
Hybrid Processing of Beliefs and Constraints�

Rina Dechter and David Larkin

Department of Information and Computer Science

University of California, Irvine, CA 92697-3425

fdechter,dlarking@ics.uci.edu

Abstract

This paper explores algorithms for process-

ing probabilistic and deterministic informa-

tion when the former is represented as a be-

lief network and the latter as a set of boolean

clauses. The motivating tasks are 1. evalu-

ating belief networks having a large number

of deterministic relationships and 2. evaluat-

ing probabilities of complex boolean queries

or complex evidence information over a be-

lief network. We present and analyze a vari-

able elimination algorithm that exploits both

types of information, and provide empirical

evaluation demonstrating its computational

bene�ts.

1 Introduction and motivation

The paper addresses the question of processing deter-

ministic relationships that interact with probabilistic

information expressed as belief networks. Two pri-

mary sources of determinism are considered: network-

based and query-based. Network determinism means

that a portion of the probabilistic network contains de-

terministic relationships, such as OR, AND and Par-

ity functions. A second source of determinism can be

generated outside the knowledge-base, when evaluat-

ing the posterior belief of complex constraint-based

queries, or when given complex evidence structure

(e.g., disjunctive information).

We will show that both sources of determinism can

be reduced to evaluating the probability of Boolean

queries. While we will assume that the deterministic

information is expressed as boolean formulas in con-

junctive normal form (CNF), the framework is exten-

sible, in principle, to relational constraint expressions

over multi-valued domains.

The paper presents a variable-elimination algorithm

for computing the probability of a CNF query over

a belief network. It is known that such queries can

be handled by modeling the formula as part of the

belief network ([Pearl, 1988]). However, as we demon-

strate, it is computationally bene�cial to distinguish

between the deterministic and probabilistic informa-

tion. It facilitates constraint processing, especially

search and constraint propagation (e.g. unit resolu-

tion), which has proven essential for e�cient process-

ing of Boolean and constraint expressions. We ana-

lyze the algorithm's complexity based on its depen-

dency graph, taking into account both probabilistic

and deterministic dependencies. Preliminary experi-

ments show that exploiting deterministic information

can lead to signi�cant speedup of up to a factor of 2 on

the average. However, increasing constraint propaga-

tion beyond unit resolution may not be cost-e�ective.

Another algorithmic scheme, only briey discussed,

can be based on enumerating all the CNF models using

search algorithms computing the belief of each model

and summing up the beliefs. Finally, an incomplete

alternative approach can be based on stochastic sim-

ulation [Pearl, 1988]. These algorithms use the belief

network to generate tuples from the distribution, and

then answer any query by treating the collection of tu-

ples produced as the probability distribution. These

incomplete methods are likely to be very ine�ective for

formulas having a small number of models.

Following Background (Section 2), Sections 3 and 4

discuss the relevant tasks and present the new algo-

rithm for assessing the probability of a CNF theory.

Section 5 presents empirical evaluation and section 6

concludes.

2 Preliminaries and background

Belief networks provide a formalism for reasoning

about partial beliefs under conditions of uncertainty.

It is de�ned by a directed acyclic graph over nodes

representing random variables of interest. A directed

graph is a pair, G = fV;Eg, where V = fX1; :::; Xng is

a set of elements and E = f(Xi; Xj)jXi; Xj 2 V; i 6= jg

is the set of edges. If (Xi; Xj) 2 E, we say that Xi

points to Xj . For each variable Xi, the set of par-

ent nodes of Xi, denoted paXi
, or pai, comprises the

variables pointing to Xi in G. The family of Xi, Fi,

includes Xi and its parent variables. A directed graph

is acyclic if it has no directed cycles. In an undirected

graph, the directions of the arcs are ignored: (Xi; Xj)

and (Xj ; Xi) are identical. Let X = fX1; :::; Xng

be a set of random variables over multi-valued do-

mains, D1; :::; Dn, respectively. A belief network is a

pair (G;P) where G = (X;E) is a directed acyclic

graph over the variables, and P = fPig, where Pi
denotes conditional probability tables (CPTs) Pi =

fP (Xijpai)g, and pai is the set of parent nodes point-

ing toXi in the graph. When the CPTs entries are \0"

or \1" only, they are called deterministic or functional

CPTs. When some of the CPT's entries are \0" or \1"

they are called mixed CPTs. The family of Xi, Fi, in-

cludes Xi and its parent variables. The belief network

represents a probability distribution overX having the

product form P (x1; ::::; xn) = �n

i=1P (xijxpai) where

an assignment (X1 = x1; :::; Xn = xn) is abbreviated

to x = (x1; :::; xn) and where xS denotes the restric-

tion of a tuple x over a subset of variables S. An

evidence set e is an instantiated subset of variables.

We use upper case letters for variables and nodes in a

graph and lower case letters for values in a variable's

domain. The scope of an arbitrary function is its set of

arguments. The moral graph of a directed graph is the

undirected graph obtained by connecting the parent

nodes of each variable and eliminating direction.
Propositional theories. Propositional variables

which take only two values ftrue; falseg or f1; 0g, are

denoted by uppercase letters P ,Q, R. Propositional

literals (i.e., P;:P) stand for P = true or P = false;

and disjunctions of literals, or clauses, are denoted by

�; �; : : :. For instance, � = (P _Q _R) is a clause. A

unit clause is a clause of size 1. The resolution op-

eration over two clauses (� _Q) and (� _:Q) results

in a clause (� _ �), thus eliminating Q. A formula '

in conjunctive normal form (CNF) is a set of clauses

' = f�1; : : : ; �tg that denotes their conjunction. The

set ofmodels or solutions of a formula', denotedm(')

is the set of all truth assignments to all its symbols that

do not violate any clause. resolve('; �) is the set of

resolvents of each clause in ' with �.

