
Value-Based Abstraction Functions for Abstraction Sampling

(Extended Background)

Bobak Pezeshki1 Kalev Kask1 Alexander Ihler1 Rina Dechter1

1University of California, Irvine

Abstract

For revised supplemental materials, please visit https://ics.uci.edu/~dechter/publications.html. In addition to
providing a glossary of terms, abbreviations, and notation, this document aims to provide readers with background
on topics that are foundational to the concepts that are discussed in the main paper. The most up-to-date version of
this document - as well as other supplemental materials - can be found on the Dechter Lab publications page.

CONTENTS

i. Glossary 3

ii. Abbreviations 5

1 Background: Graphical Models 6

1.1 Discrete Graphical Models . 6

1.2 Graphical Model Notation . 6

1.3 Primal Graph . 6

1.4 Simple Example . 7

1.5 Pseudo Tree . 8

1.6 Some Well-Known and Important Graphical Model Tasks . 9

1.6.1 Task Formalizations . 9

1.6.2 Difficulty . 9

2 Background: Fundamental Schemes 10

2.1 Search . 10

2.1.1 OR Search Spaces . 10

2.1.2 AND/OR Search Space . 11

2.1.3 Search Space Notation . 13

mailto:<pezeshkb@uci.edu>?Subject=Abstraction Sampling - UAI 2024
mailto:<kkask@uci.edu>?Subject=Abstraction Sampling - UAI 2024
mailto:<ihler@ics.uci.edu>?Subject=Abstraction Sampling - UAI 2024
mailto:<dechter@ics.uci.edu>?Subject=Abstraction Sampling - UAI 2024
https://ics.uci.edu/~dechter/publications.html
https://www.ics.uci.edu/~dechter/publications.html

2.1.4 Important Quantities in AND/OR Search Spaces . 13

2.2 Inference . 15

2.2.1 Variable Elimination . 15

2.2.2 Bucket Elimination . 16

2.2.3 Induced Width (w*) . 17

GLOSSARY

bucket
Data structure used in bucket elimination, each corresponding to a particular variable to be eliminated, that collects
functions to be processed during an elimination step. Processing of a bucket involves applying an elimination operator
(such as maximization or marginalization) over the bucket’s variable to the combined functions of the bucket. 16

bucket tree
In the context of bucket elimination: A directed tree with nodes corresponding to buckets and directed edges
corresponding to the origin and destination of computed messages. 16

bucket message
The function resulting after processing of a bucket during a bucket elimination elimination step. 16

bucket elimination
A variable elimination framework that uses a dynamic programming approach leveraging commutability of mathemati-
cal expressions. 3, 16

configuration
A joint assignment to a set of variables. (See full configuration and partial configuration for more specific uses of the
term). 6

constrained ordering
An elmination ordering that satisfies given constraints for some variables to be eliminated before others. 9

elimination order
Order in which to process and eliminate variables during variable elimination inference. 16

full configuration
A joint assignment to all the variables of a graphical model. 3, 6, 10

graphical model
(M = ⟨X,D,F ⟩). Mathematical tool for modeling complex systems composed of a set of variables X , a set of
domains D = {DX |X ∈X} for each variable X , and a set of functions F with each function defined over a subset of
the model’s variables α ⊆X . 6

induced width
(w∗) One less than the largest clique size of the induced primal graph. 17

induced primal graph
With respect to a variable elimination procedure: the primal graph of a graphical model augmented with additional
edges corresponding to the scope of messages created through the variable elimination procedure. 3

marginal maximum a-posteriori
(MMAP). The marginal likelihood associated with the configuration of a target subset of variables Q that maximizes
their marginal likelihood.
In the context of discrete graphical models without evidence, with Q ⊂X , S = X \Q be the variables to sum over,
FQ = {fα | α ⊆ Q} be the set of functions defined only over α ∈ Q, and FS = F \ FQ be functions that include
some X ∈ S in their scope,

MMAP =max
Q

∑
S

∏
fα∈F

fα(q ∪ s) (1)

=max
Q

∏
f ′
α∈FS

f ′
α(q)

∑
S

∏
f ′′
α∈FS

f ′′
α(q ∪ s) (2)

5, 6, 9

maximum a-posteriori
(MAP). With respect to a graphical model, the likelihood value associated with the most probable explanation or
MPE.
In the context of discrete graphical models without evidence, MAP = maxQ=X

∏
fα∈F fα(q). 5, 6, 9

most probable explanation
(MPE). Assignment to variables the variables of a graphical model that maximizes the conditional probability of the
observed evidence.
In the context of discrete graphical models without any evidence, MPE = argmaxQ=X

