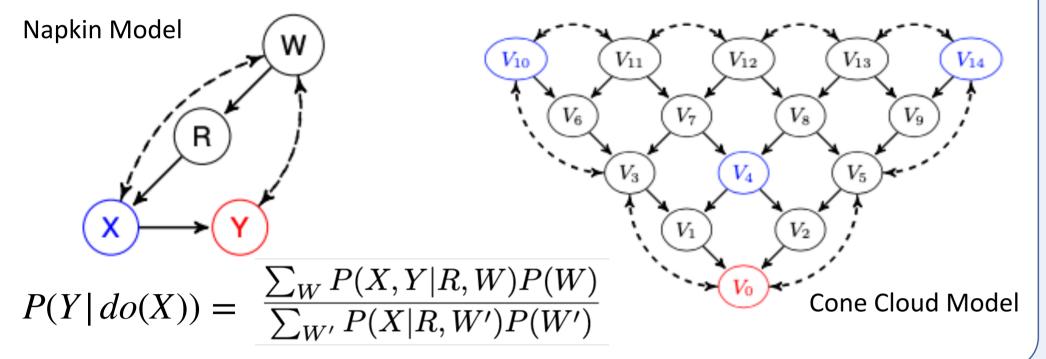
Graph-based Complexity for Causal Effect by Empirical Plug-in

Rina Dechter (dechter@ics.uci.edu), Anna K Raichev(araichev@uci.edu), Jin Tian(Jin.Tian@mbzuai.ac.ae), and Alexander Ihler(ihler@ics.uci.edu)

Overview

We analyze the complexity of the Plug-In method for answering causal queries. While it's often assumed that evaluating highdimensional probabilistic expressions is expensive, we show that the structure of the causal query (captured by a hierarchy hypergraph) can make evaluation efficient — often even linear in the data size. Our analysis connects the evaluation cost to graph properties like treewidth and hypertree width, providing a new complexity perspective for causal estimation.

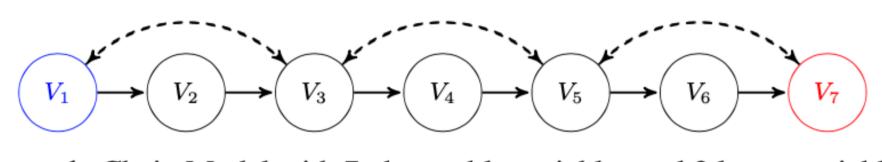

Contributions:

- 1. Associate an estimand expression with a hierarchy hypergraph and show how the hypertree widths additively determine complexity bounds.
- 2. Extend these bounds to sum-product queries involving ratios
- 3. Empirically show hypertree width effectively captures the actual time and memory costs.

Structural Causal Models

Structural Causal Model: $M = \langle U, V, F, P(U) \rangle$

- $U = \{U_1, \dots, U_k\}$ set of unmeasurable latent variables
- $V = \{V_1, V_2, \dots, V_n\}$ set of observable variables
- $F = \{f_i : V_i \in V\} \ V_i \leftarrow f_i(V_i, PA_i); PA_i \subseteq U \cup V \setminus V_i$
- ullet $P(oldsymbol{U})$ is a probability distribution over the exogenous variables


Problem

Given a causal diagram, an identifiable query P(Y | do(X = x))and samples from the observed distribution, the task is to output the distribution of P(Y | do(X = x)).

Current Practice

- 1. Apply an algorithm for identifiability [Tian, 2002]
- 2. Generate an estimand, an algebraic expression involving only probabilistic expressions over the visible variables.
- 3. Estimate the estimand from the observational data. One possibility is via the *Plug-In method*, in which each term is estimated using the empirical distribution