Example 2.1 Figure 1a gives an example of a belief

network over 6 variables. Assume that the CPTs as-

sociated with C is mixed given by P (C = 1jA = 0) =

1; P (C = 1; A = 1) = 0:5 and that G is associated with

a deterministic function: G = D _ F . The rest of the

CPTs are positive. The moral graph is given in Figure

1b.

Bucket elimination. Bucket elimination is a

unifying algorithmic framework for variable elim-

D

G

A

B C

F

A

B C

F

G

D

Figure 1: Belief network P (g; f; d; c; b; a)

= P (gjf; d)P (f jc; b)P (djb; a)P (bja)P (cja)P (a)

ination algorithms applicable to probabilistic and

deterministic reasoning [Bertele and Brioschi, 1972,

N. L. Zhang and Poole, 1994, Dechter, 1996]. The in-

put to a bucket-elimination algorithm is a set of func-

tions or relations. Given a variable ordering, the algo-

rithm partitions the functions (e.g., CPTs) into buck-

ets, where a function is placed in the bucket of its lat-

est argument in the ordering. The algorithm processes

each bucket, from last to �rst, by a variable elimina-

tion procedure that computes a new function that is

placed in an earlier (lower) bucket. The time and

space complexity of such algorithms is exponential in

a graph parameter called induced width w�(d), of the

network's ordered moral graph adjusted for observed

variables (observed nodes are not connected) along or-

dering d.

3 Tasks

The primary basic query over belief networks is belief

updating, namely evaluating the posterior probability

of each singleton proposition given some evidence. In

this paper we address complex queries and complex ev-

idence that are expressible as Boolean formulas on sub-

sets of the variables. In addition we will discuss the

processing of hybrid networks containing deterministic

and mixed CPTs, and show that both explicit and im-

plicit deterministic information in such networks can

be exploited computationally by appropriate transfor-

mation to CNF query evaluation.

3.1 Complex queries, given complex evidence

CNF Probability Evaluation (CPE). The prob-

lem of evaluating the probability of CNF queries over

belief networks has application to query answering in

massive databases. In particular, for massive data

archives, it is possible to construct an approximate

model of the data o�ine using a belief network and

then to answer real-time queries using the approxi-

mate model (without recourse to the original data)

[Pavlov et al., 2000].

Another application is to network reliability. Given a

communication graph with a source and destination,

one seeks to diagnose failure of communication. Since

several paths may be available, the reason for failure

can be described by a CNF formula. Failure means

that for all paths (conjunctions) there is a link on that

path (disjunction) that fails. Given a probabilistic

fault model of the network, the task is to assess the

probability of a failure [Portinale and Bobbio, 1999].

Definition 3.1 (CPE)

Given a belief network (G;P), de�ned over proposi-

tional variables X = fX1; :::; Xng and given a CNF

query ' over a subset Q = fQ1; :::Qrg, where Q � X,

the CNF Probability Evaluation (CPE) is to �nd the

probability P (').

Complex evidence. We can envision situations

when one wants to assess belief of a proposition given

partial, disjunctive information. For example, given

that a customer purchased a coat or a shirt, but did

not buy a tie, what is the probability that they will also

purchase shoes? This type of query is very valuable

for predictive modeling, e.g., \cross-sell" applications

where we determine which other products a customer

is likely to purchase.

Belief assessment conditioned on a CNF evidence is

the task of assessing P (Xj') for every variable X.

Since P (Xj') = �P (X ^ ') when � is a normalizing

constant relative toX, computingP (Xj') reduces to a

CPE task for the query ((X = x)^'). More generally,

P ('j) can be derived from P ('j) = �' � P (' ^)

when �' is a normalization constant relative to all the

models of '.

A CNF query can also be de�ned over multi-valued

variables X1; :::Xn. Its propositions are (Xi; a), where

a 2 Di. The proposition is true if Xi is assigned value

a 2 Di and is false otherwise. The CNF is augmented

with a collection of 2-CNFs for each variable, that for-

bids assignments of more than one value to a variable.

Namely, for every i (Xi; a)! :(Xi; b) if a 6= b.

3.2 Evaluating beliefs in hybrid networks

Often belief networks have a hybrid probabilis-

tic and deterministic relationships. Such net-

works appear in medical applications in coding net-

works [R.J. McEliece and Cheng, 1997] and in net-

works having CPTs that are causally independent

[Heckerman, 1989]. Recent work in dynamic decision

networks reveals the need to express large portion of

the knowledge using deterministic constraints. We ar-

gue that treating such information in a special manner,

using constraint processing methods is likely to yield

signi�cant computational bene�t.

Hybrid networks A hybrid belief network (HBN) is

a triplet < G;P; F >, G = (X;E), where X is a set

of variables partitioned into X = R [D. Variables

in R are probabilistic and have regular CPTs while

variables in D are deterministic having a function de-

�ned from their parents to the variable. The CPTs of

probabilistic variables can be positive or mixed. In the

latter case some probability entries in the CPTs are 0

or 1.

