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Empirical Studies of Programming Knowledge

ELLIOT SOLOWAY anp KATE EHRLICH

Abstract—We suggest that expert programmers have and use two types
of programming knowledge: 1) programming plans, which are generic
program fragments that represent stereotypic action sequences in pro-
gramming, and 2) rules of programming discourse, which capture the
conventions in programming and govern the composition of the plans
.zinto programs. We report here on two empirical studies that attempt to
evaluate the above hypothesis. Results from these studies do in fact
support our claim.

Index Terms—Cognitive models of programming, novice/expert differ-
ences, program conprehension, software psychology.

I. INTRODUCTION: MOTIVATION AND GOALS

HAT is it that expert programmers know that novice

programmers don’t? We would suggest that the former
have at least two types of knowledge that the latter typically
do not.

o Programming Plans: Program fragments that represent ste-
reotypic action sequences in programming, e.g., a RUNNING
TOTAL LOOP PLAN, an ITEM SEARCH LOOP PLAN [16].

o Rules of Programming Discourse: Rules that specify the
conventions in programming, e.g., the name of a variable should
usually agree with its function; these rules set up expectations
in the minds of the programmers about what should be in the
program. These rules are analogous to discourse rules in
conversation.

In our view, programs are composed from programming plans
that have been modified to fit the needs of the specific problem.
The composition of those plans are governed by rules of pro-
gramming discourse. Thus, a program can be correct from the
perspective of the problem, but be difficult to write and/or read
because it doesn’t follow the rules of discourse, i.e., the plans
in the program are composed in ways that violate some dis-
course rule(s).

Our approach to programming borrows directly from at least
two, converging sources: the research in text processing in arti-
ficial intelligence and psychology, and the research in problem
solving with experts and novices. First, we base our claim that
text comprehension research is appropriate to the task of under-
standing program comprehension on the following observation:

. programs have a dual nature—they can be executed for effect,
and they can be resd as communicative entities. Viewed in
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this light, we felt that the notion of schemas, one of the most
influential notions to have emerged from recent research on
text comprehension (e.g., [2], [3], [10], [16]) should be ap-
plicable to program comprehension.

“Schemas are generic knowledge structures that guide
the comprehender’s interpretations, inferences, expecta-
tions, and attention when passages are comprehended ”

[10],

Our notion of programming plan corresponds directly to this
notion of schema.

Second, research with experts and novices in various technical
domains (chess [4], [7], physics [14], electronic circuitry [8])
have shown that the former seem to develop chunks that repre-
sent functional units in their respective domains, while the lat-
ter do not. Similar results have been obtained in the program-
ming domain [1], [16], [18]. The work reported in this paper
builds on and extends the above research in the programming
domain by examining whether or not programmers have and
use specific programming plans and rules of programming dis-
course in the process of comprehending computer programs.
Moreover, the work reported here extends our earlier studies
on programming plans [9], [19] by presenting a broader, more
systematic empirical examination of these concepts. Note too
that this work is another example of our efforts to explore the
cognitive underpinnings of programming: while in Soloway er
al. [20] we examined the cognitive fit of a particular pro-
gramming language construct (Pascal’s WHILE loop) to people’s
natural cognitive strategies, here we examine the role that var-
ious types of programming knowledge play in the comprehen-
sion of programs.

In this paper we describe two empirical studies we conducted
with programmers of varying levels of expertise. The goal of
these studies was to evaluate the above claim: do expert pro-
grammers possess programming plans and discourse rules? Pro-
grams that do not conform to the plans and discourse rules
should violate the programmers’ expectations: for example, if

they see a variable initialized to zero (N :=0) at the top of a.

program, they should be surprised to see it being changed via
a read statement (READ(N)) later in the program. While this
type of situation will not create an unrunnable program, it
certainly violates the accepted conventions of programming:
1) variables are usually updated in the same fashion as they are
initialized; thus we would expect N to be updated via an as-
signment statement, and 2) programmers do not like to include
statements that have no effect: a READ statement destroys
whatever is in the variable initially, and thus the initial setting
of N to zero is superfluous. We claim that these violations in
expectations—the surprises due to violations of conventions—
can make such programs much more difficult to comprehend.
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Thus, if advanced programmers have knowledge about plans
and discourse rules then programs that do not conform to the
rules of discourse (unplan-like programs) should bé harder for
them to understand than programs that do conform to these
tules (plan-like programs). In contrast, we would not expect
novice programmers to have acquired as many of the plans arid
conventions in programming: by definition a novice program-
mer has less knowledge than an advanced programmer. Thus,
we would not expect novice programmers to be as sensitive to
violations of conventions—since they don’t know what the
~ conventions are in the first place. Therefore, in a task that re-
quires understanding a program, we expect 1) advanced pfo-
grammers to do much better than the novice programmers on
the programs that do conform to the plans and rules, while we
expect 2) advanced programmers to perform at the level of
novices when the Programs violate the plans and the discourse
rules.! ‘

The organization of this paper is as follows. First, we present
a brief description of our experimental studies; this section
provides the needed motivation for why our “stimulus mate-
rials”—the computer programs used in our experiments—were
constructed in the manner that they were. Next, we present a
detailed description of how and why unplan-like programs can
be generated from plan-like ones. In the following two major
sections, we present detailed descriptions of each of our empir-
ical studies, along with a discussion of the results from the
studies. We close with implications from these studies for the
practice of programming.

II. BRIEF DESCRIPTION OF BOTH
EXPERIMENTAL TECHNIQUES

The first stage in both experimental procedures is as follows.
First, we construct a plan-like program, i.e., one that uses only
typical programming plans and whose plans are composed so
as to be consistent with rules of programming discourse. Next,
we construct an unplan-ike version of that program by vio-
lating one (or possibly two) of the discourse rules. We will re-
fer to the plan-like version of the program as the Alpha version,
while the unplandike version will be referred to as the Beta
version.?  An example of an Alpha version with a Beta version
for a programming problem is given in Fig. 1. (In Section III
we describe in detail how these programs were constructed,
and why we would consider the Beta version to be unplan-like.)

