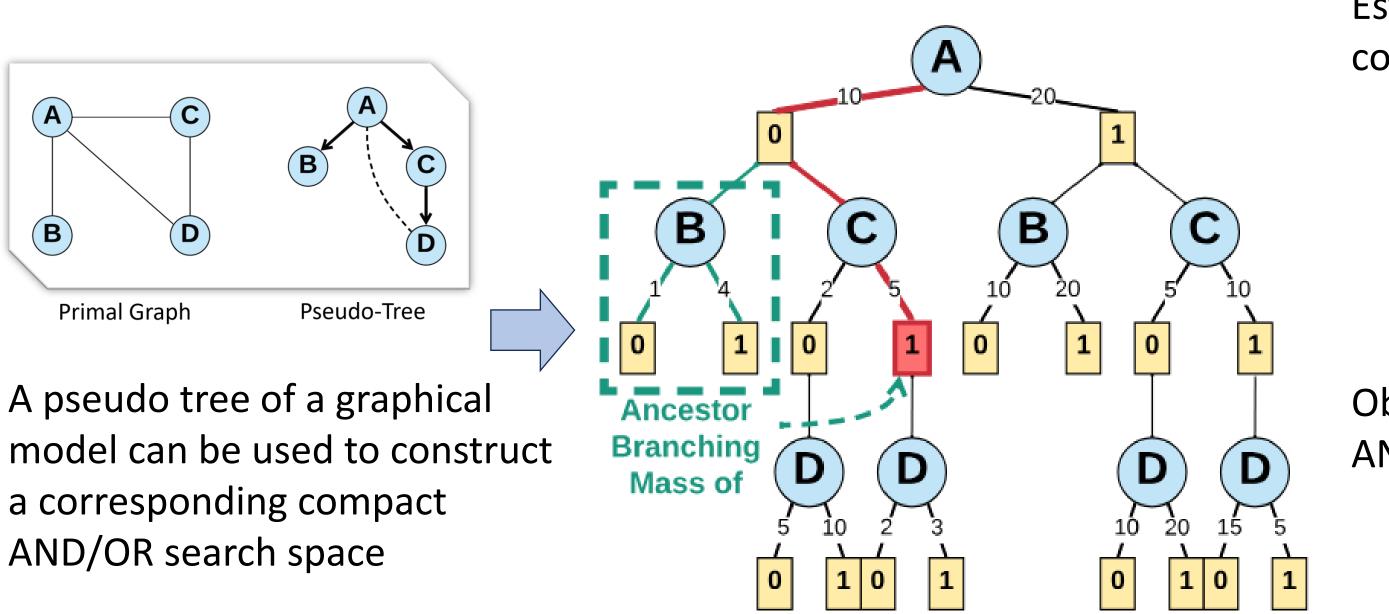


Value-Based Abstraction Functions for Abstraction Sampling



Bobak Pezeshki (pezeshkb@uci.edu), Kalev Kask (kkask@uci.edu), Alexander Ihler (ihler@ics.uci.edu), Rina Dechter (dechter@ics.uci.edu)