Belief assessment in an HBN translates to a CPE

task. The idea is to collect together all the determin-

istic information appearing in the functions of F and

to extract the deterministic information in the mixed

CPTs, and then transform it all to one CNF expres-

sion. This expression can then be treated as a CNF

query over the original network. Clearly, every func-

tion can be expressed as a CNF formula. Also, each en-

try in a mixed CPT P (Xijpai), having P (xijxpai) = 1,

(x is a tuple of variables in the family of Xi) can be

translated to the clause xpai ! xi, and all such entries

constitute a conjunction of clauses.

Let HBN =< C;P; F > be a hybrid network. Given

evidence e, assessing the posterior probability of a

single variable X given evidence e is to compute

P (Xje) = �P (X ^ e). Let cl(P) be the clauses ex-

tracted from the mixed CPTs, and let cl(F) be the

clauses expressing the conjunction of functions in F .

The network's deterministic portion is cl(F) ^ cl(P),

and because this conjunction is redundant relative to

the given network, namely since P (cl(F) ^ cl(P) = 1

we can write:

P ((X = x) ^ e) = P ((X = x) ^ e ^ cl(F) ^ cl(P))

Therefore, to evaluate the belief of X = x we can eval-

uate the probability of the CNF formula ' = ((X =

x) ^ e ^ cl(F) ^ cl(P)) over the original HBN. While

some of the information is expressed redundantly, both

in the network and in the query, it is semantically cor-

rect.

Example 3.1 Consider the HBN in Figure 1. We can

extract the clauses ' = f(:D_G); (:F_G); (:G_D_

F)g from the only deterministic function G = D _ F .

From the mixed CPT of C we can extract the clause

(A _ C). Answering the query P (X ^ :G) when

X is any variable is equivalent to evaluating P (X ^

:G;^(:D_G)^ (:F _G)^ (:G_D_F)^ (A_C)g.

4 Bucket-elimination for CPE

There are two primary complete approaches for CPE:

query-conditioning and variable elimination.

Query-conditioning approach. Query condition-

ing requires enumerating all the models of the CNF

formula, assessing the belief of each by an inference

algorithm and summing those beliefs. Model enumer-

ation requires O(exp(r)) time in the worst-case and

O(jmodelsj) in the best case. Computing the belief of a

model can be performed over the network conditioned

on the model assignments, exploiting its structure.

In the ideal situation, models can be determined in

output linear time. If in addition the number of mod-

els is bounded, we may have an overall polynomial

performance. The motivation for using constraint pro-

cessing algorithm is geared into exploiting good cases

whenever possible.

Clearly, query conditioning should be further explored

by advanced, constraint-based search methods for

model enumeration. However, the current paper fo-

cuses on variable elimination methods.

A variable-elimination approach.

The following paragraphs derive a bucket-elimination

algorithm for CPE. This is a straightforward exten-

sion of the variable elimination algorithm Elim-bel for

belief updating [Dechter, 1996]. Given a belief net-

work de�ned over variables X = fX1; :::; Xng and a

CNF query ' over1 Q � X, where the size of Q

is r, the CPE task is to compute a sum of prob-

abilities of all the models of ', namely: P (') =P
�xQ2m(') P (�xQ) where �x = (x1; :::; xn). Using

the belief-network product form we get: P (') =P
f�xj�xQ2m(')g

Q
n

i=1P (xijxpai). For derivation pur-

pose, we next assume that Xn is one of the query vari-

ables, and we separate the summation over Xn and

X �fXng. We denote by n the set of all clauses con-

taining Xn and by �n all the rest of the clauses. The

scope of n is denoted Qn, Sn = X � fXng and Un is

the set of all variables in the scopes of the CPTs and

clauses that mention Xn. We de�ne �xi = (x1; :::; xi).

We get:

P (') =
X

f�xn�1j�xSn2m(�n)g

X

fxnj�xQn2m(n)g

nY

i=1

P (xijxpai)

Denoting by tn the indices of functions in the product

that do not mention Xn and by ln = f1; :::ng� tn we

get:

P (') =
X

f�xn�1j�xSn2m(�n)g

Y

j2tn

Pj �
X

fxnj�xQn2m(n)g

Y

j2ln

Pj

Therefore:

P (') =
X

f�xn�1j�xSn2m(�n)g

(
Y

j2tn

Pj) � �
Xn (1)

1It is easy to extend this to propositions over multi-
valued variables

where �Xn over Un � fXng, is de�ned by

�Xn =
X

fxnj�xQn2m(n)g

Y

j2ln

Pj (2)

Therefore, if we place all CPTs and clauses mentioning

Xn into the bucket of Xn we can compute the func-

tion in EQ. (2). The computation of the rest of the

expression proceeds with Xn�1, using EQ. (1), in the

same manner.

Case of observed variables. When Xn is observed,

or constrained by a literal, the summation operation

reduces to assigning the observed value to each of its

CPTs and to each of the relevant clauses. In this case

EQ. (2) becomes (assume Xn = xn and P=xn is the

function instantiated by assigning xn to Xn):

�xn =
Y

j2ln

Pj=xn ; if �xQn 2 m(n^(Xn = xn)) (3)

Otherwise, �xn = 0. Since �xQn satis�es n^(Xn = xn)

only if �xQn�Xn
satis�es xn = resolve(n ; (Xn = xn)),

we get:

�xn =
Y

j2ln

Pj=xn if �xQn�Xn
2 m(xn

n
) (4)

Assigning a value of a variable to a clause translates

either to unit resolution or to unit subsumption elimi-

nation. Therefore, we can extend the case of observed

variable in a natural way: CPTs are assigned the ob-

served value as usual while clauses are individually re-

solved with the unit clause (Xn = xn), and both are

moved to appropriate lower buckets.

