (e.g., software development processes) and
informal practices (conventions, workarounds and so on)
used by the MVP team. The community is the whole
MVP team, which is organized according to a specific
division of labor: there are mainly two groups, namely
developers and V&V saff. But the members of these
groups also adopt a division of labor. There are process
leaders and process developers, the configuration and
release manager, the software manager, testers, and so

on.

4.2. Tensions and their “Fixes’ inthe MVP Team
As mentioned in the previous section, according to the
activity theory framework, contradictions are important
aspects in an activity because they might be used as
sources of development ([17], pg. 34). In other words,
contradictions trigger reflection; therefore helping in the
improvement of the activity. Contradictions reved
themselves as breakdowns, problems, tensions or misfits
between elements of an activity or between activities. In
our case, we identified several tensions within the
software development activity developed by the MVP
team, but, in addition to that, we also identified the fixes
that the team adopted to solve them. We identified
tensions between different elements: between the object
and the community, and between the rules and the
community.

In the first case, the tension exists because of the
effects that the object (e.g.,, changes in the MVP
software) will have on the community. For example, if a
change (the object) is introduced in the source code,
other members of the MVP team (the community) might
need to be informed because they may need to perform
additional tasks because of that (e.g. update the
documentation). The tension exists because developers
are not aware of some interdependencies in the software
and, therefore, how other members of the community are
affected by their work. Despite that, the community must
support the evolution of the software and guarantee that
the software delivered is not inconsistent with the
specifications, manuals and other artifacts.

In the second case, basically, the tension exists
between rules and the community because one rule
suggests that a developer should perform a specific
action, but he does not want to perform that because heis
concerned about the effect of his action in the rest of the
community. For example, if one developer decides to
check-in his code into the repository, the other
developers (part of the community) might need to
recompile their code in order to work with the latest
version of the software, and this compilation process is
time-consuming. In the rest of this section, we will
describe these breakdowns in more detail and the “fixes’
that the MV P team adopted.

4.3. Tensions
Community
In this case, tensions emerge in the software devel opment
activity because of the concern of how the object will
affect the community. For example, when the source code
is modified, often it is also necessary to modify other
software artifacts, such as manuals, documentation,
specifications and so on. Otherwise, inconsistencies will

between the Object and the

arise. While inconsistencies might have positive effects
in software development, in general they are not
desirable [27]. The MVP software development team
already recognized the need to handle this problem
(tension) and adopted two different and complementary
practices that deal with this problem: formal reviews are
adopted in the software devel opment process to deal with
inconsistencies in the source code; and problem reports
(PR's) that are dtructured in such a way that the
inconsistencies between source code and other artifacts
are easer to manage. Both practices will be explained
bel ow.

4.3.1. Adoption of Formal Reviews

The software process adopted by the MVP team
prescribes the usage of two types of formal reviews: code
reviews before the integration of any change, and design
reviews for major changes in the software. Code reviews
are performed by the manager of each process. Therefore,
if a change involves, two processes, a developer’s code
will be reviewed twice: one by each manager of these two
processes. In addition to that, the code is aso reviewed
by the general software manager before the closure of the
problem report associated with that change. In the first
review, one of the goas of the process manager is to
guarantee that the change does not affect other parts of
the code of that process. In the second review, one of the
goals of the software manager is to guarantee that the
changes do not “break” the overall architecture of the
system, i.e., the software manager will check if the new
change will not generate side effects on other parts of the
code, which will eventually lead to the recompilation.

On the other hand, design reviews are adopted for
changes that involve major reorganizations of the source
code. The need of design reviews is decided by the
software manager depending on each problem report
being worked. Similarly, the purpose of these reviews is
to understand, possibly avoid, or minimize the effects of
the changes in the source code.

By carefully inspecting the changes (object) that are
introduced in the source code, the MVP team tries to
minimize the side-effects that the community is going to
experience because of these changes.