∏
fα∈F fα(q). 4, 5, 6, 9

partial configuration
A joint assignment to a subset of the variables of a graphical model. 3, 6

partition function
(Z). A mathematical quantity that characterizes the distribution among a system’s possible states and serves as a
normalizing constant for calculating probabilistic measures associated with these states.
In the context of discrete graphical models, Z =

∑
X

∏
fα∈F fα(x). 6, 9, 16

primal graph
The primal graph of a graphical model captures an underlying structure of the model, where each node corresponds
to a random variable of the model and edges connect any two variables that are both part of a function’s scope thus
indicating direct dependencies between variables. 6

scope
The set of variables a function is defined over. Denoted as α in the general case. 6

variable elimination
(VE). An inference technique that involves an ordered computational processing of variables, each elimination step
removing the processed variable from the resulting expression. 15

ABBREVIATIONS

MAP
Maximum a-posteriori. 9, 16

MMAP
Marginal maximum a-posteriori. 9

MPE
Most probable explanation. 4, 9

1 BACKGROUND: GRAPHICAL MODELS

Graphical models, such as a Bayesian or a Markov networks Pearl [1988], Darwiche [2009], Dechter [2013], are math-
ematical tools for modeling complex systems, each composed of a set of variables with defined domains and functions
defined over subsets of the variables. The functions capture local dependencies of the subset of variables they are defined
on, those variables known as the function’s scope. The functions of a graphical model often represent a factorization of a
global function over all the variables. An assignment to all of the variables (referred to as a full configuration) represents a
possible state of the modeled system.

Graphical models are constructed not only to model a system, but also to provide a means of efficiently answering specific
queries of interest via exploitation of the model’s structure. Some common computational tasks are

• determination of the partition function: a normalization constant necessary for computing probabilistic quantities

• determination of the MPE (most probable explanation): the most probable full configuration given a partial
configuration (assignments to a subset of the variables) known as observation or evidence. Additionally, the associated
likelihood corresponding to the MPE, known as the MAP (maximum a-posteriori) value, and can also be queried in
kind

• determination of the MMAP (marginal maximum a-posteriori) configuration: the configuration of a target subset of
variables that maximizes their marginal likelihood

(More details about common graphical model queries to be provided in Section 1.6: Some Well-Known and Important
Graphical Model Tasks).

1.1 DISCRETE GRAPHICAL MODELS

Considering the discrete space, a discrete graphical model can be defined as a 3-tupleM=⟨X,D,F ⟩, where

• X is a set of variables for which the model is defined over

• D={DX : X∈X} is a set of finite domains, one for each X ∈ X, defining the possible values each X can be assigned

• Each fα ∈ F (sometimes denoted f ∈ F for simplicity) is a real-valued function defined over a subset of the model’s
variables α ⊆ X, known as the function’s scope, for which the function defines local interactions. More concretely, if
we let Dα denote the Cartesian product of the domains of the variables in α, then fα : Dα→ R≥0. These functions can
be expressed as tables for which there is a real valued output associated with every possible input dα ∈ Dα (ie. every
possible joint assignment - or configuration - to all of the variables in α).

1.2 GRAPHICAL MODEL NOTATION

Capital letters (X) represent variables and small letters (x) represent their values. Boldfaced capital letters (X) denote
a collection of variables, |X| its cardinality, DX their joint domains, and x a particular realization in that joint domain.
Abusing notation, operations denoted

⊕
X (ex.

∑
X) imply...⊕

X

⇐⇒
⊕

x∈DX

⇐⇒
⊕

x1∈DX1

⊕
x2∈DX2

...
⊕

x|X|∈DX|X|

(3)

Furthermore, given a function fα with scope α, a super-set of variables β s.t. α ⊆ β, a particular configuration b of β, and
a := {X ← x|X ← x ∈ b and X ∈ α} (ie. the subset of assignments in b corresponding to variables in α),

fα(b) =⇒ fα(a) (4)

1.3 PRIMAL GRAPH

A primal graph G = ⟨X,E⟩ of a graphical model M associates each variable of M with a corresponding node in a
one-to-one fashion such that arcs e∈E connect nodes whose variables appear in the scope of the same local function. To
simplify, we abuse notation by using the same symbols to refer to primal graph nodes as their corresponding variables inM.

(For those familiar, note that the primal graph corresponds to a Markov Random Field graph representation of the model).
The primal graph is a useful tool for graphical model algorithms’ exploitation of the model’s local structure.