A. Brief Description of Study I: Fill-in-the-Blank

Our first study uses a “fill-in-the-blank technique™: here we
take out one line of code from the program and replace that line
with a blank. The task we ask of our experimental subjects,
who are novice and advanced ‘student programmers, is to fill
the blank line in with a piece of code that, in their opinion,
best completes the program. An example of the programs with

n the second study we only used expert professional programmers
as subjects, and thus we can not look for this type of interaction. Rather,
we simply want to 1) evaluate -our hypothesis with professional pro-
grammers, and 2) observe whether there is a difference in performance
within the experts on programs that vary along the plan-like dimension.

2Clearly, the Beta versions are not totally unplandike; in fact, they
have many plans in common with the Alpha versions. The term “un-
plan-like” is thus meant for emphasis only.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-10, NO. 5, SEPTEMBER 198

blank lines is given in Fig. 1. Note carefully that we do nof tell
the subjects what problem the program is intended to solve,
However, since there is only one blank line per program, a great
deal of context is still left. If advanced programmers do have
and use programming plans for stereotypic programming situa-
tions, then they should be able to recognize the program frag-
ment in the plandike versions as an example of programming ‘
plan X, and they should all fill in the blank line with the same =
piece of code. However, in the case of the unplan-like pro-
grams, advanced programmers should be more unsure of what
plan is being indicated; thus, they should be less likely to com-
plete the program in the correct fashion. On the other hand,
novice programmers should not be as surprised by the unplan-
like programs since they have not as yet acquired the program-
ming conventions. Thus, we expect that the advanced pro-
grammers will be more affected by the unplan-like programs
than will the novices.

Notice that both the Alpha version and the Beta version are
runnable programs that in almost all cases compute the same
values.? Moreover, to an untrained eye their differences may
even not be apparent: they always only differ by a very few
textual elements. Thus, our experimental materials are not
random programs, as were used in previous studies [1], [16],
[18]. While those studies demonstrated the basic effect—that
advanced programmers have strategies for encoding and remem-
bering programs better than do novice programmers—we see
our work as focusing on the detailed knowledge that program-
mers have and use.

B. Brief Description of Study II: Recall

In our second study, we used essentially the same stimulus
materials as in Study I. This time, however, the task was a re-
call one and all subjects were expert professional programmers.
Subjects were presented with a complete program which they
were asked to recall verbatim. Half the programs were plan-like
and half were unplan-like. Each program was presented three
times. On the first trial, subjects were asked to recall as much
of the program as possible. On the second and third trials,
they were asked to either add to their original recall or to
change any part of their recall that they felt was in error. We
tracked the progression of their recall by asking them to use a
different color pencil on each of the three trials. This tech-
nique, of repeated presentation of the same program, was de-
veloped by Kahney [12] for research specifically on the com-
prehension of computer programs. If programming plans help
programmers to encode a program more efficiently we should
find that experts recall miore of the program earlier. However,
given sufficient time, they should be able to recall as much of
the unplan-like programs as the plan-ike ones. Again, while
others have shown this basic effect our motivation is to identify
specific knowledge units and to demonstrate the significant in-
fluence that planliness has on program comprehension: a
change in just a few characters can result in significant differ-
ences in performance!

3mn only one program type, MAX (e.g., Fig. 1), do the Alpha and Beta
versions compute different values,
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Version Alpha

PROGRAM Magenta(input, output),
VAR Max, I, Num  INTEGER,
BEGIN
Max = 0,
FOR I =170 10 DO
BEGIN
READLN (Num),
If Num > Max THEN Max = Num
END.
WRITELN(Max) .
END

Version Beta

PROGRAM Purplelinput, output),
VAR Max. I. Num  INTEGER,

PROGRAM Magenta(input, output),
VAR Max, I, Mum - INTEGER:
BEGIN
Max =0,
FORI =17T010 D0
BEGIN
READLN(Num) ,

If Num | | Max THEN Max = Num

END,
WRITELN(Max),
END

PROGRAM Purple(input, output),
VAR Max, I, Num  INTEGER,

BEGIN BEGIN
P Max = 008999, Max = 999999,
FOR I =110 10 DO FOR I =1 710 10 DO
BEGIN BEGIN
READLN (Num), READLN (Num)
If Num < Max THEN Max = Nem 7777777
END. If Nua | | Max THEN Max = Num
WRITELN(Max) . | I
eND T
END.
WRITELN(Max),
END
Program type 1
Basic plan search plan (max, min)
Discourse rule A variable’s name should reflect 1ts function (1)

How sonstryct
Reta version violate discourse rule (1)

Alpha case variable name agrees with
search function

Beta case variable name does NOT agree

with search function

Fig. 1. Example: Program type 1.

III. GENERATING PLAN-LIKE AND
UNPLAN-LIKE PROGRAMS

What makes a program plan-like rather than unplan-ike is
the way in which plans are composed in a program. The com-
position is governed by rules of programming discourse, which
are analogous to discourse rules in ordinary conversation or
discourse rules that govern the structure of stories. In Fig. 2
we depict a set of programming discourse rules that we have
identified. Individually, they look innocuous enough, and one
could hardly disagree with them. While these rules typically
are not written down nor taught explicitly, we claim that pro-
grammers have and use these rules in the construction and
comprehension of programs. If programmers do use these rules

(1) Varisble names should reflect funetion.

(2) Don't include code that won't be used.

(22) If there is 2 test for a condition. then the condition must have
potential of being true.

(3) A variable that is initialized via an assignment statement
should be updated viaz an assigament statement).