Algorithm Elim-CPE, described in Figure 2, includes

therefore a limited amount of constraint propagation

in the form of unit-resolution. Thus, for the variable

ordering of choice, once all CPTs and clauses are par-

titioned (each clause and CPT is placed in the latest

bucket of its scope), we process the buckets from last

to �rst. If the bucket contains a literal we assign its

value to the CPTs, resolve it with the clauses and move

the resulting functions and clauses to the appropriate

bucket. Otherwise, in each bucket we generate the

probabilistic function. From our derivation it follows

that

Theorem 4.1 (Correctness and Completeness)

Algorithm Elim-CPE is sound and complete for the

CPE task. 2

Note that the algorithm includes also a dynamic re-

ordering of the buckets that prefers processing buckets

that include unit clauses. This may have a signi�cant

impact on e�ciency because observations (namely unit

clauses) avoid the creation of new dependencies.

Algorithm Elim-CPE
Input: A belief network (G;P), P = fP1; :::;Png; A
CNF formula on r propositions ' = f�1; :::�mg an or-
dering, d
Output: The belief P (').
1. Initialize: Place buckets with unit clauses last
in the ordering (to be processed �rst). Partition P

and ' into bucket1, : : :, bucketn, in the usual manner.
where bucketi contains all matrices and clauses whose
latest variable is Xi. Put each observed variable into
its appropriate bucket. Let S1; :::;Sj be the scopes of
CPTs, and Q1; :::Qr be the scopes of clauses. (We de-
note probabilistic functions as �s and clauses by �s).
Scopes of CPTs are denoted by S, of clauses by Q.
2. Backward: Process from last to �rst.
Let P be the current bucket.
For �1; :::; �j, �1; :::;�r in bucketp, do
� If bucketp contains Xp = xp (or a unit clause),
a. Assign Xp = xp to each �i
b. Resolve each �i with the unit clause, and put re-
solvents and probabilistic function lower buckets and
c. Move any bucket with unit clause to top of process-
ing.
� Else, compute probabilistic function �P =P

fxpj�xUp2m(�1 ;:::;�r)g

Q
j

i=1
�i,

over Up = S [Q� fXpg, S = [iSi, Q = [jQj, and
place any generated function or clause into its appro-
priate lower bucket.
3. Return P (') generated in the �rst bucket.

Figure 2: Algorithm Elim-CPE

Example 4.2 Lets treat the belief network in Figure

1 as if all its CPTs are pure positive, and assume we

get the query ' = (B _ C) ^ (G _ D) ^ (:D _ :B).

The initial partitioning into buckets along the order-

ing d = A;C;B;D; F;G, as well as the output buck-

ets are given in Figure 3a. In bucket G we com-

pute: �G(f; d) =
P

fgjg_d=trueg P (gjf; d). In bucket

F : �F (b; c; d) =
P

f
P (f jb; c)�G(f; d). In bucket D:

�D(a; b; c) =
P

fdj:d_:b=trueg P (dja; b)�
F (b; c; d). In

bucket B: �B(a; c) =
P

fbjb_c=truegP (bja)�
D(a; b; c).

In bucket C: �C(a) =
P

c
P (cja)�B(a; c). In bucket

A: �A =
P

a
P (a)�C(a) P (') = �A.

Let's now extend the example by adding :G to the

query. This will place :G in the bucket of G (See

Figure 3b.) The Figure shows the derived functions

and clauses, demonstrating the e�ect of unit resolu-

tion. Note the change in bucket ordering due to the

preference to processing buckets with unit clauses.

The following example extract clauses from the CPTs

and then applies Elim-CPE.

Example 4.3 Consider again the belief network in

Figure 1 and the query P (Aj:G) but assume the de-

terministic and mixed CPTs as described in Example

3.1. The extracted CNF is ' = (:D _ G) ^ (:F _

Bucket G: P(G|F,D)

Bucket F: P(F|B,C)

Bucket D: P(D|A,B)

Bucket B: P(B|A)

Bucket C: P(C|A)

Bucket A: P(A)

)(CB ∨),,(CBADλ

)(DG ∨

)(BD ¬∨¬

),(CABλ

)(ACλ

),,(DCBfλ

),(DFGλ

)(ϕP

(a)

Bucket G: P(G|F,D)

Bucket D: P(D|A,B)

Bucket B: P(B|A),P(F|B,C),

Bucket C: P(C|A)

Bucket F:

Bucket A:

)(CB ∨),(BADλ

),(CFBλ

)(1 ABλ

G)(¬∨ DG

D),(), (DFBD Gλ¬∨¬

)(FCλ

)(2 ABλ)(ACλ Fλ

C

)(ϕP

B¬

)(FDλ

(b)

Figure 3: Trace of Elim-CPE (a) no observation (b)

with observation

G)^ (:G_D _F)^ (A _C). The initial partitioning

into buckets along the ordering d = A;B;C;D; F;G,

as well as the output buckets are given in Figure 4a.

In bucket G, since we have a unit clause, we compute:

�G(f; d) = P (G = 0jD;F). Applying unit resolu-

tion yields the literals :F and :D. Since we have

a unit clause in bucket F , it will be assigned, yield-

ing �F (b; c) = P (F = 0jb; c). In bucket D we have

a generated unit clause :D causing an assignment:

�D(a; b) = P (d = 0ja; b) and �D = �F (D = 0).