4.3.2. The Structur e of Problem Reports

In our analysis we identified that the structure of the
problem reports (PR’'S) in the bug tracking tool is very
useful in facilitating the coordination of the MVP team.
To be more specific, in addition to support bug tracking,
PR’s aso facilitate the management of interdependencies
among the artifacts of the MVP software. PR’s are used
by end-users liaisons, developers and testers for different
purposes. For example, when a bug is identified, it is
associated with a specific PR. The person who identified

the bug is also responsible for filling a field in the PR
describing ‘how to repeat’ the bug, i.e., the dataset used,
the tools and their parameters, etc. This description is
used by the developer assigned to fix the bug to
understand the circumstances under which the bug
appears. After fixing the bug, this developer must fill a
field in the PR that describes how the testing should be
performed to properly validate the fix. Thisfieldis called
‘how to test’. This information is used by the test
manager, who creates test matrices that will be later used
by the testers during the regression testing. The
developer who fixes the bug also indicates in another
field of the PR if the documentation of the tool needs to
be updated. Then, the documentation expert uses this
information to find out if the manuals need to be updated
based on the changed the PR introduced. Finally, another
field in the PR conveys what needs to be checked by the
manager when closing it. Therefore, it is a reminder to
the software manager of the aspects that need to be
validated. In short, MVP members use information from
the PR’ s depending on therole they are playing.

MVP developers reported that using this approach,
they were able to manage the interdependencies between
the source code and other artifacts of the software
development activity, such as test cases, manuals, and so
on. Again, the tension between the object (the MVP
software) and the community is addressed, so that
changes in the object can be easily accompanied by the
respective actions of other members of the community, so
that the additional changes in other objects can be
performed.
4.4, Tensions between the Rules and the

Community

These tensions occur because a rule might suggest that a
developer should perform a specific action, but he does
not want to perform that because he is concerned about
the effect of his action in the community. As mentioned
earlier, an example of such tension occurs when one
developer needs to check-in his code into the repository,
but the other developers will need to recompile their code
in order to work with the latest version of the software,
and this compilation process is time-consuming.
Therefore, the developer needs to decide if he will follow
the rule and cause the whole community to recompile, or
he is not going to follow the rule, at least for a while,
thereby minimizing the impact of his actions in the rest
of the community. Typical fixes adopted by the MVP
team include change the order in which some rules are
executed, and perform additional actions alongside with
the rule to minimize the disruption of the community.

Furthermore, tensions between these components also
arise because of the impact that the Community will have
in the execution of the Rule. In other words, the

developer is concerned that he needs to perform a rule
but actions of the community (like check-in's, check-
out’'s, etc) will impact his performance of the rule. In
this case, those actions influence how the developer
performs the rule. Note that in this case, the division of
labor also influences this tension because it prescribes
how developers should be organized in the community,
therefore allowing two or more developers to work and
check-in in concurrently. This situation is described in
more detailsin section 4.4.3.

4.4.1. Changing the order of execution of the Rules

The MVP group adopts a formal software devel opment
process that prescribes that after checking-in filesin the
repository, a developer must send an e-mail to the
software development mailing list describing the problem
report associated with the changes, the files that were
changed, the branch where the check-in was performed,
and other details. However, we found out that MVP
developers perform these activities in the inverse order,
i.e., they will send email before, not after, the check-in.
By doing that, MVP developers allow their colleagues to
prepare for the changes that they are about to commit.
Indeed, developers might even send e-mail to the author
of the change asking him to delay its check-in.

We also observed that MVP developers often engage
in paralle development, i.e, two or more developers
make changes in the same file concurrently. The changes
are performed in their local versions, which had been
checked-out of the repository. Therefore, if a developer
needs to synchronize his modified version of a file with
the latest version of that file, he needs to perform a
merge between these two versions. However, if severa
additional versions were created by different check-in's
after the file has been checked-out, the “difference”
between the working version and the latest version might
be too large, and the merging algorithm might not work
properly. Furthermore, the working version of a
developer might become outdated, which might lead to
conflicting changes in the code among other problems.
MVP developers are aware of these problems and
adopted a practice called “partial check-in's’ to handle
this situation. Basically, a developer checks files back
into the main repository before finishing his entire work
with the PR associated with those files, instead of having
to wait until his work is entirely done. However, this
practice is only adopted in files with a high degree of
parallel development, i.e,, files that are often modified by
different developers, which leads to the creation of
several versions. This is another example of tension that
is created between tools (CM) and a rule (check-in only
after code reviews). Again, the solution adopted by the
community is to change the order of the Rules: partial
check-in's means that the check-in's are performed

before the code reviews.