(4) Don't do double duty with code in 3 non-obvious way.

(5) An IF should be wused when a statement body is guaranteed o
be exscuted only once, and a WHILE used when 3 statement body
need to he repeatediy executed.

Fig. 2. Rules of programming discourse.
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and expect other programmers to also use these rules, then we
would predict that programs that violate these rules should be
harder to understand than programs that do not.

One key point to notice in the following sections is that the
unplan-like version (the Beta version) is only slightly different
than the plan-like version (the Alpha version). That is, the idea
is to take a plan-like program and modify it ever so slightly,
by violating a discourse rule, so as to create an unplan-like ver-
sion. Both versions are executable programs that usually com-
pute the same function. Moreover, both versions have about
the same surface characteristics: about the same number of
lines of code, about the same number of operands and opera-
tions, etc. Thus, while more traditional methods of calculating
program complexity (e.g., lines of code, or Halstead metrics
[11]) would predict no difference in the difficulty of under-
standing for the two programs (the Alpha version and the Beta
version), we are looking for differences in actual performance
on an understanding task.

In the following sections we will describe how and why we
constructed the plan-like and unplan-like programs for use in
our empirical studies. In each of the next four sections we will
describe a different pair of programs, where the Beta version
of the pair is generated by violating one (or possibly two) of
the discourse rules given in Fig. 2. We will refer to a pair of
programs as exemplifying a program type; thus, we will describe
four different program types:* 1) MAX, 2) SQRT, 3) AVER-
AGE, and 4) IF/WHILE.

A. Program Type 1: MAX

In Fig. 1, version Alpha is the plan-like version of a program
that finds the maximum of some numbers. In our plan jargon,
it uses the MAXIMUM SEARCH LOOP PLAN which in turns
uses a RESULT VARIABLE PLAN. Notice that the RESULT
VARIABLE is appropriately named Max, i.e., the name of
the variable is consistent with the plan’s function. In contrast
version Beta is unplan-like since it uses a MINIMUM SEARCH
LOOP PLAN in which the RESULT VARIABLE is inconsistent
with the plan’s function: the program computes the minimum
of some numbers using a variable name Max. To create the
Beta version, we violated the first rule of programming dis-
course in Fig. 2: variable names should reflect function. (See
also, Weissman [22], who did exploratory empirical studies on
the role of variable names.)

The fill-in-the-blank versions of both these programs are also
given in Fig. 1. Our hypothesis is that programmers will see
the variable name Max and thus “see” the program as a MAX-
IMUM SEARCH LOOP PLAN. In other words, the name of
the variable will color how theéy understand the rest of the pro-
gram. Therefore, in the Beta version, where the function of
the procedure is inconsistent with variable Max, we predict
that programmers will fill in the blank with a >, rather than a
<-indicating that they see the program as computing the
maximum of a set of integers, instead of the minimum.

B. Program Type 2: SORT

The Alpha and Beta programs in Fig. 3 are both intended to
produce the square root of N. Since N is in a loop which will
repeat 10 times, 10 values will be printed out. The question is:

*The names given to each of the four typescarry no deep significance:
they are meant only to aid the reader.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-10, NO. 5, SEPTEMBER 1984

How should N be set? In version Alpha the DATA GUARD -
PLAN constrains what should be filled into the blank line.
That is, the Sqrt function must be protected from trying to
take the Sqrt of a negative number; thus, the immediately pre-
ceding IF test checks to see if the number is negative, and
makes it positive if necessary. Besides protecting the Sqrt
function, the DATA GUARD PLAN exerts influence on what
could reasonably be filled into the blank. The very presence
of the DATA GUARD PLAN implies that the numbers might
be negative and thus the manner in which N is set must allow
for it to be negative. A typical way of realizing this constraint
is via a Read(N); the user decides what values should be en-
tered. In contrast, setting N via an assignment statement, e.g.,
N :=1, would never result in a negative number—thus making
the DATA GUARD PLAN totally superfluous. The influence
of the DATA GUARD PLAN over the blank line stems from a
rule of programming discourse: if there is a test for a condition,
then the condition must have the potential of being true. Thus,
the blank line must be filled in with something that does not
make the DATA GUARD PLAN superfluous, e.g., Read(N).

In version Beta, however, we have added an additional con-
straint on the blank line: the VARIABLE PLAN for N starts
off with an assignment type of initialization (N := 0) and sets
up the expectation that N will also be updated via an assign-
ment statement, e.g., N:=N+1,0or N:=N+ 1. However, this
expectation conflicts with the expectation set up by the DATA
GUARD PLAN [namely, Read(N)]. Moreover, there is an
additional level of conflict: the expectation of the DATA
GUARD PLAN is now in conflict with the initialization of N
to 0. This latter conflict is due to a violation of the following
rule of programming discourse: a variable that is initiglized via
an assignment statement should be updated via an assignment
statement.

C. Program Type 3: AVERAGE

The programs in Fig. 4 calculate the average of some numbers
that are read in; the stopping condition is the reading of the
sentinel value, 99999. Version Alpha accomplishes the task in
a typical fashion: variables are initialized to 0, a read-a-value/
process-a-value loop [20] is used to accumulate the running
total, and the average is calculated after the sentinel has been
read. Version Beta was generated from version Alpha by vio-
lating another rule of programming discourse: do not do double
duty in a nonobvious manner. That is, in version Beta, unlike
in Alpha, the initialization actions of the COUNTER VARI-
ABLE (Count) and RUNNING TOTAL VARIABLE PLANs
(Sum) in Beta serve two purposes: ’

e Sum and Count are given initial values.

o The initial values are chosen so as to compensate for the
fact that the loop is poorly constructed and will result-in an
off-by-one bug: the final sentinel value (99999) will be incor-
rectly added into the RUNNING TOTAL VARIABLE, Sum,
and the COUNTER VARIABLE, Count, will also be incorrectly
updated.