In bucket C: �C(a; b) =
P

fbja_c=trueg P (cja)�
F (b; c).

Since the clause A _ C was extracted from P (CjA)

there is a redundancy in the above computation.

Instead we will generate the function �C(a; b) =P
b
P (cja)�F (b; c) which may save time, depending

on the implementation. In bucket B: �B(a) =P
c
P (bja)�C(a; b)�D(a; b). In bucket A: �A(a) =

P (a)�B(a)�D . P (Aj:G) = ��A(a). Regular Elim-

CPE, not extracting deterministic CNF information,

creates functions on 3 variables as is shown in Figure

4b.

Algorithm Elim-CPE-D is geared towards processing

hybrid networks. It �rst extracts deterministic clauses

from deterministic CPTs, and then applies Elim-CPE.

However, for e�ciency's sake, the new clauses are used

for resolutions only in each bucket and are ignored for

function computation.

4.1 Complexity

Induced-graphs and induced width. The width

Bucket G: P(G|F,D)

Bucket F: P(F|B,C)

Bucket D: P(D|A,B)

Bucket C: P(C|A)

Bucket B: P(B|A)

Bucket A: P(A) DB A λλ)(

)()(DDF ¬λ

),(),,(BABA CD λλ

GGDFGFGD ¬¬∨∨∨¬∨¬),)()((

)|(GAP ¬

C)(B,Fλ

)(),|0(FDFGP ¬=

(a)

C)(A ∨

Bucket G: P(G|F,D)

Bucket F: P(F|B,C)

Bucket D: P(D|A,B)

Bucket C: P(C|A)

Bucket B: P(B|A)

Bucket A: P(A)

),,(CBADλ

)(ACλ

),,(DCBFλ

),(BABλ

),|0(DFGP =

G¬

)|(GAP ¬

(b)

Figure 4: Variable elimination for a hybrid network:

(a) Elim-CPE with clause extraction (b) regular Elim-

CPE

of a node in an ordered graph is the number of the

node's neighbors that precede it in the ordering. The

width of an ordering d, denoted w(d), is the maxi-

mum width over all nodes. The induced width of an

ordered graph, w�(d), is the width of the induced or-

dered graph obtained as follows: nodes are processed

from last to �rst; when node X is processed, all its

preceding neighbors are connected. The induced width

of a graph, w�, is the minimal induced width over all

its orderings [Arnborg, 1985].

As usual, the complexity of bucket elimination algo-

rithms is related to the number of variables appearing

in each bucket. The worst-case complexity is time and

space exponential in the size of the maximal bucket,

which is captured by the induced-width of the rele-

vant graph. For the task at hand, the relevant graph

is the belief network's moral graph combined with the

CNF interaction graph. In the interaction graph of a

CNF, every two nodes appearing in the same clause

are connected. Given a belief network and a query

', the augmented graph of the network is the moral

graph with additional arcs between each two variables

appearing in the same clause of the CNF.

Consider now the computation inside a bucket. If

P is the CNF theory in bucket P , de�ned over sub-

set Qp, and �1; ::::�j are the probability functions

whose union of scopes is Sp, we compute: �P =P
fxpj�xQ2m(P)g

Q
i
�i whose scope is Up = Qp [Sp �

fXpg. A brute force computation of this expression

Algorithm Elim-CPE-Hidden
Input: A belief network BN = fP1; :::;Png; A CNF
formula ' = f�1; :::�mg, an ordering d

Output: The belief P (').
1. For each clause �i introduce a bi-valued variable Hi

and create a CPT whose child node is Hi and whose
parents are scope(�i). Add evidence Hi = 1.
2. Apply elim-bel, to the augmented network when
the hidden variables are at the end of the ordering.
3. Return P (').

Figure 5: Algorithm Elim-CPE-Hidden

is O(exp(jUpj + 1)). Since jUpj is bounded by w�(d)

of the augmented graph, along d, the complexity of

Elim-CPE is O(n � exp(w�(d))).

To capture the simpli�cation associated with observed

variables or unit clauses, we connect only parents

of each non-observed variable when generating the

induced graph. The adjusted induced width is the

width of this adjusted induced-graph. For details see

[Dechter and Larkin, 2001]. In summary,

Theorem 4.4 Given a CNF ' and an ordering o,

the complexity of Elim-CPE is time and space O(n �

exp(w�(o))), where w�(o) is the induced width along

o of the augmented graph adjusted relative to the ob-

served variables and unit clauses generated by unit-

resolution, in '. 2

4.2 Bucket-elimination with hidden variables

Consider now the alternative of modeling clauses

as CPTs. It requires expressing each clause as a

CPT with a new hidden variable and the addition

of evidence to the hidden nodes. Subsequently we

can apply a regular variable elimination algorithm

([Dechter, 1996, N. L. Zhang and Poole, 1994]). We

call the resulting algorithm Elim-Hidden. For com-

pleteness sake Algorithm Elim-CPE-Hidden in Figure

5 explicitly describes this approach.

There is no substantial di�erence between Elim-CPE

and Elim-Hidden in terms of worst-case complexity.

Processing the hidden variables creates tables that cor-

responds to the clauses which are placed in the same

buckets that the original clauses occupy in Elim-CPE;

producing just a linear overhead. Subsequently, when

computing the function's bucket, Elim-Hidden uses

multiplication to factor out non-models and Elim-CPE

uses summation over models. In example 4.3, Elim-

Hidden is far inferior, unable to recognize unit clauses.