A different situation leads MV P developers to change
the order in which a rule is executed. In this case, as
mentioned in the previous section, MVP developers
might add information about the need to recompile part
of the system after their check-in is performed. MVP
developers are aware that the recompilation process is
time-consuming, up to 30 to 45 minutes. They want to
finish their changes (PR), but they do not want to disturb
the whole community by forcing them to wait for the end
of the recompilation. Therefore, MVP developers may
hold check-in's until the evening when most of the
developers are already gone. Note that the CM tool used
by the MVP team allows developers to choose if they
want to incorporate other’s changes, meaning that they
are able to decide if they want to recompile the code or
not. Despite that, they still adopt this practice of “holding
check-in's’. By doing that, they minimize the number of
other developers that will be affected by their actions.
According to one of the developers:

“(...) and the other thing that you find is that when people
also know that if they are going to check-in a file they will
do in thelater afternoon ... you're gonna do a check-in and
this is gonna cause anybody who recompiles that day have
to watch their computer for 45 minutes (...) and most of the
time, you're gonna see this coming at 2 or 3 in the
afternoon, you don't see folks (....) you don't see people
doing [file 1] or [file 2] checking-in at 8 in the morning,
because everybody all day is gonna sit and recompile.”

4.4.2. Performing additional actions alongside the
Rule

Our observations suggest that developers, while writing
the e-mail to be sent to the mailing list, also describe the
impact that their changes will have on others work. In
other words, the software process (rule) prescribes that
some information needs to be sent to the mailing list.
However, MVP developers include additiona
information to this e-mail, which allows other devel opers
to prepare and reflect about the effect of their colleagues
changes in their current work, since they are aware of
some of the interdependencies in the source-code.
Consequently, they might adjust themselves to these
changes.

Often, when another developer reads one of these
e-mails, he might walk to the co-worker’s office to ask
about the changes or, if the change has already been
committed, browse the CM and bug tracking systems to
understand them. The following list presents some usual
comments sent by MV P devel opers.

“ No one should notice.”

“[description of the change]: only [Tool name] users will

notice any change.”

“Will be removing the following [x] files. No effect on
recompiling.”

“ Also, if you recompile your views today you will need to
start your own [z] daemon to run with live data.”

“The changes only affect [y] mode so you shouldn't notice
anything.”

“1f you are planning on recompiling your view this evening
([current date]) and running an MVP tool with live [Z] data
you will need to run your own [z] daemon.”

Based on our observations, we identified two types of
impact statements. changes in run-time parameters of a
process and the need of recompilation of parts or the
whole source code. The former case is very important
because other developers might be running the process
that is changed. The latter case is also necessary because
when afile is modified, it will be recompiled, as well as,
the other files that depend on it.

4.4.3. Speeding-up the Rule

MVP developers sometimes rush to test and check-in
their changes because they want to do that before
somebody else performs ancther check-in. If somebody
checks in any code, the developer needs to repeat his
testing to guarantee that his changes will not inexplicably
interact with the changes previoudy checked in and
introduce errors in the source code. As one devel oper
plainly pointed out: “This is a racel” We observed that
this testing is very informal. For example, developers
will sit in the V&V laboratory and compare the current
version of MVP to the one with changes. In short, MVP
developers do not use regression testing at this moment.
This type of testing will be used by the V&V staff at a
different time, i.e., before launching a new release.

Although we observed that some check-in's
introduced errors in the source code, we do not have
evidence that these errors were introduced because of this
racing. “Speeding up” the process is a fix employed by
the MV P devel opers because of the tensions between the
community (e.g., their actions) and the object (the source
code changes, for examples). In other words, the
community affects the object because actions performed
by other members of the community need to be
accompanied by changesin the object.

5. Implicationsfor Software Tools

As described in the previous section, we observed two
types of tensions in the software development activity
performed by the MVP team: between the object and the
community and between the rules and the community. By
closely examining these tensions, it was possible to
identify a common concern with the impact of the object
(or rule) in the community and the impact of the
community on the object. For example, PR’'s used by the
team are structured in such away that all changesin the
source code (object) are accompanied by the indications

of their impact on the other developers work (the
community). Similarly, when one developer performs a
“partial check-in,” he wants to avoid that the community
(through their check-in's and check-out’s operations)
impacts the changes (object) that he is currently
developing. In short, the impact on the community is
either caused by the object or by the actions of other
members of the community when they follow the rules.
On the other hand, the impact on the object is caused by
the actions of members of the community.