Motivating Example

Figure 1: Chain Model with 7 observable variables and 3 latent variables

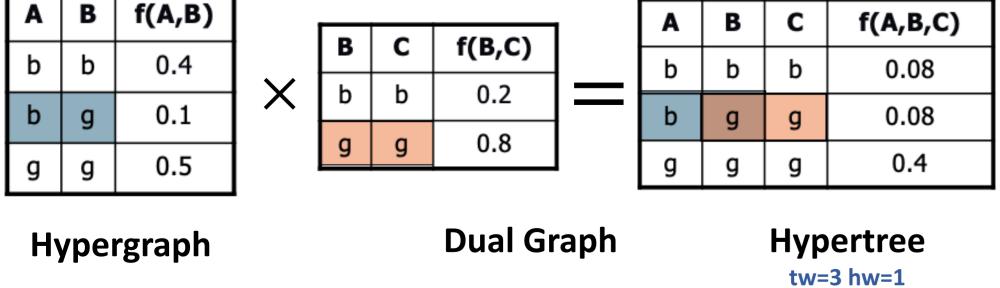
The identifiability algorithm will generate the expression:

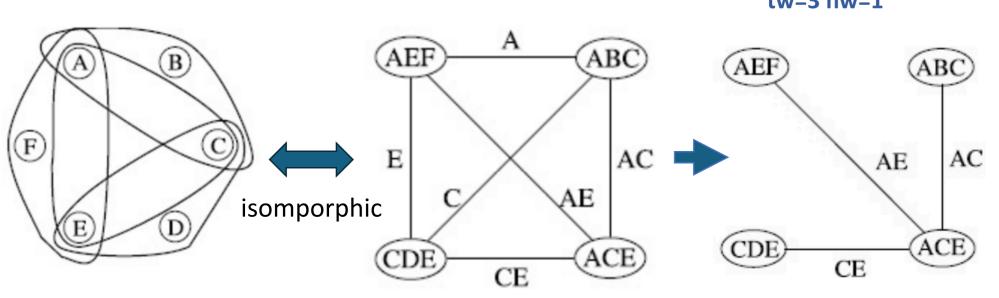
$$P(V_7 \mid do(V_1)) = \sum_{V_2, V_3, V_4, V_5, V_6} P(V_6 \mid V_1, V_2, V_3, V_4, V_5) P(V_4 \mid V_1, V_2, V_3) P(V_2 \mid V_1)$$

$\times \sum_{V'} P(V_7 \mid V_1', V_2, V_3, V_4, V_5, V_6) P(V_5 \mid V_1', V_2, V_3, V_4) P(V_3 \mid V_1', V_2) P(V_1')$

Limitations

- 1. Conditional probabilities over a large number of variables can be computationally challenging - tables can be large.
- 2. Evaluating the estimand is potentially exponential in the number of variables of the largest function.
- Our work shows expressions are estimable in linear time: $hw = 1 \rightarrow O(t^1)$