4.3 Elim-CPE with constraint propagation

Constraint propagation can, in principle, improve

Elim-CPE by inferring new unit clauses beyond

the power of unit-resolution. Furthermore, inferred

clauses correspond to infered conditional probabilities

that are either \0" or \1".

One form of constraint propagation is bounded reso-

lution [Rish and Dechter, 2000]. It applies pair-wise

resolution to any two clauses in the CNF theory i�

the resolvent does not exceed a bounding parameter,

i. Bounded-resolution algorithms can be applied until

quiesence or in a directional manner, called BDR(i).

After partitioning the clauses into ordered buckets,

each is processed by resolution with bound i.

Constraint propagation algorithms, can be used in

various ways. They can be applied in a preprocess-

ing phase, and subsequently all unit clauses generated

can be added as evidence to Elim-CPE. Alternatively,

Bounded directional consistency can be applied to the

deterministic portion, either as preprocessing or dur-

ing elim-CPE performance.

We extend Elim-CPE into a parameterized family of

algorithms Elim-CPE(i) that incorporates BDR(i) .

The added operation in bucketp is: (If the bucket does

not have an observed variable)

For each pair f(� _ Qi); (� _ :Qi)g � bucketi. If

the resolvent = � [� contains no more than i

propositions, place the resolvents in the bucket of its

highest index variable. Higher levels of propaga-

tion may infer more unit-clauses and general nogoods

but require more computation. It is hard to assess

in advance the right balance of constraint propaga-

tion. It is known that the complexity of BDR(i) is

O(exp(i)). Therefore, for small levels of i the compu-

tation in non-unit buckets is likely to be dominated

by generating the probabilistic function rather than

by BDR(i). In summary, Elim-CPE(i) is time and

space O(n � (maxfexp(wi
�(o); exp(i)g), where wi

�(o) is

the induced width along ordering o of the appropriate

augmented graph adjusted for the evidence.

A few observations: 1. when i is small, the complex-

ity is dominated by the probabilistic function compu-

tation. As i grows, w� may reduce due to evidence

propagation. 2. Inferred unit clauses can be identi�ed

a priori by applying BDR(i) in preprocessing over the

CNF portion. 3. Elim-CPE(i) applied to a given or-

dering d has the same output and complexity had we

preprocessed the CNF by BDR(i) along d and applied

Elim-CPE to the augmented CNF theory. 4. As long

as we are not exploiting enhancements to probabilistic

function computation we can disregard non-unit gen-

erated clauses in function computation. The tradeo�

between all such options needs to be assessed empiri-

cally.

5 Empirical Evaluation

There were four algorithms to be compared empiri-

cally: Elim-CPE(0), Elim-CPE(i), Elim-CPE-Hidden,

and Elim-CPE-D. Elim-CPE-D is geared to processing

hybrid networks. It derives CNF clauses from mixed

CPT's as described above and then applies Elim-CPE.

Various families of random networks were tested, as

well as two realistic networks, the hail�nder and in-

surance networks.

The random generator. The test generator is di-

vided into two parts. The �rst creates a random be-

lief network using a tuple < n; f; d > as a parameter,

where n is the number of variables, f is the maximum

family size, and d is the probability that any given

CPT entry will be deterministic. Parents are chosen

at random from the preceding variables in a �xed or-

dering. The entries of the CPT's are �lled in randomly.

Each entry has a d percent chance of being determin-

istic. The second part generates a 3-CNF query, using

a pair of parameters < c; e > where c is the number of

3-CNF clauses (3-CNF are randomly chosen and each

is given a random truth value) and e is the number of

observations.

All algorithms use min-degree order, computed by re-

peatedly removing the node with the lowest degree

from the graph and connecting all its neighbors.

Elim-CPE vs Elim-CPE-Hidden. We report re-

sults with two sets of random networks generated

(these are typical of the rest of the experiments we

ran) with parameters < 50; 5; 0 > and < 40; 4; 0 >.

The results of those runs are summarized in Figures

8 and 9 respectively. In the tables, the time is given

in seconds, C stands for derived Clauses, U stands for

derived Unit clauses, and mf is the arity of the largest

function created by the algorithm. Clearly mf � w�.

We provide a scatter diagram of the data in Figure 8

in Figure 10.

We also compared the two algorithms over the insur-

ance network and the hail�nder networks. For scatter

diagrams see Figures 6 and 7.

We see that Elim-CPE-Hidden is slower than Elim-

CPE by a factor of 2-3 on the average. As expected,

this is because of Elim-CPE's constraint propagation,

creating more unit variables. When more clauses are

used the gain of Elim-CPE grows.

Testing Elim-CPE(i). The purpose in testing Elim-

CPE(i) was to evaluate the e�ect of di�erent levels of

bounded i-resolution. It may be expected that higher

values of i would produce more clauses, especially unit

clauses, which should speed up the computation. We

ran the algorithm for varying levels of i on networks

�

�

�

� �

�

� �

��

�

�
�
�

�

�

��
�

�

�

�

�

���
�

���
��

�

�

�

�
�
���

�

��
�

�����
�

0 200 400 600 800

0

200

400

600

800

Elim-CPE(0)

Elim-

Hidden

Figure 6: 50 test instances of the insurance network

with query parameters < 20; 5 >

�

�

�
�
�
��

�

�
�

���

�

��

��

�

�

����

�

�

��

�
�

�
�

�

������
�
��

�
�
�

�

��

�

�

0 100 200 300 400

0

100

200

300

400

Elim-CPE(0)

Elim-

Hidden

Figure 7: 50 test instances of the insurance network

with query parameters < 15; 5 >

Algorithm Time mf C. U.