Furthermore, as discussed in the previous section, the
MVP software development team adopted fixes in order
to minimize the aforementioned tensions. By adopting
these fixes, the MVP team is implicitly recognizing the
importance of managing such impacts. In other words,
the community wants to manage the impact of both other
developer’s changes and actions in their own work.
However, current software engineering tools, with a few
exceptions, have focused exclusively in controlling the
impact of the changes that other developers introduce.
Indeed, there are several techniques available to support
change impact analysis [1]. Impact analysis (IA) it the
activity of identifying what to modify to accomplish a
change, or of identifying potential consequences of a
change. One can easily notice that 1A techniques require
the existence of a proposed change in the software (an
object). Of course, the object isresult of other developers
actions, but, these techniques analyze exclusively the
object. The impact of other’s actions is not addressed,
and it is especially important because it helps in the
coordination of their work. And, coordination, is one of
the major causes of problems in software development
[5].

One example of impact analysis techniques is
dependency graph approaches, which focus on
determining the impact of the code (product) in other's
part of the source code. These approaches are usualy
based on program dependences, which are syntactic
relationships between the statements of a program that
represent aspects of the program’s control flow and data
flow [24]. In other words, they focus only in determining
the impact of the product in the rest of the cooperative
effort. Another example of A approaches are regression
testing techniques (such as [25]) that attempt to
minimize the number of the test cases necessary to
validate the changes in the software. Although powerful,
these techniques could not be used by MV P developers to
determine whether the tests that they need to run can be
impacted by ancther developer’s changes, since the MVP
team only performs regression testing before launching a
new release. Other examples of IA approaches are
program dlicing techniques [28] that might be to
determine the program subset that can affect the value of
agiven variable.

While there are severa approaches for dealing with
the impact of the object (or product) of a software
developer’s work in other developer's work, there are
only a few that support the analysis of the impact of other
developers actions. To the best of our knowledge, the
closest approach is process-centered software engineering
environments [11]. These environments use process
models to describe, among other things, agents (that
perform process steps) and the order in which these steps
need to be performed to achieve team coordination. This
means that actions that need to be performed by software
developers are considered during the definition of the
process model. Furthermore, when these modes are
built, they also take into account the constraints of the
tools used by the members of the community, the
expertise and experience of members of that community
(i.e., its history), among other aspects. The enactment of
the process is then monitored, which means that when
developers do not perform these activities, process
deviations are reported. However, these deviations are
used by project managers to assess high-level attributes
of the software development activity such as scheduling
and costs. Developers' actions (including deviations) are
not used by these environments to assess the low-level
impact that they will cause on other developers work.

Providing information about the impact of other’s
action is a very difficult problem. Indeed, the current
approach is to provide the information to the devel oper,
and let him figure out how his work will be impacted.
Examples of this approach can be found on configuration
management tools that, in addition to presenting
information about the products (files and their versions),
also present information about other developers actions
on these products (check-in's, check-out’s, merges, etc),
therefore increasing the awareness among developers,
which ultimately facilitate the coordination of their
activities [12]. However, the delivery of this information
is problematic, since users need, pro-actively, access the
CM tool. Recent work in cooperative software
engineering tools (e.g., Palantir [26] and Night Watch
[22]) attempt to overcome this limitation by delivering
events happening in one CM workspace to other
workspaces that are accessing the same files. The
problem with these todls, though, is that the information
that is delivered is related to only a subset of actions that
occur in the software development process: they focus on
the actions of developers who are working in the same
files (paralld development). Information about the
current status of other developers is not presented in
these toadls, i.e, information about the part of software
development process that dedls with check-in's, for
example, is not presented. By doing that, they present
information to the users that is out of context, since as
the activity theory illustrates, an activity is a rich set of

interdependent e ements that include rules, a community,
tools that mediate the interaction of the subject with the
object, and so on. Similarly, notification-servers that
focus on ddivering awareness information, such as
CASSIUS [16] and Kronika [19] usualy take into
consideration only some e ements of an activity such as
tools, objects and subjects. Other elements that are also
important for providing coordination are not considered
in these servers.

Having said that, we can conclude that providing
impact analysis of both actions and objects are necessary
to help in the coordination of a collaborative software
development effort. Indeed, that is exactly what the fixes
adopted by the MVP team indicate to usl Therefore,
collaborative software engineering tools need to be able
to inform the “context” of the software development
effort, so that they can allow developers to determine
how best to coordinate. For example, MV P developers
speed-up during their informal testing activities because
they do not want to redo their work when somebody
else's check-in something in the repository. If these
developers were aware of the current status of other
developers, for example, by visualizing a small process
model that describes the check-in activity, they would be
able to coordinate with their peers the appropriate
moments for check-in's and testing, therefore avoiding
the need for rushing.