1.4 SIMPLE EXAMPLE

Consider a simple model that relates temperature and humidity to the chance of rain, and temperature and elevation to the
chance of different oxygen levels. Let us choose binary variables X = {T,H,R,E,O} to represent these different levels
and construct a corresponding graphical modelM=⟨X,D,F ⟩ where

• T has corresponding domain DT = {low, high} representing high and low temperature

• H has corresponding domain DH = {low, high} representing high and low humidity

• R has corresponding domain DR = {no, yes} representing the presence or absence of rain

• E has corresponding domain DE = {low, high} representing the high or low elevation

• O has corresponding domain DO = {low, high} representing the high or low oxygen levels

and having five functions

• fT (T) representing the marginal probability of the temperature being low or high, p(T)

• fH(H) representing the marginal probability of the humidity being low or high, p(H)

• fE(E) representing the marginal probability of the elevation being low or high, p(E)

• fT,H,R(T,H,R) representing the conditional probability of rain given levels of humidity and temperature, p(R |T,H)

• fT,E,O(T,E,O) representing the conditional probability of high vs. low oxygen concentrations given the temperature
and elevation levels, p(O |T,E)

defined by the following tables, respectively:

T p(T)
low 0.60
high 0.40

H p(H)
low 0.75
high 0.25

E p(E)
low 0.80
high 0.20

T H R p(R |T,H)
low low no 0.90
low low yes 0.10
low high no 0.20
low high yes 0.80
high low no 0.95
high low yes 0.05
high high no 0.60
high high yes 0.40

T E O p(O |T,E)
low low low 0.30
low low high 0.70
low high low 0.75
low high high 0.25
high low low 0.60
high low high 0.40
high high low 0.80
high high high 0.20

and where we make independence assumptions allowing the joint distribution P (T,H,R,E,O) to factorize to the probability
functions represented by the model such that:

p(T,H,E,R,O) = p(T) · p(H |T) · p(E |T,H) · p(R |T,H,E) · p(O |T,H,E,R)

= p(T) · p(H) · p(E) · p(R |T,H) · p(O |T,E)

= fT (T) · fH(H) · fE(E) · fT,H,R(T,H,R) · fT,E,O(T,E,O)

=
∏

fα∈F

fα(α)

(5)

with primal graph:You can see that the graph consists of nodes representing T , H , R, E, and O and has edges between each pair of {T,H,R}
since each pair appears together in at least one fα ∈ F , and similarly between each pair of {T,E,O}.

With the model and primal graph defined, we can then use a variety of algorithms over graphical models to efficiently
answer queries about the model. One such query could be to find the probability corresponding to the mode of our modeled
distribution - namely to find the probability associated with the most likely full configuration. Throughout the next several

H T

R O

E

Figure 1: Primal graph of the example model described above.

sections, we will describe various queries and computational schemes commonly used with graphical models starting next
by describing the general framework of variable elimination, which we will use to show one way to compute our example
query.

1.5 PSEUDO TREE

Given a variable ordering, directed tree called a pseudo tree T =(X,E) can be constructed relative to a graphical modelM.
Each node of the pseudo tree corresponds one-to-one with a node inM. As before, to simplify, we abuse notation by using
the same symbols to refer to pseudo tree nodes as their corresponding variables inM. The tree will be structured such that
the nodes follow the provided variable ordering - namely, each node is a descendant of only nodes that come before it in the
provided ordering - and such that any branching in the pseudo tree corresponds to existing conditional dependencies inM -
namely, sibling branches are conditionally independent of each other given assignments to their ancestor variables in the
pseudo tree.

T

O

EH

R

Figure 2: An example pseudo tree for the model described in Section
1.4: Simple Example based on ordering T,H,R,E,O. Here the
dummy root node is explicitly shown, however it is typically hidden
for simplicity.

A pseudo tree T can be constructed by the following
steps:

1. create a dummy root X0

2. add the first variable in the ordering Xi=1 as the
child of the dummy root

3. for the next variable in the ordering Xi+1:

i. choose an existing variable Xp in the partially
constructed pseudo tree T ′ such that, given
assignments to Xp and its ancestors, Xi+1 is
conditionally independent of all existing de-
scendants of Xp and of existing descendants
of its ancestors.

ii. add Xi+1 to T ′ as the child of Xp

4. repeat step 3 until all variables in the ordering (and
thusM) have been added to the tree

Note that edges in the primal graph of the model either
exist in the pseudo tree as directed edges or would exist
as back arcs, but never cross arcs.

Increasing Pseudo Tree Branching. In order to capture the maximal number of conditional independences given an
ordering, step 3.i. can be altered to choose the earliest variable in the ordering that satisfies the said condition, thus leading
to earlier branching in the tree.

Pseudo Tree Uses. One use of the pseudo tree is as a schematic of bucket elimination. Mores specifically, message passing
from [mini] bucket elimination with an elimination ordering that is the reverse of o will follow a path from the leaves to the
root of T . (TODO: EXAMPLE). Furthermore, the pseudo tree can act as a blue print for constructing search space graphs of
M as will be described in the next section. In combination, given an ordering o and corresponding search space and bucket
elimination, the messages from the bucket elimination can act as heuristics guiding the search at each level.