Hyperwidth & Sparse Factors

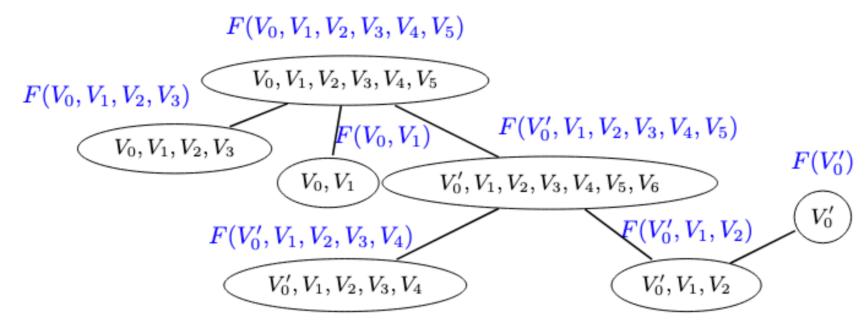

The **hyperwidth** exploits the sparseness of the data

Sparse Factors

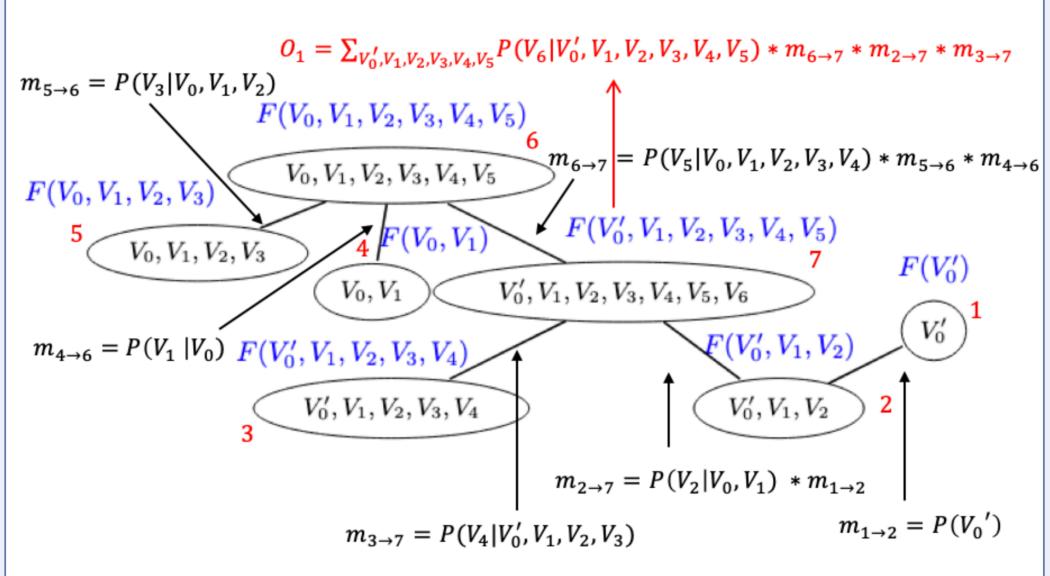
• **Tightness** of a function f, t(f), is the number of non-zero configurations in its domain. • Tightness of a graphical model with functions F is $t = \max t(f)$.

Combination of Sparse Factors

Plug-In hypertree Evaluation (PI-HTE)


1.Flatten Sum-Products:

$$P(V_6 \mid do(V_0)) = \sum_{V_1, V_2, V_3, V_4, V_5, V_0'} P(V_5 \mid V_0, V_1, V_2, V_3, V_4)$$


$$\times P(V_3 \mid V_0, V_1, V_2) P(V_1 \mid V_0) P(V_6 \mid V_0', V_1, V_2, V_3, V_4, V_5)$$

$$\times P(V_4 \mid V_0', V_1, V_2, V_3) P(V_2 \mid V_0', V_1) P(V_0').$$

2.Generate Hyper tree:

3. Evaluate with CTE:

With Ratios we can use a Hierarchy Hypergraph:

$$m_{5\to7} = \sum_{W} P(X,Y|R,W) * m_{6\to5} * m_{4\to5}$$

$$m_{6\to5} = P(W)$$

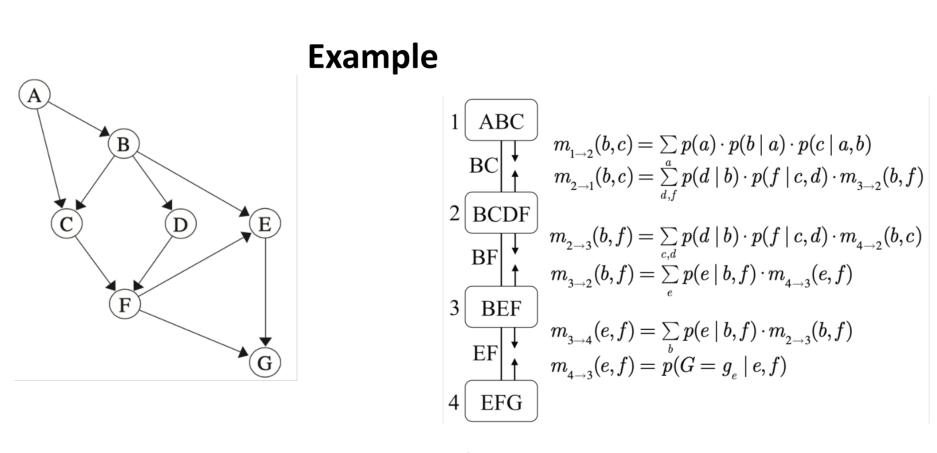
$$X,Y$$

$$F(W)$$

$$K(X,Y,R,W)$$

$$M_{3\to4}$$

$$M_{1\to2} = P(W')$$


$$M_{2\to3} = \sum_{W'} P(X|R,W') * m_{1\to2}$$

$$m_{1\to2} = P(W') * m_{2\to3} = \sum_{W'} P(X|R,W') * m_{1\to2}$$

Complexity

• Time and memory are $O(n \cdot t^{\sum_{i=1}^l hw_i})$ with depth l

CTE Algorithm

Complexity

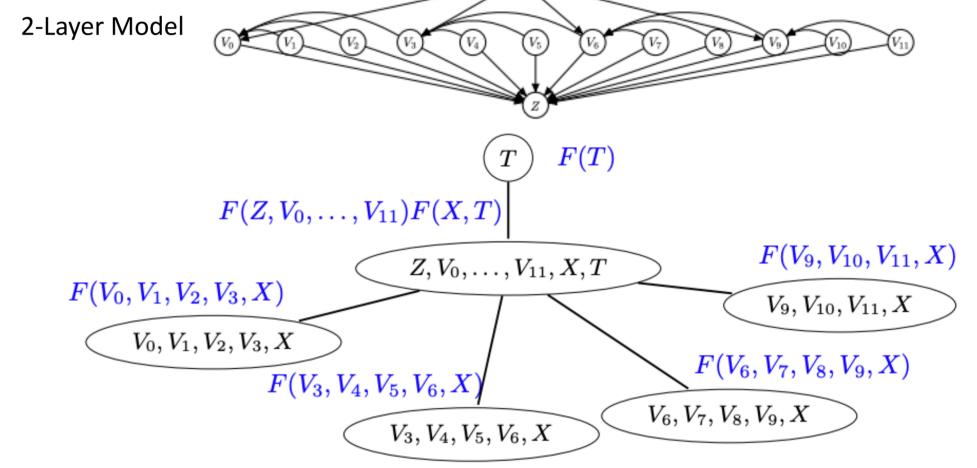
- As a function of **hyperwidth**(sparse tables): $O(t^{hw})$ time & space
- As a function of **tree width**: $O(n \cdot k^{w+1})$ time & $O(n \cdot k^w)$ space

Empirical Analysis

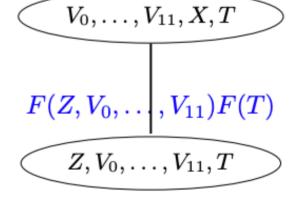
(a) Chain: $P(V_{99}|do(V_0))$ |V| = 99; |U| = 49 hw = 1, w = 98 $P(V_{98}|V_0,\ldots V_{97})$ - largest factor

#SamplestdensityMax table sizetime (s) 100 100 9.9×10^{-34} 100 11.2 200 200 2.0×10^{-33} 200 19.7 400 400 3.9×10^{-33} 400 31.4 800 800 7.9×10^{-33} 800 53.7 $1,000$ $1,000$ 1.0×10^{-32} $1,000$ 69.5 $1,600$ $1,600$ 1.6×10^{-32} $1,600$ 97.5 $3,200$ $3,200$ 3.2×10^{-32} $3,200$ 192.4 $6,400$ $6,400$ 6.4×10^{-32} $6,400$ 369.2 $10,000$ $10,000$ 9.9×10^{-32} $10,000$ 608.8					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	#Samples	t	density	Max table size	time (s)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
800 800 7.9×10^{-33} 800 53.7 $1,000$ $1,000$ 1.0×10^{-32} $1,000$ 69.5 $1,600$ $1,600$ 1.6×10^{-32} $1,600$ 97.5 $3,200$ $3,200$ 3.2×10^{-32} $3,200$ 192.4 $6,400$ $6,400$ 6.4×10^{-32} $6,400$ 369.2	200	200		200	19.7
$1,000$ $1,000$ 1.0×10^{-32} $1,000$ 69.5 $1,600$ $1,600$ 1.6×10^{-32} $1,600$ 97.5 $3,200$ $3,200$ 3.2×10^{-32} $3,200$ 192.4 $6,400$ $6,400$ 6.4×10^{-32} $6,400$ 369.2	400	400		400	31.4
1,600 $1,600$ 1.6×10^{-32} $1,600$ 97.5 3,200 $3,200$ 3.2×10^{-32} $3,200$ 192.4 6,400 $6,400$ 6.4×10^{-32} $6,400$ 369.2	800	800		800	53.7
$3,200$ $3,200$ 3.2×10^{-32} $3,200$ 192.4 $6,400$ $6,400$ 6.4×10^{-32} $6,400$ 369.2	1,000	1,000		1,000	69.5
$6,400$ $6,400$ 6.4×10^{-32} $6,400$ 369.2	1,600	1,600		1,600	97.5
	3,200	3,200		3,200	192.4
$10,000 10,000 9.9 \times 10^{-32} 10,000 608.8$	$6,\!400$	6,400	6.4×10^{-32}	6,400	369.2
	10,000	10,000	9.9×10^{-32}	10,000	608.8