6. Implicationsfor Activity Theory

6.1. Modeling Human Activity

Section 4 of this paper developed a model. The process of
developing this model has more similarities to software
modeling than one might expect. In particular, as
explained in Section 3.2, we began by choosing a
modeling language that seemed appropriate for our
application the language of activity theory and in
particular Engestrom’s terminology and diagrammatic
notation. We then built an instance of a modd in this
language that served as a first approximation. We then
refined it through several iterations. We reached a point
where analysis of the mode yieded explanations
consistent with the data, as presented above.

Iterative refinement of the model appeared to be an
open-ended process. However, the actual observations
made during the internship acted in a sense like a “test
oracle.” Namely, we reached a stopping point when al
observed phenomena were accounted for. Moreover, the
focus of activity theory on identifying tensions and
conflict were useful for understanding what we observed
and highlighting areas where software tools and practices
might be improved.

In sum, the attempt to model the human collective
activity of collaborative software development did not
seem straightforward at first, but required a first

approximation and successive refinement. Although
frustrating, the challenges did not seem greater than
other kinds of modeling and the results were informative.
In the next subsection, we make some observations on
how this process may be improved and identify research
areas for the methodol ogy.

6.2. Activity Theory: Where Next?

Activity theory has been applied to the design of software
systems, and research to date has indicated its usefulness
towards collecting requirements for software system
design (e.g., [21] and [3]). However, to the authors
knowledge, this paper represents the first application of
activity theory to studying collaboration among software
developers, whereas previous studies have examined the
collaboration between end users and software devel opers.
Thus, we had to struggle with a finer degree of detail of
activity, with respect to the development of software,
than previous works.

One challenge that presented itself was the notion that
a single activity might be consistent when observed as a
single instance, but be a source of tension when there
were multiple instances of that activity. Such was the
case with developers speeding up for check-ins. In the
case of a single developer, even when working with end
users and other team members, the activity of checking
in a module revision is consistent within itself. However,
multiple instances of this check-in activity create a
tension we observed as developers sped up their work to
be the first to check in. This part of the model and the
more general issue of multiple instances of activity is one
place for further research into the application of activity
theory and a potential contribution to improving the
methodol ogy.

Ancther area for research in activity theory is akin to
dependency analysis in software testing. Namely, as we
identified different activities that comprised the genera
activity of evolving a software system, we began to
observe many interdependencies. For example, rules for
applying a specific software tool led to other activities
each with their own associated set of rules, subjects, other
tools, etc. We were intrigued by the notion that a kind of
dependency analysis might be developed to help an
organization more precisdy account for the potential
impact of making changes to tools and practices. This
kind of work however would be a long-term goal. A
related issue is that of adoption. Understanding the
history of how elements in the activity theory models
evolved — tools, rules, division of labor, etc. — can better
enable the responsible introduction of new tools,
including involving end users with tool introduction. The
basic premise of introducing changes into people' s work
is the ability to devel op the fullest understanding possible
of that work. Activity theory, even in its present state of

development, is successful in that regard.

Finally, a new line of research is beginning to present
itself around the concepts of reflection and awareness.
Specifically, various researchers begin to recognize the
value of simply reflecting back to a group or organization
the actuality of its various objectives and activities. In a
previous study, we used this kind of reflection as a matter
of course in reporting findings, but the process of
performing this “reporting” led to improvement in the
process of software developers collecting requirements
and in the organization’s members understanding one
another's roles better [4]. Other researchers have
observed similar effects including at a small scale
Namely, some researchers are developing software tools
to help people coordinate their collaborative work by
reflecting the current state of a collaborative activity or
the state of actual collaborators. Some instances are
Portholes systems that reflect the state of collaborators
[6] [18], configuration management tools that reflect who
is working on what modules [26], and tickertape tools
that reflect all activities in a work environment [10].
Thus, another open area is better understanding and
better reflecting of actual activity (through manual and
automated means) back to participants in that activity,
and understanding ways this has positive effects on the
collective work.