Elim-CPE: 18 18 18 2

Elim-Hidden: 33 19 0 0

Figure 8: 50 test instances, network parameters of <

50; 5; 0> and query parameters < 50; 15 >

Algorithm Time mf C. U.

Elim-CPE: 5 16 22 3

Elim-Hidden: 18 18 0 0

Figure 9: Averages over 35 test instances, network

parameters of < 40; 5; 0 > and query parameters

< 60; 10 >

�� ��
�
�

��
�
� �� �

�

�
�
�

�

�

�
�
�

�

�
�

�

� �
�

�

�

��� �

�

����

�
�

�

�� ���
�
�

0 50 100 150 200 250

0

50

100

150

200

250

Elim-CPE-Hidden

Elim-

CPE(0)

Figure 10: 50 test instances with network parameters

of < 50; 5; 0 > and query parameters < 50; 15 >

Algorithm O. Time mf C. U.

Elim-CPE(n): 15 22 17 23 2

Elim-CPE(3): 15 21 17 20 2

Elim-CPE(2): 15 20 17 17 2

Elim-CPE(1): 15 18 17 15 2

Elim-CPE(n): 10 144 20 28 1

Elim-CPE(3): 10 135 20 18 1

Elim-CPE(2): 10 132 20 14 1

Elim-CPE(1): 10 134 20 13 1

Figure 11: Averages over 30 test instances with net-

work parameters of < 50; 5; 0> and query parameters

< 50; 15 � � �10 >

generated by parameters of < 50; 5; 0 > and with

query parameters < 50; 15 � � �10 >. The results are

summarized in Figure 11. The number of observations

used in each case is given in the O. column.

Contrary to expectation, the higher levels of constraint

propagation were not more successful in creating more

unit clauses, for the problem tested. It appears that

larger and harder CNF queries are necessary to make

higher stronger constraint propagation cost-e�ective.

Testing Elim-CPE-D

Next we evaluated Elim-CPE-D against Elim-CPE(0),

Elim-CPE(15), and Elim-CPE-Hidden on random net-

works.

The �rst set has 80 variables and 75 percent chance

of deterministic CPTs. These were tested with no

clauses, but with varying sizes of evidence. The re-

sults are summarized in Figure 12 and some of the

data is depicted also in the scatter diagrams of Figures

13 and 14. The second set was on random networks

generated with parameters < 50; 3; 50>. Here we also

Algorithm O. Time mf C. U. F.

Elim-CPE-D: 10 32 8 299 3 351

Elim-CPE(0): 10 60 16 0 0 0

Elim-CPE-D: 15 10 7 272 3 350

Elim-CPE(0): 15 33 15 0 0 0

Figure 12: Averages of 50 instances with network pa-

rameters < 80; 4; 75> and varied number of evidence

���
�
� ��� ��
�

�

���� �

�

�� �������

�

��� ��
�

��

�
�

�

� �
�

�

�

�

�

�

�

0 100 200 300

0

100

200

300

Elim-CPE(0)

Elim-

CPE-D

Figure 13: 48 test instances with network parameters

< 80; 4; 75> and query parameters < 0; 10 >

�� �������
�
����� ��� �� ��� ��

�

��
� ����� ��� ��� �
�
��

�

�

�

��
�

0 100 200 300

0

100

200

300

Elim-CPE(0)

Elim-

CPE-D

Figure 14: 50 test instances with network parameters

< 80; 4; 75> and query parameters < 0; 15 >

Algorithm N. Time mf C. U. F.

Elim-CPE-D: 25 3 11 81 2 82

Elim-CPE(0): 25 5 13 3 0 0

Elim-CPE-D: 30 10 12 85 2 86

Elim-CPE(0): 30 23 15 4 0 0

Elim-CPE-D: 35 13 12 78 3 80

Elim-CPE(0): 35 20 15 4 0 0

Figure 15: 50 test instances with network parameters

of < 50; 3; 50> and query parameters < 25 � � �35; 5 >

Algorithm N. Time mf C. U. F.

Elim-CPE-D: 20 48 8 210 1 302

Elim-CPE(15): 20 64 9 12 1 0

Elim-CPE(0): 20 61 9 6 0 0

Elim-Hidden: 20 104 10 0 0 0

Elim-CPE-D: 15 32 8 205 1 302

Elim-CPE(15): 15 38 8 7 1 0

Elim-CPE(0): 15 39 8 5 0 0

Elim-Hidden: 15 63 9 0 0 0

Elim-CPE-D: 10 10 7 208 0 302

Elim-CPE(15): 10 11 8 3 0 0

Elim-CPE(0): 10 11 8 2 0 0

Elim-Hidden: 10 13 8 0 0 0

Figure 16: 50 test instances of the insurance network

(27 variables), with 20-10 3-CNF clauses and 5 unit

clauses added

had query clauses. Results are reported in Figure 15.

In the tables, F. stands for the number of clauses de-

rived from the mixed CPT's, and N. is the number of

clauses produced by the query generator.

Elim-CPE-D was generally superior. The high num-

ber of clauses that it derived from the mixed CPT's

allowed it to produce more unit clauses and lower the

e�ective induced width of the problem.