1.6 SOME WELL-KNOWN AND IMPORTANT GRAPHICAL MODEL TASKS

There are a plethora of queries that a graphical model can lend itself to answering. Here we will describe four traditionally
important tasks in particular: determination of the

• Partition function (Z)

• Maximum a-posteriori (MAP)

• Most probable explanation (MPE)

• Marginal maximum a-posteriori (MMAP)

1.6.1 Task Formalizations

Definition 1.6.1.1 below provides the formalization of these tasks respectively.

Definition 1.6.1.1 (Z, MAP, MPE, and MMAP). Given a graphical modelM=(X,D,F),

Z =
∑
X

∏
F

f(x); (6)

MAP = max
X

∏
F

f(x); (7)

MPE = argmax
X

∏
F

f(x); (8)

MMAP = max
Q⊂X

∑
S=X\Q

∏
F

f(q ∪ s) (9)

The partition function, Z, is mathematical quantity that characterizes the distribution among a system’s possible states. It is
often used as a normalization constant for computing probabilities. MPE is a full configuration that maximizes the value of
the model defined as the product of all of its functions, and MAP outputs that value. From a probabilistic model standpoint,
this corresponds to finding the assignment to the variables that are most likely under the model, and the corresponding
likelihood value, respectively. Given evidence (ie. a given assignment to a subset of the variables), the MPE (constrained to
be consistent with the evidence) corresponds to finding the assignment to the rest of the variables that makes the evidence
most likely to occur (thus the name "most probable explanation"). MMAP is similar to MAP with the exception that the
model value is now defined with respect to the marginalization of a subset of the variables denoted as the "sum" or S
variables, and so the maximization is with respect to the remaining set denoted as the "query" or Q variables. Although not
commonly referred to, and thus omitted here, there can also be a corresponding MMPE task.

1.6.2 Difficulty

Summation tasks such as computing the partition function require consideration of the entire state-space (exponential in the
number of variables) to compute accurately and are generally #P-hard. Since summation operations commute freely, when
variable elimination algorithms are used for these tasks (with the variable ordering corresponding to the order in which
variables are summed over in Equation 6), they can be used with any variable ordering. Pure homogeneous optimization
such as MAP and MPE inference, whose solutions can be confirmed in polynomial time, are easier but still NP-Hard to
compute. Since optimization operators can freely commute with others of their own kind (ex. max operators can commute
with each other, or min operators can commute with each other), variable elimination for these tasks can also use of any
variable ordering. Mixed inference tasks, however, are often more difficult to compute as they involve operators that do not
commute. In the example of MMAP (Equation 9), the summation operations must be computed before maximization, and
thus restricts the variable orderings that can be used. In practice, this constrained ordering can lead to inference over graphs
of much greater widths (see Section 2.2.3: Induced Width (w*) for more details) and thus are more difficult to compute.

This hierarchy of difficulties is summarized in Figure 3.

Figure 3: Hierarchy of difficulties for three classes of graphical model inference tasks.

2 BACKGROUND: FUNDAMENTAL SCHEMES

In order to be able to solve important and difficult tasks in discrete graphical model framework, efficient algorithms are
necessary. Several foundational schemes serve as the backbone of a myriad of graphical model tasks. Next we outline these
schemes and their properties.

2.1 SEARCH

We will start by describing fundamental search schemes used for solving tasks formulated as probabilistic graphical models.

2.1.1 OR Search Spaces

A graphical model can be cast into a search space in order to explore different configurations of the model. Figure 4 shows
a classical search space (also known as an "OR" search space) of the model described in Section 1.4: Simple Example
adhering to a search order that explores possible assignments to variable T, then H, then R, then E, then O. (For simplicity,
we abbreviate domain values of low or no instead with the value 0, and high or yes with 1).

0 1 0 1 0 1 0 1

0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1

0 1 0 1

0 1

0

0 1 0 1 0 1 0 1

0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1

0 1 0 1

0 1

1

A

0.60 0.40

0.75 0.25

0.90 0.10 0.20 0.80 0.95 0.05

0.75 0.25

0.60 0.40

0.200.800.200.800.200.800.200.800.200.800.200.800.200.800.200.80

0.30 0.70 0.75 0.25 0.30 0.70 0.75 0.25 0.30 0.70 0.75 0.25 0.30 0.70 0.75 0.25 0.60 0.40 0.80 0.20 0.60 0.40 0.80 0.20 0.60 0.40 0.80 0.20 0.60 0.40 0.80 0.20

T:

H:

R:

E:

O:

Figure 4: Example classical OR search space for the discrete graphical model described in Section 1.4: Simple Example adhering
to a search order that explores possible assignments to variable T, then H, then R, then E, then O. For simplicity, we abbreviate
domain values of low or no instead with the value [0], and high or yes with [1].