We feit that using Sum and Count in this way was most non-
obvious, and would prove very hard for advanced programmers
to comprehend.

D. Program Type 4: [F|WHILE
The difference between an IF statement and a WHILE state-
ment in Pascal is that the latter executes a body of statements
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Version Alpha

PROGRAM Beige(input, output),
VAR Num  REAL,
I INTEGER,
BEGIN
FORI =
BEGIN
Read (Num),
IF Nym < O THEN Num = -Num,
Writeln ( Num, Sqrt(Num) ).
(¢ Sqrt 1s 3 butlt-in
function which returns the
square root of its argumentt)

1 T0 10 DO

END.
END

Version Beta

PROGRAM Violet{iaput, output).

VAR Num  REAL,
I INTEGER,
BEGIN
Nygm = 0,
FOR I =1 T0 10 00
BEGIN
Read (Num).
IF Nym € O THEN Num = —HNum,
writeln ( Num, Sgre(Mum) ).

(# Sqrt 1s a burit-in
function which returns the
square root of rts arguments)

END.
END

Program type 2

PROGRAM Bergelinput, output),
VAR Num  REAL,
I INTEGER.
BEGIN
FORI =1
BEGIN

70 10 00

IF Mym < 0 THEN Num =
Writein ( Mum, Sort(Nem) ).
(+ Sqrt 1s 3 burlt=yn
function which returns the
square root of 1ts arguments)

~Num,

END.

EKD

PROGRAM Violet(input, outpul),
VAR Num  REAL.
I INTEGER.

IF Num < 0 THEN Num = -Num,
writeln ( Mum. Sqre(um) ).
(# Sqrt 1s a butit=rn
function which returns the
square root cf 1ts argumentt)

END

be used (2)

Basic plan guard plan. variable plan
Discourse rule Don't 1aclude code that won't
If there s 2 test for a condition,

then the coadition

must have the

potential of berng true (2a)
A variable that 1s inttralized
via an assignment statement

should be updated via an gssignment statement )]

How construct

Beta version (2) and (3)

inciude two incompatible discourse rules

Alpha case guard plan predicts read imitialization

Beta case guard plan predicts read update.
but snitialization plan predicts

assigament update

Fig. 3. Example: Program type 2.

repeatedly, while the former only executes the body once; note by such a rule, and, moreover, would be confused in seeing a

both have a testing component. Inlookingat programs written
by novice programmers, we found that novices sometimes used
a WHILE statement when the body would only be executed
once: it was as if novices have a rule such as when a body needs
to be executed only once, then either a WHILE or an 1F could
be used. We felt that advanced programmers would be horrified

WHILE in a situation that “clearly”” called for an IF.

The programs in Fig. 5 were developed to test the above hy-
pothesis. Both these programs test to see if some variable con-
tains a number that is greater than a maximum, and if so, the
variable is reset to the maximum. The Alpha version uses an
IF test; the Beta version uses a WHILE statement. The Beta
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Versson Alpha
PRDGRAQ Grey(input, output), PROGRAM Greylinput. output)
VAR Sum, Count. HNum INTEGER, VAR Sum, Count.  Hum THTEGER,

Average REAL . Average REAL,
BEGIN BEGIN

Sum = 0, Sum = 0,

Count = 0. —— -

REPEAT | |

READLN(Nym) ] !
IF Num <> 99999 THEN e
BEGIN REPEAT
Sum = Sum + Num, READLN(Num) |
Count = Count + I, IF Hum <> 99969 THEN
END, BEGIN
UNTIL Num = 99999, Sum = Sum + Num,

Average = Sum/Count, Count = Count + 1,

WRITELN(Average), EMD.
END UNTIL Num = 59583,

Average = Sum/Count
WRITELN(Average),
END

Version Beta

PROGRAM Qrange(inpyt. output),

PROGRAM Qrange(input, output),

VAR Sum. Count Num  INTEGER, VAR Sum, Count, Num  INTEGER,
Average  REAL, Average  REAL,
BEGIN BEGIN
Sum = -099990. Sem = -§9899,
Count = -1,
REPEAT | !
READLN(Num) ! !
Sum = Sum + Num.
Count = Count + 1, REPEAT
UNTIL Num = 58889, READLN(Num) |
Average = Sun/Count, Sum = Sum + Num,
WRITELN(Average). Count = Count + 1
END UNTIL Num = 99999,
Average = Sum/Count,
WRITELN(Average),
END
Program type 3
Basie pilan read/process. running total

loop plan

don’'t do double duty n a
noa-obvious way {(4)

Discourse rule

How construct

Beta version viotate discourse rule (4)

Alpha case initialize to standard values

inttialize to non-standard values
to compensate for poorly formed loop

Beta case

Fig. 4. Example: Program type 3.

version was generated from the Alpha version by violating the
following discourse rule: An IF should be used when a state-
ment body is guaranteed to be executed onlv once, and a
WHILE used when a statement body may need to be repeatedly
executed. If the advanced programmers do have this rule, then
we predict that they would not recognize the RESET PLAN in
the Beta version nearly as often as they would in the Alpha
version.

IV. DETAILED DESCRIPTION OF STUDY I:
FILL-IN-THE-BLANK

A. Subjects

A total of 139 students participated in the experiment. These
students were recruited from programming classes and were
paid 35 for participating in the experiment. There were 94
novice level programmers and 45 advanced level programmers.
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Version Alpha

PROGRAM Gold(input, output).
CONST ~
MaxSentence=99,
NumOfConvicts=5,
VAR
ConvictID, I, Sentence : INTEGER,

BEGIN
FOR I =1 T0 NumOfConvicts DO
BEGIN
READLN(ConvictID, Sentence):
IF Sentence > MaxSentence

THEN Sentence = MaxSentence,

WRITELN(ConvictID, Sentence);
END.
END

Version Beta

PROGRAM Silver(input, output);
CONST
MaxSentence=99,
NumDfConvicts=5,
VAR
ConvictID, I. Sentence  INTEGER,

BEGIN
FOR I =1 10 NumDfConvicts OO
BEGIN
READLN(ConvictID. Sentence).
WHILE Sentence > MaxSentence
D0 Sentence = MaxSentence,
WRITELN(ConvictID, Sentence),
END,
ERD

Program type 4

601

PROGRAM Gold(iiput, outputs.