6.3. Why Not Another Methodology?
Detailed comparisons of activity theory and other
methodol ogies may be found elsawhere and are well done
(see e.g. articles by Halverson and Nardi in [21], pp. 243-
275). Briefly, activity theory is most often compared to
two methods of analysis, distributed cognition [15] and
contextual inquiry [14]. Activity theory places an
emphasis on identifying activities as primary e ements of
analysis and organizes other components (such as tools
and people) around the activities they are involved in.
Distributed cognition places a focus on artifacts in the
work environment and how they affect and enable work.
Contextual inquiry is a structured interview technique
and process to evolve interviews into requirements for
systems, especially supportive of user interface design.
Although it is not unusual for researchers to become
proponents of one approach over al others, the present
authors do not see the need for over specialization of the
field at this time. All the aforementioned methods are
relatively new. There is much to be learned about their
application to work environments. Moreover, the kinds of
work computer professionals are delving into are ever
changing, placing constant demands not just on
technology but on methods for understanding work
context. Even though activity theory is one of the oldest
methods, being datable to at least 80 years prior, its
application to work involving computing tools is only

recent. Moreover, different field methods suit different
application areas differently. Factors that should be used
in making decisons include the objective of the
observations and analysis, preferences of participants
(observers and observed), and, very importantly,
organizational contexts.

Our experiences performing the analysis presented in
this paper and previous experiences of our own and our
colleagues have shown many positives to activity theory.
It is open ended, which though a challenge, alows for
the introduction of new ideas and refinements. It is
noninvasive, using open-ended interviews or even more
informal observations of work such as presented in this
paper. It readily yidds to iterative refinement. When
more detail is needed in a model, additional activities
may be named and analyzed. Finally, there seems to be
some overlap in object-oriented analysis. Although the
present authors do not wish to overemphasize the
similarities, the overlap is helpful for people with object-
oriented experience to engage in learning the
methodology. Thus, while there is still a great dea of
craft involved in becoming acquainted with and applying
activity theory, we have experienced many positives in
our analyses in different work settings and anticipate the
methodol ogy becoming more refined and documented.

7. Conclusions

This paper reported a successful application of the
activity theory to analyze the collective effort of a
software development team. More specificaly, we
adopted Engestrém’s triadic model of individual and
collective activity in order to focus on the collaborative
aspects of the software development effort. Adopting this
framework allowed us to deeply understand the context
where the software development activity was being
performed: the tools used by the community, the division
of labor adopted by the team, the desired out-come of the
activity, among other factors. Furthermore, we were also
able to better understand this framework and identify
aspects that may be refined so that it can be broadly
applicable in software development. Finaly, by focusing
on the tensions and contradictions in the activity, we
were able to identify opportunities for improvements in
the work, through better collaborative software
engineering tools and practices. This is possible because
activity theory helps observers identify tensions and
contradictions as opportunities for reflection and
evolution.

Acknowledgments

The authors thank CAPES (grant BEX 1312/99-5) and
NASA/Ames for the financial support. Effort also
sponsored by the Defense Advanced Research Projects

Agency (DARPA) and Air Force Research Laboratory,
Air Force Materidl Command, USAF, under agreement
number F30602-00-2-0599. Funding also provided by the
National Science Foundation under grant numbers CCR-
0205724 and 9624846. The U.S. Government is
authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copyright
annotation thereon. The views and conclusions contained
herein are those of the authors and should not be
interpreted as necessarily representing the officia
policies or endorsements, either expressed or implied, of
the Defense Advanced Research Projects Agency
(DARPA), the Air Force Laboratory, or the U.S.
Government.

8. References

[1] Arnold, R. S. and Bohner, S. A., "Impact Anaysis -
Towards a Framework for Comparison,” International
Conference on Software Maintenance, pp. 292-301, 1993.

[2] Barthelmess, P. and Anderson, K. M., "A View of
Software Development Environments Based on Activity
Theory," Computer Supported Cooperative Work (CSCW) -
Foecial Issue on Activity Theory and the Practice of
Design, val. 11, pp. 13-37, 2002.

[3] Bodker, S., Through the Interface A Human Activity
Approach to User Interface Design,Lawrence Erlbaum,
1991.

[4] Caodllins, P., Shukla, S., et ., "Activity Theory and System
Design: A View from the Trenches," Computer Supported
Cooperative Work - Special Issue on Activity Theory and
the Practice of Design, val. 11, pp. 55-80, 2002.

[5] Curtis, B., Krasner, H., et a., "A field study of the
software design process for large systems,"
Communications of the ACM, vol. 31, pp. 1268-1287,
1988.