As we follow a path down the tree, each successive level corresponds to an assignment to the next variable in the ordering.
Thus a path from the dummy root to a leaf corresponds to a full configuration. Given the search tree was built for our model
that is meant to capture a factorized global function (in this case a factorized probability distribution), the search tree is
constructed so the arc into a node n associated with variable X has a cost c(n) equal to the product of functions fα ∈ F
such that the path to nX fully instantiates all X ′ ∈ α and such that X ∈ α [Dechter and Mateescu, 2007]. In other words,

c(n) equal to the product of functions fα ∈ F such the variable represented by n is in f ’s scope and that the path to n
captures an assignment to every other variable in its scope. (If no such functions exist, the arc is vacuously assigned a value
of 1.00.

2.1.2 AND/OR Search Space

Often, assignments to earlier variables in the search ordering results in conditional independences between sub trees of
later layers. For example, given our model from Section 1.4: Simple Example conditioning on variable T (ie. giving an
assignment to T) causes E and O to become independent of H and R. In the OR search space we can see this phenomenon
by noticing that the edge cost into and sub tree under nodes of E under the same assignment of T but different assignments
to H and R are duplicates. (Figure 5 shows this more explicitly).

0 1 0 1 0 1 0 1

0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1

0 1 0 1

0 1

0 1

A

0.60 0.40

0.75 0.25

0.90 0.10 0.20 0.80

0.200.800.200.800.200.800.200.80

0.30 0.70 0.75 0.25 0.30 0.70 0.75 0.25 0.30 0.70 0.75 0.25 0.30 0.70 0.75 0.25

T:

H:

R:

E:

O:

Figure 5: Conditional independence of E and O from H and R given assignment
T = 0 is shown in the search space from Figure 4. Notice that each distinct
assignment to H and R leads to equivalent sub trees of E and O (each highlighted
in a different colors for easier comparison).

We can take advantage of such conditional independences to construct a more compact search space that we will call an
AND/OR search space. Since such conditional independences are inherently captured by pseudo trees (Section 1.5: Pseudo
Tree), we can use pseudo trees to guide the construction of AND/OR search spaces.

0 1 0 1

0 1

0

0.250.75

0.90 0.10 0.20 0.80

T
0.6

H

R R

0 1 0 1

0 1

0.200.80

0.30 0.70 0.75 0.25

E

O O

0 1 0 1

0 1

1

0.250.75

0.95 0.05 0.60 0.40

H

R R

0 1 0 1

0 1

0.200.80

0.60 0.40 0.80 0.20

E

O O

0.4

T

O

EH

R

Figure 6: Example of a more compact AND/OR search space for the discrete graphical model described in
Section 1.4: Simple Example guided by the pseudo tree from Section 1.5: Pseudo Tree. For simplicity, we
abbreviate domain values of low or no instead with the value [0], and high or yes with [1].

0 1 0 1

0 1

0

0.250.75

0.90 0.10 0.20 0.80

T
0.6

H

R R

0 1 0 1

0 1

0.200.80

0.30 0.70 0.75 0.25

E

O O

0 1 0 1

0 1

1

0.250.75

0.95 0.05 0.60 0.40

H

R R

0 1 0 1

0 1

0.200.80

0.60 0.40 0.80 0.20

E

O O

0.4

T

O

EH

R

(a) Paths from root to leaves in AND/OR search spaces do not necessarily correspond to
full configurations. In the example shown here, the highlighted path captures a partial
configuration with assignments T = 0, H = 1, R = 0, but omits assignments to E and
O.

0 1 0 1

0 1

0

0.250.75

0.90 0.10 0.20 0.80

T
0.6

H

R R

0 1 0 1

0 1

0.200.80

0.30 0.70 0.75 0.25

E

O O

0 1 0 1

0 1

1

0.250.75

0.95 0.05 0.60 0.40

H

R R

0 1 0 1

0 1

0.200.80

0.60 0.40 0.80 0.20

E

O O

0.4

T

O

EH

R

(b) To capture a full configuration in an AND/OR search space, we must capture all
variables that branch from paths extended leading to a subtree of the full search space that
includes all variables of the model.

Figure 7: Figure (a) shows an example AND/OR search space where a path corresponds only to a partial
configuration of the variables in the model. Figure (b) shows how a full configuration can be captured.