Abstract

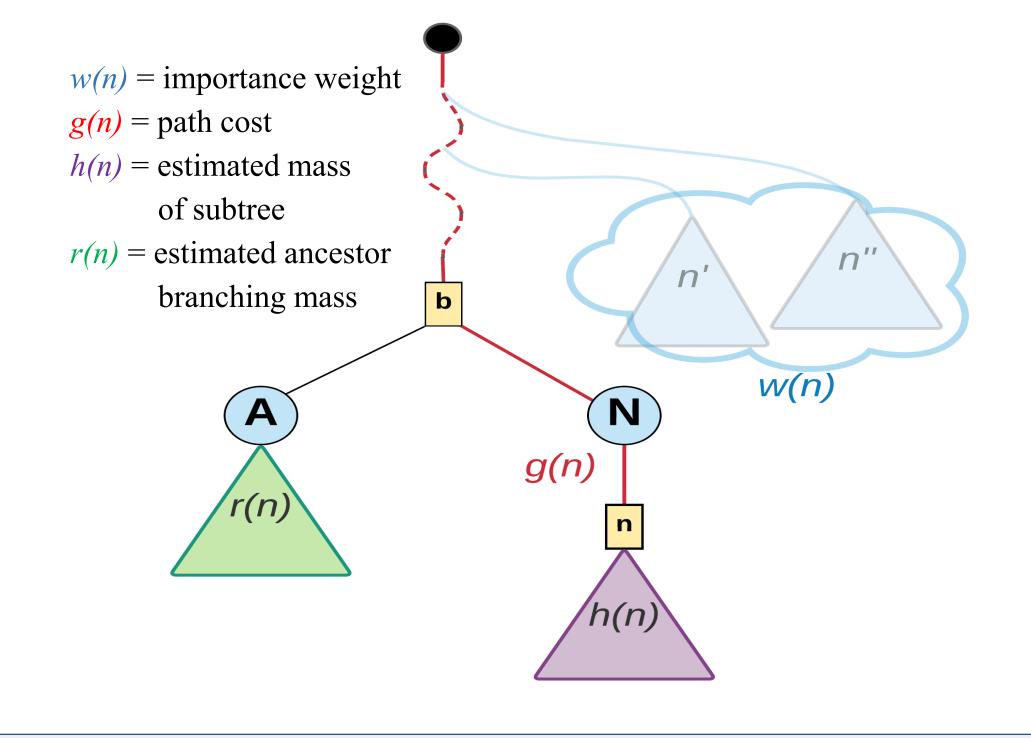
Monte Carlo methods are powerful tools for solving problems involving complex probability distributions. Despite their versatility, these methods often suffer from inefficiencies, especially when dealing with rare events. As such, importance sampling emerged as a prominent technique for alleviating these challenges. Recently, a new scheme called Abstraction Sampling was developed that incorporated stratification to importance sampling over graphical models. However, existing work only explored a limited set of abstraction functions that guide stratification. This study introduces three new classes of abstraction functions combined with seven distinct partitioning schemes, resulting in twenty-one new abstraction functions, each motivated by theory and intuition from both search and sampling domains. An extensive empirical analysis on over 400 problems compares these new schemes highlighting several well-performing candidates.

AND/OR Search Spaces

Task

Estimate the normalizing constant of the graphical model:

Strategy


Obtain Monte Carlo estimate via AND/OR Abstraction Sampling [Broka et al., 2018; Kask et al., 2020]