[6] Dourish, P. and Bly, S., "Portholes: Supporting Distributed
Awareness in a Collaborative Work Group,” ACM
Conference on Human Factors in Computing Systems (CHI
'92), Monterey, CA, 1992.

[7] Engestrém, Y., "Activity Theory and Individual and Social
Transformation,” pp. 19-38, in [9], 1999.

[8] Engestrom, Y., "Coordination, Cooperation, and
Communication in the courts,” in Mind, Culture, and
Activity, M. Cole, Y. Engestrom, and O. Vasquez, Eds.
Cambridge, UK: Cambridge University Press, 1997.

[9] Engestrom, Y., Miettinen, R., et al., "Perspectives on
Activity Theory." Cambridge University Press, 1999.

[10] Fitzpatrick, G., Mansfield, T., et a., "Augmenting the
workaday world with Elvin," 6th European Conference on
Computer Supported Cooperative Work, pp. 431-450,
Copenhagen, Denmark, 1999.

[11] Garg, P. K. and Jazayeri, M., "Process-Centered Software
Engineering Environments." Los Alamitos, CA: IEEE
Computer Society Press, 1996.

[12] Grinter, R. E., "Using a Configuration Management Tool
to Coordinate Software Development,” Conference on
Organizational Computing Systems, pp. 168-177, 1995.

[13] Heath, C. and Luff, P., "Collaboration and Control: Crisis

Management and Multimedia Technology in London
Underground Control Rooms," Computer Supported
Cooperative Work, val. 1, pp. 69-94, 1992.

[14] Holtzblatt, K. and Beyer, H., "Contextual Design,” ACM
Interactions, vol. 6, pp. 32-42, 1999.

[15] Hutchins, E., Cognition in the Wild. Cambridge, MA: The
MIT Press, 1995.

[16] Kantor, M. and Redmiles, D., "Creating an Infrastructure
for Ubiquitous Awareness,” Eighth IFIP TC 13 Conference
on Human-Computer Interaction, pp. 431-438, 2001.

[17] Kuuti, K., "Activity Theory as a Potential Framework for
Human-Computer Interaction Research,” pp. 17-44, in
[20], 1996.

[18] Lee, A. and Girgensohn, A., "NYNEX Portholes: Initia
User Reactions and Redesign Implications,” ACM
Conference on Human Factors in Computing Systems (CHI
'97), pp. 385-394, 1997.

[19] Lovstrand, L., "Being Selectively Aware with the
Khronika System," European Conference on Computer
Supported Cooperative Work (ECSCW '91), pp. 265--279,
Amsterdam, The Netherlands, 1991.

[20] Nardi, B., "Context and Consciousness. Activity Theory
and Human-Computer Interaction.” Cambridge, MA: MIT
Press, 1996.

[21] Nardi, B. and Redmiles, D., Eds. Computer Supported
Cooperative Work, The Journal of Collaborative
Computing, Special Issue on Activity Theory and the
Practice of Design, Val. 11, No. 1-2, p. 1-11, 2002.

[22] OReilly, C., Morrow, P., et a., "Improving Conflict
Detection in Optimistic Concurrency Control Models,"
11th International Workshop on Software Configuration
Management (SCM-11), Portland, Oregon, 2003.

[23] Orlikowski, W., "Learning from Notes: Organizationa
Issues in Groupware Implementation,” The Information
Society, val. 9, 1993.

[24] Podgurski, A. and Clarke, L. A., "The Implications of
Program Dependencies for Software Testing, Debugging,
and Maintenance," Symposium on Software Testing,
Analysis, and Verification, pp. 168-178, 1989.

[25] Rothermel, G. and Harrold, M. J., "A safe, efficient
regression testing selection technique,” ACM TOSEM, vol.
6, pp. 173-210, 1997.

[26] Sarma, A., Noroozi, Z., et al., "Palantir: Raising
Awareness among Configuration Management
Workspaces," Twenty-fifth International Conference on
Software Engineering, pp. 444-453, Portland, Oregon,
2003.

[27] Spanoudakis, G. and Zisman, A., "Inconsistency
Management in Software Engineering: Survey and Open
Research Issues,” in Handbook of Software Engineering
and Knowedge Engineering, val. 1, S. K. Chang, Ed.:
World Science Publishing Co., 2001, pp. 329-380.

[28] Weiser, M., "Program Slicing," IEEE Transactions on
Software Engineering, vol. 10, pp. 352-357, 1984.