Figure 6 shows the AND/OR search space that results from using the pseudo tree from figure Figure 2 as a guide. Within
AND/OR search spaces, nodes corresponding to assignments to variables (these are AND nodes; the yellow rectangles) are
directly associated with a parent node corresponding to their respective variable (OR nodes; the blue circles). Branching in
the guiding pseudo tree capturing conditional independences are also seen as branching in the AND/OR search space. In the
example provided, we see a branching under T in the guiding pseudo tree that captures the conditional independence of
H and R from E and O given assignment to T. In the corresponding AND/OR search space, under each assignment of T
(namely under each AND child node of T) we see a branching leading to distinct sub trees - one for H and R, and one for E
and O. Through capturing such decomposition, the search space can be greatly compacted.

It is important to note that a path from root to leaf in an AND/OR search space does not necessarily capture a full
configuration. For example, the path from root to leaf highlighted in Figure 7a captures a partial configuration corresponding
only to assignments T = 0, H = 1, R = 0, omitting assignments to E and O.

In contrast, note that a full configuration (such as the one captured in Figure 7b for T = 0, H = 1, R = 0, E = 0, O = 1)
consists of a sub tree such that at any point following a path from the root towards the leaves that a variable branching occurs
under an AND node, all children OR nodes are included in the final subtree. The cost of a full configuration in an AND/OR

subtree can be computed by applying a related combination operation (often multiplication) to the cost of each arc traversed.

Finally, we can see that OR search spaces can be thought of as and AND/OR search space guided by a pseudo tree with no
branching variables (also known as a chain pseudo tree) with the search space omitting explicit OR nodes (which are instead
implicitly captured by the various levels in the search space). For example, the search space from Figure 4 can be explicitly
represented as the AND/OR search space shown in Figure 8.

0 1 0 1 0 1 0 1

0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1

0 1 0 1

0 1

0

0 1 0 1 0 1 0 1

0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1

0 1 0 1

0 1

1

0.60 0.40

0.75 0.25

0.90 0.10 0.20 0.80 0.95 0.05

0.75 0.25

0.60 0.40

0.200.800.200.800.200.800.200.800.200.800.200.800.200.800.200.80

0.30 0.70 0.75 0.25 0.30 0.70 0.75 0.25 0.30 0.70 0.75 0.25 0.30 0.70 0.75 0.25 0.60 0.40 0.80 0.20 0.60 0.40 0.80 0.20 0.60 0.40 0.80 0.20 0.60 0.40 0.80 0.20

T

HH

R R R R

E E E E E E E E

O O O O O O O O O O O O O O O O

E

O

R

H

T

Figure 8: The OR search space from Figure 4 expressed explicitly as an AND/OR search space.

2.1.3 Search Space Notation

The symbol n is used to generally represent search nodes. (Depending on context, n may represent either AND or OR
nodes). nX specifically refers to an AND node in and AND/OR search tree T associated with variable X . YnX

represents the
specific OR node associated with variable Y that is the child of nX . The notation of OR nodes may seem counter intuitive
at first as they resemble the notation for variables of a graphical model. However, this is because OR nodes of AND/OR
trees representing graphical models in fact do represent the variables of the model which explains the choice for its notation.
path(n) is the configuration of the variables along the path from the root of T to n according to assignments corresponding to
that path. For example, in Figure 7a, if we let n be the leaf node of the highlighted path, path(n) = {T = 0, H = 1, R = 0}.
varpath(n) is the set of variables that path(n) provides a configuration for. With this notation, we can express the cost of
the arc to an AND node nX as:

c(nX) =
∏

fα|varpath(nX)⊆α and {X}⊆α

fα(path(nX)) (10)

g(n) is the cost of path(n) according to the combination operation defined for the model. For example, g(n) for the same
leaf node n in Figure 7a assuming a product combination operation would be g(n) = (0.6) · (0.25) · (0.20). ch(n) denotes
the children of node n. Note that for AND/OR nodes, children of AND nodes are OR nodes, and vise versa. anc(n) are
all the ancestors of n. In AND/OR trees, br(nX) is the set of ancestor AND nodes nY on the path to nX such that Y is a
branching variable in T .

2.1.4 Important Quantities in AND/OR Search Spaces

To use AND/OR search spaces effectively for solving tasks, there are several quantities that become important to compute
and understand. We will describe these next.

Z(n).
As we saw in Section 1.6.1: Task Formalizations, we use Z to denote the partition function of a model - namely the sum of
costs across all configurations of the model. Each configuration’s cost is calculated as the product of the model’s functions
based on the assignments corresponding to that particular configuration. In the context of AND/OR search, given infinite
resources Z could be computed by systematic search enumerating all full configurations and summing their costs (see Figure
7b for an example full configuration).