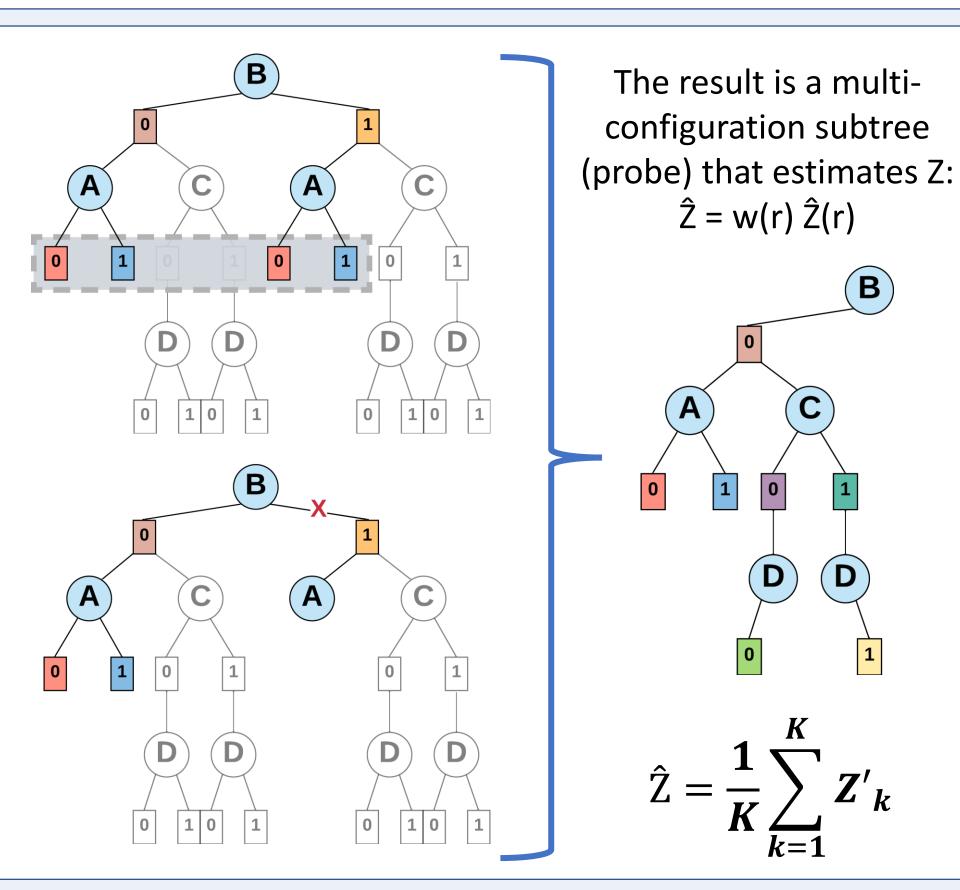
Question

How should nodes be abstracted?

AND/OR Abstraction Sampling

[Broka et al., 2018; Kask et al., 2020]

Expansion: Expand AND/OR search tree variable-by-variable (1)following a DFS ordering of the guiding pseudo tree


Form Abstract States: Using an abstraction function, partition newly expanded nodes into an *nAbs* number of abstract states. (2) (Prior state-of-the-art used graph-based abstraction functions).

Select Representatives: Using $p(n) \propto q(n) = w(n) h(n) r(n) g(n)$, (3)stochastically select a representative from each abstract state and reweight it such that $w(n) \leftarrow w(n)/p(n)$

Prune: prune nodes not extending to valid configurations (4)

Backtrack: When reaching a leaf, recursively backtrack until reaching an unexplored branch of the pseudo tree. Update (5) parent node values while backtracking.

Repeat: Repeat until backtracking to the root node r (6)

Q-Based Abstraction Functions

Best performing variant of the newly introduced value-based abstraction schemes

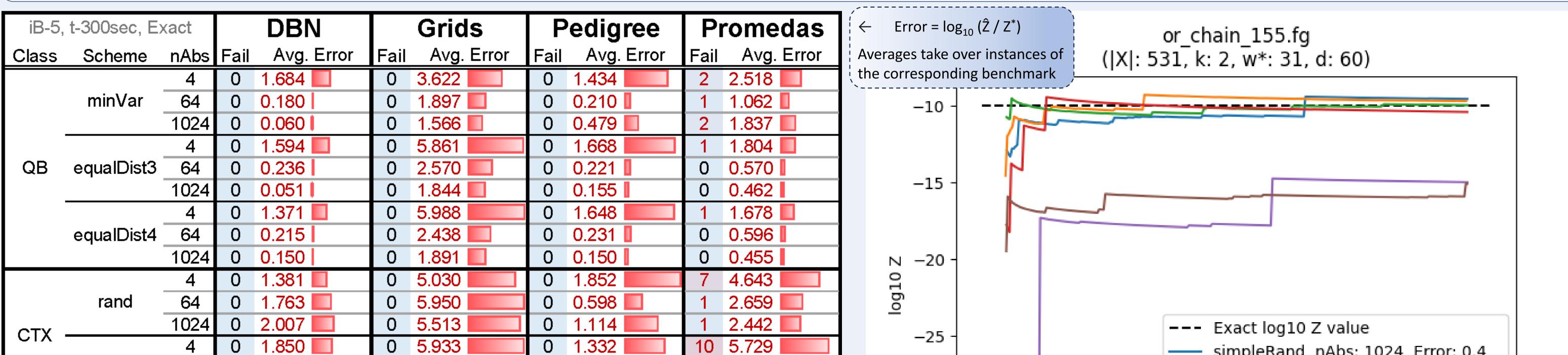
Sort nodes based on q(n) = w(n) h(n) r(n) g(n)

Partitioning Scheme Examples

simpleVB: $1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 10, 100 \xrightarrow{simpleVB} \{1.0, 1.1\}, \{1.2, 1.3\}, \{1.4, 1.5\}, \{10, 100\}$ (Evenly sort into equal cardinality abstract states)

- The estimated contribution of a node towards the overall Z
- The unnormalized proposal measure

Partition in an order-consistent manner...