Tests on Insurance network. Next we tested the

insurance network which is a realistic network for eval-

uating car insurance risks. It has 27 variables. In these

experiments reported in Figure 16, Elim-CPE-D out-

performed Elim-CPE.

Testing on Hail�nder network. Finally we tested

the hail�nder network, another benchmark network

that has 56 variables. The results are reported in Fig-

ure 17. It is a normative system that forecasts se-

vere summer hail in northeast Colorado. Here again

the results are consistent with earlier observations as

Elim-CPE-D was the most e�cient.

Algorithm O. Time mf C. U. F.

Elim-CPE-D: 10 21 6 335 1 501

Elim-CPE(15): 10 26 7 5 1 0

Elim-CPE(0): 10 26 7 4 0 0

Elim-Hidden: 10 30 8 0 0 0

Elim-CPE-D: 15 4 4 269 1 501

Elim-CPE(15): 15 16 6 7 1 0

Elim-CPE(0): 15 16 6 7 1 0

Elim-Hidden: 15 33 7 0 0 0

Figure 17: 50 test instances of the hail�nder network,

with 15 3-CNF clauses and 10-15 unit clauses added

6 Discussion and related work

The most relevant work is that of Poole [Poole, 1997]

providing a rule-based description of the conditional

probability tables, and a variable elimination algo-

rithm for exploiting this rule-based representation.

When the information is deterministic, those rules are

simple clauses, and their processing may reduce to sim-

ple resolution. I An area that uses heavily both deter-

ministic and probabilistic information is planning un-

der uncertainty. Most relevant is a recent stochastic

planner called MAXPLAN [Majercik and Littman,]

which shows how stochastic planning can be trans-

formed into an MAJSAT description and then solved

by a search-based conditioning algorithm. It would be

interesting to exploit our algorithm in the context of

these works.

The paper presents a variable elimination algorithm

called Elim-CPE, for answering Boolean CNF queries

over a belief network. The algorithm is applicable to

hybrid belief networks and to belief updating given

partial information.

The nice property of the bucket-elimination algorithms

is that their complexity is not dependent on the num-

ber of models in the CNF formula. Clearly, all the

tasks addressed here could also be solved by condi-

tioning search or by some combination of search and

inference, and should be explored further. They avoid

the space complexity of bucket elimination and may

work well in practice.

The empirical results demonstrated that the proposed

algorithmElim-CPE, is far more e�ective than a brute

force embedding of the CNF query into the belief net-

work (i.e., Elim-Hidden) by a factor of 2 on the aver-

age, depending on the size of the CNF formula. When

applying a variant of this algorthm to hybrid net-

works (i.e., Elim-CPE-D) we observed impressive im-

provement that were more signi�cant as the portion of

the deterministic information increased. Those results

were consistent for randomly generated networks and

some real benchmarks. Our experiments with stronger

levels of constraint propagation (Elim-CPE(i)) how-

ever, were not cost-e�ective. Larger and harder net-

works are may be necessary to make stronger levels of

resolution cost-e�ective.

References

[Arnborg, 1985] S. A. Arnborg. E�cient algorithms

for combinatorial problems on graphs with bounded

decomposability - a survey. BIT, 25:2{23, 1985.

[Bertele and Brioschi, 1972] U. Bertele

and F. Brioschi. Nonserial Dynamic Programming.

Academic Press, 1972.

[Dechter and Larkin, 2001] R. Dechter and D. Larkin.

Hybrid processing of belief and constraints. UCI

Technical report, www.ics.uci.edu/ dechter, 2001.

[Dechter, 1996] R. Dechter. Bucket elimination: A

unifying framework for probabilistic inference al-

gorithms. In Uncertainty in Arti�cial Intelligence

(UAI'96), pages 211{219, 1996.

[Heckerman, 1989] D. Heckerman. A tractable in-

ference algorithm for diagnosing multiple diseases.

In Uncertainty in Arti�cial Intelligence (UAI'89),

pages 171{181, 1989.

[Majercik and Littman,] S. M. Majercik and M. L.

Littman. Maxplan: A new approach to probabilistic

planning.

[N. L. Zhang and Poole, 1994] R. Qi N. L. Zhang and

D. Poole. A computational theory of decision net-

works. International Journal of Approximate Rea-

soning, pages 83{158, 1994.

[Pavlov et al., 2000] D. Pavlov, H. Mannila, and

P. Smyth. Probabilistic models for query approx-

imation with 20 large sparse binary data sets. In

Submitted to UAI2000, 2000.

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in In-

telligent Systems. Morgan Kaufmann, 1988.

[Poole, 1997] D. Poole. Probabilistic partial evalua-

tion: Exploiting structure in probabilistic inference.

In IJCAI-97: Proceedings of the Fifteenth Interna-

tional Joint Conference on Arti�cial Intelligence,

1997.

[Portinale and Bobbio, 1999] L. Portinale and

A. Bobbio. Bayesian networks for dependency anal-

ysis: an application to digital control. In Proceedings

of the 15th Conference on Uncertainty in Arti� cial

Intelligence (UAI99), pages 551{558, 1999.

[Rish and Dechter, 2000] I. Rish and R. Dechter. Res-

olution vs. search; two strategies for sat. Journal of

Automated Reasoning, 24(1/2):225{275, 2000.

[R.J. McEliece and Cheng, 1997] D.J.C. MacKay

R.J. McEliece and J.-F. Cheng. Turbo decoding as

an instance of pearl's belief propagation algorithm.

IEEE J. Selected Areas in Communication, 1997.