#entries in largest table density =#of configurations in joint table


Treewidth bound: $O(k^{98})$ Hyperwidth bound: $O(t^1)$

(b) Cone Cloud $P(V_0|do(V_{14}, V_{10}, V_4))$ |V| = 15; |U| = 8; k = 10; hw = 2, w = 14largest factor $P(V_0|V_1...V_{14})$

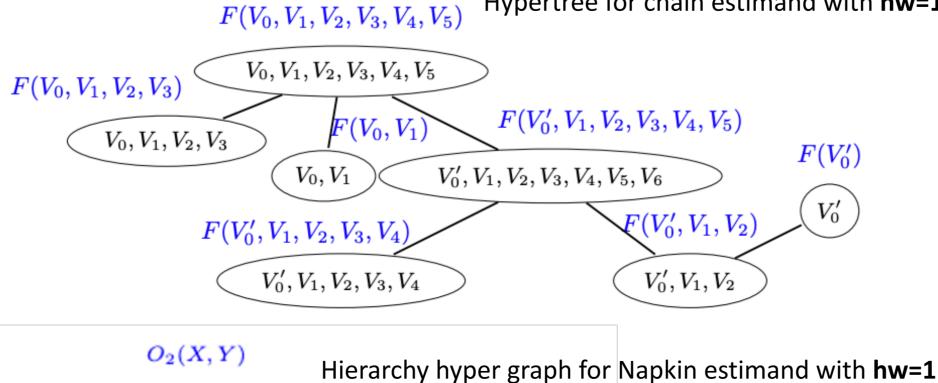

#Samples	t	$\mathbf{density}$	Max table size	time (s)
100	100	1×10^{-13}	9,900	2.2
200	200	2×10^{-13}	39,203	3.3
400	400	4×10^{-13}	$152,\!877$	7.3
800	800	8×10^{-13}	589,815	28.8
1,000	1,000	1×10^{-12}	882,604	39.1
1,600	1,600	1.6×10^{-12}	$2,\!206,\!528$	84.8
3,200	3,200	3.2×10^{-12}	7,553,700	280.3
$6,\!400$	$6,\!400$	6.4×10^{-12}	21,949,125	788.74
10,000	10,000	1×10^{-11}	40,404,630	$1,\!594.2$

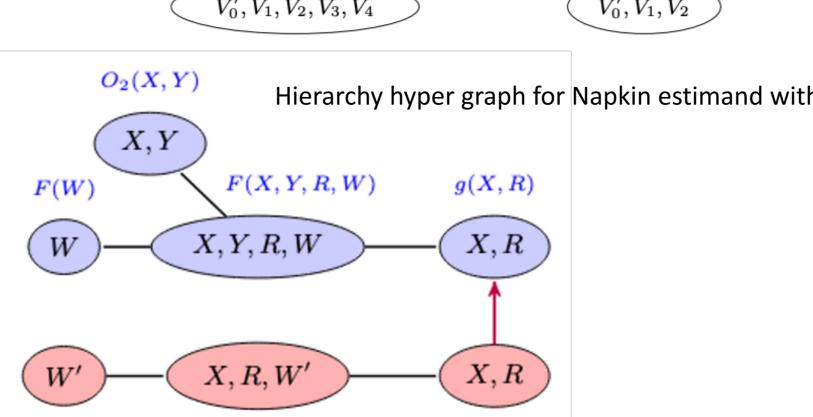
k = 10 Treewidth bound: $O(k^{15})$ Hyperwidth bound: $O(t^2)$