Applying a similar concept, we introduce the quantity Z(n). Semantically, Z(n) represents the partition function of an
imaginary model that could be represented by the subtree rooted at n. Thus Z(n) is equal to the sum of the costs of all
partial configurations rooted at n due to only functions that contribute to the arc values under n. For an AND node nX with
children OR nodes YnX

∈ ch(nX), Z(nX) can be computed by

Z(nX) =
∏

YnX
∈ch(nX)

Z(YnX
) (11)

such that for OR nodes YnX
, Z(YnX

) is computed by

Z(YnX
) =

∑
nY ∈ch(YnX

)

c(nY) · Z(nY) (12)

with Z(nX) = 1 vacuously, in the case it has no children.

0 1 0 1

0 1

0

0.250.75

0.90 0.10 0.20 0.80

T
0.6

H

R R

0 1 0 1

0 1

0.200.80

0.30 0.70 0.75 0.25

E

O O

0 1 0 1

0 1

1

0.250.75

0.95 0.05 0.60 0.40

H

R R

0 1 0 1

0 1

0.200.80

0.60 0.40 0.80 0.20

E

O O

0.4

T

O

EH

R

Figure 9: The subtree contributing to Z(nT=0) is highlighted above. Using Equation 11 and Equation 12,
Z(nT=0) = 1.0.

Note that given n∅ as the dummy root node of AND/OR tree T , Z(n∅) = Z of the underlying modelM. We denote
estimation of Z(n) as Ẑ(n). Heuristic estimates of Z(n) are denoted as h(n).

R(n). On the path from the root of an AND/OR tree T to some node nX , there may be an intermediate node nY associated
with branching variable Y in the guiding pseudo tree T . (For example in Figure 10b, on the path to the highlighted node
nA=0,C−1, node nA=0 is traversed where A is a branching variable in Figure 10). When this happens, the remaining
variables of the model are split between different branches. (For example in the same Figure 10b, notice the left branch
under the node nA=0 contains variable B but not C or D and that the right branch contains C and D but not B). Thus,
the Z(n) of any node down one of the branches will necessarily miss the cost from the configurations of the variables
included in the other branch(es). R(nX), or the ancestor branching mass, captures the Z(n) for all variables that had
branched off of the path to nX . (For example in the same Figure 10b, the green box shows the portion corresponding to the
R(nA=0,C=1) = Z(BnA=0

)).

More formally, let br(nX) be the set of ancestor nodes nY on the path to nX such that Y is a branching variable in T . Let
WnY

be the child OR node of nY that that is also on the path to X . We define R(nX) as:

R(nX) =
∏

nY ∈br(nX)

Z(nY)

Z(WnY
)

(13)

We denote approximations to R(n) as r(n).

(a)

A

B

0

C

0 1 0 1

B

1

C

0 1 0 1

10 20

1 4 2 5 10 20 5 10

D

0 1

2 3

D

0 1

5 10

D

0 1

10 20

D

0 1

15 5

Ancestor
Branching

Mass of

(b)

Figure 10: A full AND/OR tree representing 16 possible solutions guided by the pseudo tree shown above.
Boxed in green is the ancestor branching subtree for the path →(A=0)→(C=1).

Q(n). We can now concisely define a quantity Q(n) as the contribution to Z from all full configurations consistent with
path(n). In other words, Q(n) is the likelihood of the configuration path(n) based on the distribution defined byM, with
P (path(n)) = Q(n)

Z . Q(n) can be computed simply as:
Q(n) = g(n)·R(n)·Z(n) (14)

Example. In Figure 10b, consider the path from the root to the red node nA=0,C=1. Following nA=0 to our node, we see
OR node BnA=0

that branches off of the path. So,
Q(nA=0,C=1) = g(nA=0,C=1) ·R(nA=0,C=1) ·Z(nA=0,C=1)

= g(nA=0,C=1) ·Z(BnA=0
) ·Z(nA=0,C=1)

= (10·5) ·(1·1 + 4·1) ·(2·1 + 3·1)

2.2 INFERENCE

Next we will outline key inference schemes used with probabilistic graphical models relevant to this work.

2.2.1 Variable Elimination

Many probabilistic graphical model queries can be solved by an inference framework known as variable elimination (VE).
Variable elimination involves an ordered computational processing of the variables of a model, at each step removing a
processed variable from subsequent computations (thus called an elimination step). Each elimination step corresponds to a
step of inference, transferring the effects of the eliminated variables over to the remaining variables (in practice, done by
creating a newly inferred function over the remaining variables).

As an example, consider the query to find the mode of the distribution defined by our simple example above (Section 1.4:

Simple Example). Formalizing this query, we want to solve the task:
max

T,H,E,R,O
p(t, h, e, r, o) (15)

which, based on Equation 5, in terms of our model is equivalent to
max

T,H,E,R,O
p(t, h, e, r, o) = max

T,H,E,R,O
fT (t) · fH(h) · fE(e) · fT,H,R(t, h, r) · fT,E,O(t, e, o) (16)

(The blue coloring is simply to help keep note of where the functions are in the expression).