CONST
MaxSentence=99,
NumOfConvicys=5,
VAR
ConvictID, I. Sentence = INTEGER.

BEGIN
FOR I =1 TO NumDfConvicts DO
BEGIN
READLN(ConvictID. Sentence);
IF Sentence > MaxSentence

THEN | |

WRITELN(ConvictID, Sentence),
END,

END

PROGRAM Siiver(input output),
CONST
MaxSentence=99,
NumQfConvicts=S,
VAR
ConvictID, I, Sentence  INTEGER,

BEGIN
FOR I =1 T0 NumQfConvicts DO
BEGIN
READLN(ConvictID, Sentence).
WHILE Sentence > MaxSentence

00 | |

WRITELN(ConvictID, Sentence);
END;
END

Basic plan

Driscourse rule

How construct

Beta version

Alpha case

Beta case

reset to boundary condition

An IF should be used when a statement body
15 guaranteed to be executed only once,

and a WHILE vused when a statement body may
need to be repeatedly executed (5)

violate discourse rule (5)

use IF for testing and one time execubion

use WHILE for testing and one time execution

Fig. 5. Example: Program type 4.

Novice programmers were students at the end of a first course
in Pascal programming. The advanced level programmers had
completed at least 3 programming courses, and most were
either computer science majors or first year graduate students
in computer science; all had extensive experience with Pascal.

B. Materials

We created two pairs of programs (an Alpha version and a
Beta version comprise one pair) for each of the 4 program types

described in Section ITI; thus there were eight pairs of programs,
two pairs of programs for each program type. One instance
(an Alpha-Beta pair) of each of the four program types was
presented in the preceding sections. Both instances of a program
type were similar. For example, in Fig. 6 the second instance
of the program type MAX is given; while the first instance of
this type searched for the maximum (minimum) integer input
(Fig. 1), the second instance searched from the maximum (mini-
mum) character input.
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Version Alpha

PROGRAM Green(input. output),
VAR I INTEGER,
Letter, Leastletter Char

PROGRAM Green(input, output),
VAR T  INTECER,
Letter, Leastletter Char,

BEGIN BEGIN
Leastletter = 'z, Leastletter = 'z’
FORI =1 7010 DO FORI =170 10 DO
BEGIN BEGIN
READLN(Letter), READLN(Letter),
If Letter < Leastletter s
THEN LeastlLetter = Letter, If Letter | [ Leastletter
END, ] ]
Writeln(Leastletter), ——————
END THEN Leastletter = Letter.
END,
Writeln(Leastletter),
END
Version Beta

PROGRAM Yellow(input. output),
VAR I  INTEGER,

Letter, Leastletter Char,
BEGIN

Leastletter = 'a

FOR'I =1 710 10 DO

BEGIN
READLN(Letter),

'

If Letter > Leastletter

PROGRAM Yeliow(input, output),
VAR T  INTEGER,

Letter, Leastletter Char,
BEGIN

Leastletter = '3’

FOR'I =170 10 DO

BEGIN
READLN(Letter),

)

THEN Leastietter = Letter, If Letter | | Leastletter

END,
Writein(Leastletter),

THEN Leastletter = Letter

END
END,
Writein(Leastletter),
END
Program type 1 —- Instance 2
Basic plan search plan (max. min)
Discourse rule A variable's name should reflect i1ts function (1)

How construct

Beta version

violate discourse rule (1)

Alpha case variable name agrees with
search function
Beta case variable name does KOT agree
with search function
Fig. 6. Example: Program type 1 —instance 2.
C. Design: [ndependent and Dependent Variables 1) accuracy of the response;a correct responsc was one that

The three independent variables in this study were:

completed the intended plan,® and
2) time to complete a problem.

1) version—Alpha (plan-like), Beta (unplan-like)
2) program type—1 MAX, 2 SQRT, 3 AVERAGE, 4 IF/ *Strictly speaking filling in the blank line with an answer that differs

WHILE

from the plan-like one would not necessarily be incorrect. Ior cxample,
filling in the blank line in Beta of I'ig. 1 with a > would still result in a

3) level of expertise—novice or advanced. £
) p running program. However, it would be a strange program. Thus, by

There were two dependent variables:

correct we actually mean the line of code that in our judgment best
fulfills the overall intent of the program. .
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D. Procedure

Each subject was given eight programs. In four of the prob-
lems, the subject received the Alpha version of the program
while in the other four problems, the subject received the Beta
version of the program. We also counterbalanced versions
within each of the four program types such that if a subject re-
ceived an Alpha version for one program of a type then the
subject would receive the Beta version for the other program
of the same type. The test programs were presented as a book-
let in which the order of the programs was randomized for
each subject. Subjects were instructed to work through the
‘booklet in the given order. As we mentioned earlier, each pro-
.gram was presented with one blank; subjects were not told
what problems the programs were intended to solve. Subjects
were given the following instruction: fill in the blank line with
a line of Pascal code which in your opinion best completes the
program. They were given as much time to do the test as they
wanted; almost all finished within an hour.

E. Results and Discussion

The main results in this study were:

o the experts performed better than the novices (61 percent
versus 48 percent, Fy 137 = 17.27,p <0.001),

o subjects answered the Alpha versions correctly more often
than they did the Beta versions (88 percent versus 31 percent,
Fy 137 =37522,p<0.001).

o the interaction between program version and expertise
was significant (F 137 = 6.78,p <0.01).