Impact of Different Hypertree Decompositions

(a) 2-Layer model hypertree decomposition with hw=2 $F(X,T), F(V_0,\ldots,V_3,X), F(V_3,\ldots,V_6,X), F(V_6,\ldots,V_9,X), F(V_9,\ldots,V_{11},X)$

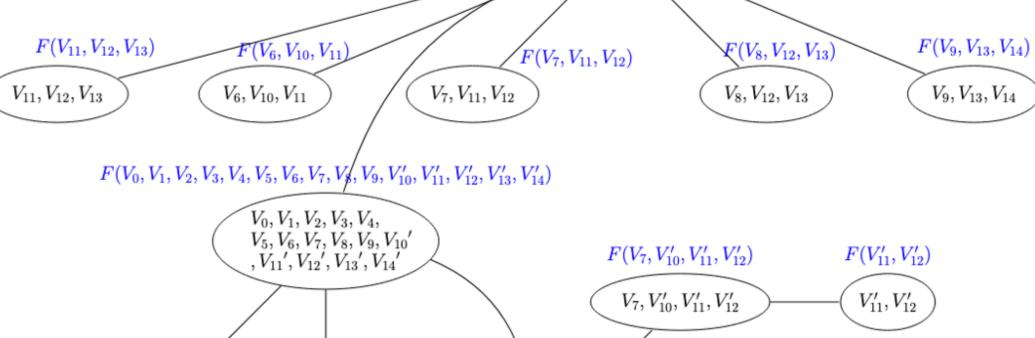
(b) 2-Layer model hypertree decomposition with hw=5


(a) 2-Layer Model, P(Z|do(T))|V| = 15; with hypertree decomposition w/ hw = 2, w = 14


Max table size #Samples time (s) 100 636 1.73200 1,679 1.78400 3,600 2.002.36800 800 7,2002.711,000 1,000 9,000

(b) 2-Layer Model, P(Z|do(T))|V| = 15; with hypertree decomposition w/ hw = 5, w = 13

#Samples	t	Max table size	time (s)
100	100	8,489	2.27
200	200	62,447	4.23
400	400	812,926	36.85
800	800	8,949,996	348.84
1,000	1,000	$20,\!188,\!458$	775.93


 $O_1(X,R)$

F(W')

F(X, R, W')

$F(V_2, V_4, V_5, V_7, V_8, V_9, V_{11}, V_{12}, V_{13}, V_{14})$ $F(V_1, V_3, V_4, V_6, V_7, V_8, V_{10}, V_{11}, V_{12}, V_{13})$ $V_1, V_2, V_3, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}V_{11}, V_{12}, V_{13}, V_{14}$

Hypertree for cone cloud estimand with **hw=2**

 $F(V_1, V_3, V_4, V_6, V_7, V_8, V'_{10}, V'_{11}, V'_{12}, V'_{13}, V'_{14})$ **Notation** $V_1, V_3, V_4, V_5, \ V_6, V_7, V_8, V_9, {V_{10}}', \ {V_{11}}', {V_{12}}', {V_{13}}', {V_{14}}'$ $(V_1, V_3, V_4, V_6, V_7, V_8, V_{10}', V_{11}', V_{12}', V_{13}', V_{14}')$ $V_3, V_6, V_7, {V_{10}}', \ {V_{11}}', {V_{12}}', {V_{13}}'$ $F(V_3, V_6, V_7, V_{10}', V_{11}', V_{12}', V_{13}')$

 $F(V_1, V_3, V_4, V_5, V_6, V_7, V_8, V_9, V_{10}', V_{11}', V_{12}', V_{13}', V_{14}')$

w - treewidth hw- hypertree width *t*- tightness

k - maximum domain size