Given nAbs and a function $\mu : D_X \to \mathbb{R}^+$, a partitioning function ψ_{μ} : $D_{\mathbf{X}} \rightarrow \{A_1, A_2, ..., A_{nAbs}\}$, is orderconsistent with μ relative to the nAbs abstract states if for any $n_1 \in A_i$ and $n_2 \in A_j$, $i < j \Leftrightarrow \mu(n_1) \leq \mu(n_2)$.

$\mathsf{minVarVB:}\ 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 10, 100 \xrightarrow{\min VarVB} \{1.0, 1.1, 1.2\}, \ \{1.3, 1.4, 1.5\}, \ \{10\}, \ \{100\}$

(Minimize total with-in variance of the abstract states)

equalDistVB: $1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 10, 100 \xrightarrow{equalDistVB4} \{100\}, \{10\}, \{1.5, 1.4, 1.3\}, \{1.2, 1.1, 1.0\}$ (Attempt to equalize total values across abstract states)

randVB: $1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 10, 100 \xrightarrow{randVB} \{100\}, \{10, 1.5, 1.4, 1.3\}, \{1.2, 1.1\}, \{1.0\}$ (Partition nodes into randomly sized abstract states)

RAND	rel rand	4 64 1024 4 64 1024	0 0 0	1.850 3.510 5.086 1.018 0.418 0.120		0 5 0 4 0 5 0 4 0 2 0 1	1.021 5.136 1.329 2.094		0 0 0 0	1.332 0.424 1.041 1.705 0.212		10 5.729 6 4.349 15 6.688 2 2.947 0 0.757 0 0.513			-30 -	 simpleRand, nAbs: 1024, Error: 0.4 equalDistQB3, nAbs: 2048, Error: 0.3 equalDistQB4, nAbs: 512, Error: 0.0 minVarQB, nAbs: 64, Error: 0.4 relCB, nAbs: 64, Error: 5.0 		
iB-10, t-1200sec, LARGE		DBN			Grids				Linkage-Type4				Pro	Promedas	randCB, nAbs: 1024, Error: 5.1 30 60 90 120 180 210 240 270 300			
Class	Scheme	nAbs	Fail	Avg. Error	nA	Abs F	Fail	Avg. Er	ror	nAbs	Fail	Avg. Error	nAbs	Fail	Avg. Error			
QB	simple	1	0	6.540				197.931		2048			4		11.919	time (sec)		
	minVar	2048	0					28.423		256		93.058	16		5.403			
	equalDist equalDist2	512 2048		5.423 3.813				118.547 📃 91.994 🔲				46.196 4 0.310	512 2048		5.960 4 .982 6	Summary: Experiments show the QB scheme with equalDist3 or		
	equalDist3					_		19.277		_		37.490	256		2.560	<i>equalDistQB4</i> , and the <i>RAND</i> scheme, performing best. These schemes significantly outperform the former state-of-the-art		
	equalDist4							18.866				30.512	512		2.476			
	rand	4		6.292	1	_		163.973 📃				156.992	4		11.532	CTX based abstractions and tend to improve as the abstraction granularity (<i>nAbs</i>) increases. Our study suggests use of these		
СТХ -	rand	64	0	5.710	5	_		111.104 📃				194.741	256		3.222			
	rel	1		6.267		_		80.633				129.189	16		11.247	schemes with the largest <i>nAbs</i> feasible.		
RAND	rand	2048	0	2.123	20)48	0	19.053 📘		1024	19	33.804	1024	10	3.936 📃			

UAI 2024 – 40th Conference on Uncertainty in Artificial Intelligence

at Universitat Pompeu Fabra, Barcelona upf.