Moreover, using a Newman-~Keuls test the difference in per-
formance between the novice and the advanced subjects for
the Alpha versions was significant at the 0.05 level, while there
was no significant difference between the two groups of sub-
jects on the Beta versions. Thus, the statistical analyses support
-the visual effect of the graph in Fig. 7: the performance of the
‘advanced students was reduced to that of the novices by the
‘Beta versions!

The magnitude of the change in performance by the advanced
programmers is impressive (Fig. 7): the advanced programmers
‘performed about 50 percent worse on the Beta versions that
they did on the Alphaversions. (This difference was significant
at the 0.01 level using a Newman-Keuls test.) Given that the
only difference between the two versions was a violation of
one (or possibly two) rule of programming discourse, we are
impressed with the enormous size of this difference. Clearly,
- discourse rules in programming have a major effect on pro-
grammers’ abilities to comprehend programs.

A breakdown by version and program type is given in Table I.
Here we see the percentage of subjects that correctly answered
each program.

e There was a significant difference in accuracy for the four
program types (F3 41; = 26.81,p <0.001).

o Also, the differences between the Alphaand Beta programs
was not constant over the four program types. This interaction
between program type and version was significant (F3 411 =
68.39,p <0.001).
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While we had attempted to keep all the program types at
about the same level of difficulty, apparently we were not suc-
cessful in this regard.

There was also a significant three-way interaction between
program type, version, and expertise (F3 411 = 3.12,p <0.05).
An intuition for this interaction can be gleaned from Table I:
performance on the Beta version of the SQRT program type
differed greatly from the performance on the Beta versions of
the other program types. This difference was statistically sig-
nificant at the 0.01 level using a Newman-Keuls test. Why was
the performance on the Beta versions of this one program type
so high? The most plausible explanation is based on a practice
effect: since in every other program that the subjects saw, data
were input via a READ statement, subjects simply did not even
see the conflict and immediately filled in the blank line with a
READ.

In Table II we display a breakdown of the number and type
of errors that subjects made. There were of course, more errors
made on the Beta versions (390) than on the Alpha versions
(140) (p <0.001 by a sign test).® More interesting, however,
were the type of errors made on the Beta versions. Our theory
makes a strong prediction about the type of incorrect response
that subjects will make on the Beta versions: if subjects do not
recognize that the Beta versions are unplan-like, and if subjects
are simply using plans and discourse rules to guide their re-
sponses, then we expect them to perceive the Beta version as
just being an Alpha version, and provide the plan-like response
for the Alpha version. For example, as discussed earlier (Sec-
tion II[-A), Program Purple in Fig. 1 actually computes the
minimum of a set of inputs; however, it appears, because of
the key variable name MAX to compute the maximum of some
input values. The correct fill-in-the-blank answer for the Pro-
gram Purple was ‘<’. However, we predicted that those sub-
jects who fill in the blank incorrectly would do so by saying
>’ _which is the correct answer for the Alpha version.

The data do bear out the above prediction: the difference
between the plan-like incorrect responses and the unplan-like
incorrect responses on the Beta versions was significant (p < .01
by a sign test):? 66 percent (257/390) of the incorrect re-
sponses on the Beta versions were one specific response—the
response that would have been appropriate for the correspond-
ing Alpha version of the program.

Another view of the effect of the unplan-like Beta versions
on our subjects’ performance can be seen by examining the
amount of time it took subjects to provide a correct response
to the Alpha and the Beta versions. Fig. 8 depicts this relation-
ship. The difference in response time for the correct answers
between the Alpha and Beta versions was significant (F 555 =
35.1, p <0.001); it took approximately 5O percent more time
to respond correctly to the Beta versions than it did to respond
correctly to the Alpha versions. The difference between novice
and advanced programmers was also significant (#; ;5 = 8.6,

5The p value of 0.001 reduces the likelihood that we are affirming a
chance result from having partitioned the data.

"The p value of 0.01 reduces the likelihood that we are affirming a
chance result from having partitioned the data.
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Advanced (87%)

Percentage
of Correct
Responses 70%

60%

50%

40%

30%

20%

10%

Advanced (34%)

Novice (28%)

Version Alpha

Bets

Fig. 7. Interaction: Expertise and program type.

TABLE 1
PERCENTAGE OF CORRECTNESS BY PROGRAM TYPE

NOVICES (N = 94)

Progran

Type Alpha Beta
1 Max 78% 125
2 SQRY 698 61%
3 AVERAGE 803 01%
4 IF/WHILE 48§ 38%

ADVANCED (N = 45)

1 HAX 933 13%
2 SQRT 87% 843
3 AVERAGE 96§ 06%
4 IF/WHILE 73% 315

p <0.01); however, we did not find an interaction between
expertise and program version in this situation (F < 1).

Our interpretation of these data is as follows: we conjecture
that a correct response to the Alpha versions required only that

~ TABLE II
ERrOR DAta: Frir-IN-THE-BLANK STUDY

ERRORS on Alpha and Beta Versions:

Alpha Versions:

Total number of errors by Novice and Advanced Subjects: 140
Beta Versions:

Total number of errors by Novice and Advanced Subjects: 350

ERRORS on only Beta Versions:

Plan~like Errors:
Total number on Beta versions by Novice and Advanced Subjects: 257

Unplan~like Errors:
Total number on Beta versions by Novice and Advanced Subjects: 133

390

programumers use their knowledge of programming plans and
rules of programming discourse in a straightforward manner.
However, in order to arrive at a cofrect answer to the Beta ver-
sions, subjects needed to employ additional processing tech-
niques, e.g., trying to run the program on some sample numbers.
This additional mental processing time corresponds to the in-
crease in response time. Thus, not only do unplan-like pro-
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Time To Answer

Problenm
Correctly 100
(in seconds)

90

Novice
80 (83 secs)
70

Advanced

(69 secs)
60

Alpha
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Novice
(123 secs)

Advanced
(103 secs)

Yersion

Fig. 8. Time to respond correctly: Alpha version versus beta version.

grams reduce the accuracy of programmers, their time to re-
spond correctly to the unplandike ones goes up dramatically
since they need to bring in additional reasoning strategies in
order to compensate for the unplanliness of the Beta versions.

V. DETAILED DESCRIPTION OF STUDY II: RECALL

A. Subjects

A total of 41 professional programmers participated in this
study. The mean number of years experience was 7.5, with a
standard deviation of 4.8. The minimum number of years of
experience was 2 and the maximum was 20. The company for
which these programmers worked gave them time off during
the workday to participate in this study. Thus we did not have
to pay subjects for their participation.

B. Materials
The programs we used in this study were essentially the same
as those used in the study described above; the main differences

were:

© the programs in this study were translated from Pascal
into Algol, the language used by these subjects;

© program type SQRT was eliminated; in the Beta versions,
these programs simply have an extra line of code, the initializa-
tion of N, which we felt was too mild a difference from the
Alpha versions.

As described in Section III, each Alpha-Beta pair of programs
was essentially identical® except for two critical lines (e.g., see
lines 5 and 9 in the programs in Fig. 9.) We have called these
lines critical because they carry the information that makes
the programs plan-like or not. In the following analysis, we
will focus on the two critical lines in assessing whether expert

8ngrams of type AVERAGE were slightly different (see Fig. 4):
the Alpha versions used a process/read loop structure, while the Beta
conditions used a process/read structure [19]. However, the Alpha
programs contain fewer lines than the Beta versions; thus, by more
standard measures of program complexity (e.g., Halstead [11] or “lines
of code™) the Alpha programs should be harder to comprehend than
the Beta ones.

o —

i

;
g
b

s T
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Program T}pe MAX  Version Alpha

% PROGRAM MAGENTA,

01 BEGIN

02 FILE REM (KIND = REMOTE, UNITS = CHARACTERS,
03 MAXRECSIZE = 1920, MYUSE = I0);
04 INTEGER MAX, I NUM,

05  MAX = 0;

06 FORI = 1 STEP 1 UNTIL 10 DO

07 BEGIN

08 READ (REM, #/ NUM),

09 IF NUM > MAX THEN MAX = NUM,

10 END:

11 WRITE(REM, #/ MAX) .

12 END

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-10, NO. 5, SEPTEMBER 1984

Program Type: MAX  Version: Beta
% PROGRAM PURPLE .
BEGIN
FILE REM (KIND = REMOTE, UNITS = CHARACTERS,
MAXRECSIZE = 1920, MYUSE = I0);
INTEGER MAX, I NUM,
MAX = 10000600,
FOR I '= 1 STEP 1 UNTIL 10 DO
BEGIN
READ (REM, #/ RUM).
IF NUM < MAX THEN MAX
END, -
WRITE(REM, #/ MAX)
END

= NUN,

Fig. 9. Example: Critical lines in Algol programs. The critical lines in these programs—the lines that are different—are lines
05 and 09.

programmers recall plan-like programs better than unplan-like
ones: we predict that the programmers should be able to recall
the critical lines from the plan-like programs earlier than the
critical lines from the unplan-like ones. The basis for this pre-
diction is as follows: programmers will use their plans and dis-
course rules to encode a program when it is presented. Ina
plan-like program, the critical lines are the key representatives
of the program’s plans, and thus they should be recalled very
early on. The fact that representatives of a category are recalled
first is a recognized psychological principle [5]. However, in
an unplan-like program, the critical lines do not represent the
program’s plans and as such should act no differently than the
other lines in the program,; thus, they should not be recalled
first.

C. Design: Independent and Dependent Variables
In this study there were three independent variables:

o version—Alpha (plan-like), Beta (unplan-like)
e program type—MAX, AVERAGE, IF/WHILE
e trial—first, second, third presentation

As explained below, the dependent variable was correctness of
recall of the critical lines.

D. Procedure

Subjects were presented with a complete program which they
were asked to recall verbatim. The program was presented
three times, each time for 20 s. On the first trial, subjects
were asked to recall as much of the program as possible. On
the second and third trials, they were asked to either add to
their original recall or to change any part of their recall that
they felt was in error. We tracked the progression of their
recall by asking them to use a different color pencil on each
of the three trials. ,

Just as in the previous study, there was two Alpha-Beta pro-
gram pairs for each of three types of programs (MAX, AVER-
AGE, IF/WHILE). Each subject was shown a total of six pro-
grams: three Alpha and three Beta. We also counterbalanced
version within each of the 3 program types such that if a sub-
ject received an Alpha version for one program of a type then
the subject would receive the Beta version for the other pro-
gram of the same type.

A critical line was scored as correct if and only if the line
was recalled exactly as presented. If a subject recalled part of
a critical line on the first trial and the rest of the line on the
third trial, then the line would be scored as being recalled on
the third trial. Similarly, if a subject recalled a whole line on
the first trial but the recall was wrong, and if the subject cor-
rected the line of the third trial, then again, this line would be
scored as being correct on the third trial.

E. Results and Discussion

In Fig. 10 we present a summary of the results from the re-
call study. This figure shows the performance of programmers
on the critical lines for all the programs. Shown are the cumu-
lative percentages of recall for the critical lines for each of the
three trials (presentations).” After the first trial, for example,
42 percent (101/240) of the critical lines on the Alpha versions
were recalled correctly, while only 24 percent (58/240) of the
critical lines on the Beta versions were recalled correctly. The
effect of version was significant (F'; 40 = 9.05, p <0.01): more
Alpha critical lines were recalled than Beta critical lines. The
interaction of version and trial was also significant (F, go =
472, p <0.011). The fact that the difference between the re-
call of the critical lines for the Alpha and the Beta versions
changes over trials supports our hypothesis that the critical
lines in the Alpha versions were recalled sooner than those in
the Beta versions. Thus, just as in the study described previ-
ously (Section IV), we again see the significant, detrimental ef-
fect that unplan-like programs have on programmer perfor-
mance. '

In Table IIT we breakdown the errors and changes made by
our three subjects. Of particular interest are the number of
changes: programmers made almost three times as many
changes on the Beta programs as they did on the Alpha pro-
grams.’® Moreover, the changes made on the Beta programs
were consistent with our theoretical predictions: subjects typi-

9The basis for this calculation is as follows: each subject was shown
three Alpha programs and three Beta programs, there were two lines
per program, and there were 40 subjects. Thus, there was a possible
240 critical lines in the Alpha programs, and 240 critical lines in the
Beta programs.

04y changes on the Beta programs were from incorrect to correct;
one subject changed from correct to incorrect on an Alpha program.
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Fig. 10. Summary statistics of recall study.
cally incorrectly “recalled” the plan-ike answer, and then TABLE 111
changed their answer later to match what was actually being BrEAKDOWN OF THE ERRORS AND CHANGES THAT WERE MADE
"shown in the program. In particular, 22 out of 32 changes (69
percent) were from plan-like, but incorrect answers, to the cor- Corractly I
R K ecalled Errors Unrecalled | Changes
rect answer. (This difference was significant p <0.025 by a , |
sign test.!!) For example, on program PURPLE, which is a ALPHA (Out of 240) 206 17 23 : 12
Beta version of type MAX (Fig. 9), of the eight subjects who BETA (Out of 240) 189 24 33 | 32
made changes to the If line (line 9), seven of them initially
wrote Num > Max—the response that would be correct if the
program were actually finding the maximum value (see the , For BETA Programs Only
Alpha version in Fig. 9)--and then changed their response on Changes Changes
Plan-like to Correct Otherwise
Urhe p value of 0.025 reduces the likelihood that we are affirming 22 10
a chance result from having partitioned the data.
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later trials to the correct Num < Max. Notice that these sub-
jects were initially “recalling” something that was not in the
program. Thus, just asin the fill-in-the-blank study, an analysis
of incorrect responses is particularly telling: programmers ex-
pected to see plan-like programs and consistently behaved as
if the programs at hand were plan-like.

VI. CONCLUDING REMARKS

The objective of these studies was to evaluate the claim that
advanced programmers have and use 1) programming plans and
2) rules of programming discourse. The experiments discussed
above were expressly designed to examine this question. The
results of the experiments, as described above, support our ini-
tial claim.

e In Study I, when test programs were plan-like, advanced
programmers did perform significantly better than novice pro-
grammers; however, when the test programs were not plan-like
(i.e., the plan composition violated some rule of programming
discourse), then the performance of the advanced programmers
was reduced to essentially that of the novice programmers.

e In Study II, the performance of the expert programmers
was significantly different on the plan-like programs as com-
pared to the unplan-like ones: the critical lines in the plan-like

_programs were recalled earlier than those in the unplan-like

ones.

On the one hand, the results point to the fragility of pro-
gramming expertise: advanced programmers have strong ex-
pectations about what programs should look like, and when
those expectations are violated—in seemingly innocuous ways—
their performance drops drastically. On the other, the results
support our claim that the plan knowledge and the discourse
rule knowledge, upon which the expectations are built, do
play a powerful role in program comprehension.

We hasten to point out that measures of surface characteris-
tics, such as lines of code or Halstead metrics, would not pre-
dict the differences in performance we obtained. The Beta
versions typically has either the same number of lines of code
or slightly fewer lines of codes than did the comparable Alpha
versions. We certainly do not dispute the results of earlier
studies that show that such surface measures do correlate with
program complexity (e.g., [6]). Howevet, as our study vividly
shows, surface feature measures do not necessarily predict
complexity.

More importantly, our approach is to provide explanations
for why a program may be complex and thus hard to compre-
hend. Towards this end, we have attempted to articulate the
programming knowledge that programmers have and use. Thus,
our intent is to move beyond correlations between programmer
performance and surface complexity as measured by Halstead
metrics, lines of code, etc., to a more principled, cognitive ex-
planation (see also, [20]). :

A potential criticism of this work is that the programs we
used in the experiments were unrealistic: while our experimental

programs were short, the programs produced by experts are .

typically much longer. One major rationale for the use of
short programs was experimental control: we wanted to keep

as much constant as possible and only vary one (or possibly

‘two) discourse rule. Given the range of results we obtained

for the different program types (see Table 1) we feel justified
in our concern. Nonetheless, we are sensitive to the above crit-
icism: while our intuition is that the effects we observed will
in fact be more pronounced in longer programs, clearly, our
studies need to be replicated with longer programs. While not
discounting the value of this criticism, we feel that the magni-
tude of effects that we observed is too pronounced to simply
be ignored.

In closing, then, our studies support the claim that knowledge
of programming plans and rules of programming discourse can
have a significant impact on program comprehension. In their
book called Elements of Style, Kernighan and Plauger [13]
also identify what we would call discourse rules. Our empirical
results put teeth into these rules: it is not merely a matter of
aesthetics that programs should be written in a particular style.
Rather there is a psychological basis for writing programs in a
conventional manner: programmers have strong expectations
that other programmers will follow these discourse rules. If
the rules are violated, then the utility afforded by the expecta-
tions that programmers have built up over time is effectively
nullified. The results from the experiments with novice and
advanced student programmers and with professional program-
mers described in this paper provide clear support for these
claims.
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