Using variable elimination to solve this query, we would first need an elimination order - order in which to process and
eliminate variables while performing inference. Suppose an elimination order oelim = [R,O,E,H, T]. Then, given this
ordering, we express our query as

max
T

(max
H

(max
E

(max
O

(max
R

(fT (t) · fH(h) · fE(e) · fT,H,R(t, h, r) · fT,E,O(t, e, o)))))) (17)

where the query can then be solved inside-to-out, variable-by-variable, via computations indicated by the parenthesis. The
result from each step can be interpreted as the inference performed over its corresponding variable.

One power of variable elimination is its ability to simplify computation leveraging mathematical properties of the query.
Note that in our example some of the model’s functions are not dependent on the variable being immediately maximized
over and so can be factored out of the respective maximization. Doing so recursively, we can rewrite our query with the
same ordering instead as

max
T

(fT (t) ·max
E

(fE(e) ·max
O

(fT,E,O(t, e, o))) ·max
H

(fH(h) ·max
R

(fT,H,R(t, h, r)))) (18)

This decomposition reduces the size of the terms being maximized over, thus reducing complexity of the computations.

2.2.2 Bucket Elimination

Bucket elimination Dechter [1999], or BE, is a variable elimination scheme that can be adapted for a myriad of graphical
model tasks including those described in Section 1.6: Some Well-Known and Important Graphical Model Tasks.

Bucket elimination is a message passing scheme that performs variable elimination according to a given elimination order
by processing a data structure called buckets one-by-one, each bucket corresponding to a variable in the ordering. When
reaching a variable Xi in the ordering, all unprocessed functions that contain Xi in their scope are placed in bucket Bi

(this includes the model’s original functions as well as messages generated during the bucket elimination process). As
shown in Equation 19, the bucket is then processed by applying an elimination operation (generalized as

⊕
) over Xi to the

combination of the bucket functions (generalized as
⊗

) resulting in a bucket message - a new function over the remaining
variables present in the scope of the processed functions - denoted λi→j , or λi for short.

λi→j =
⊕
Xi

⊗
fα∈Bi

fα(α) (19)

In the context of computing the partition function, this corresponds to marginalizing Xi from the product of the functions

λi→j =
∑
Xi

∏
fα∈Bi

fα(α) (20)

or in the context of computing the MAP, maximizing the product of the functions over Xi

λi→j = max
Xi

∏
fα∈Bi

fα(α) (21)

The i in λi→j refers to the bucket that generated the message. j indicates the bucket this message will be sent to; namely the
next variable in the elimination ordering that is also found in the scope of the message.

The processed buckets and messages can then be used to compute result of the underlying query (ex. in the case of computing
the partition function or MAP, the result is simply the combination of the finally remaining messages after processing of the
last bucket). Figure 11 shows a schematic of bucket elimination on a graphical model with variables indexed from A to G
and with a unary function with respect to variable A and pair-wise functions over the pairs of variables connected by an edge
in the underlying primal graph (Figure 11a), namely: F = {fA(A), fA,B(A,B), fA,D(A,D), fA,G(A,G), fB,C(B,C),
fB,D(B,D), fB,E(B,E), fB,F (B,F), fC,D(C,D), fC,E(C,E), fF,G(F,G)}.

Bucket elimination can be viewed as a 1-iteration message-passing algorithm along its bucket tree (Figure 11b). The nodes
of the tree are the different buckets. Each bucket of a variable contains a set of the model’s functions depending on the given

A" B"

C"D"

E"

F"

G"

(a) Example primal graph of a graphi-
cal model with 7 variables and model
functions F = {fA(A), fA,B(A,B),
fA,D(A,D), fA,G(A,G), fB,C(B,C),
fB,D(B,D), fB,E(B,E), fB,F (B,F),
fC,D(C,D), fC,E(C,E), fF,G(F,G)}.

(b) Bucket elimination schematic following an elimination order oelim =
[D,E,G,C, F,B,A].

Figure 11: (a) A primal graph of a graphical model with 7 variables. (b) Illustration of BE with an ordering A B C E D F G.

order of processing. There is an arc from bucket BX to bucket BY , if the function created at bucket BX is placed in bucket
BY .

In summary, bucket elimination uses the variable elimantion paradigm and dynamic programming to break a computational
task into smaller subproblems, computing the result by processing buckets and sending resulting messages according to a
provided elimination order.

Complexity. Both the time and space complexity of bucket elimination are exponential in the induced width of the model,
which can be computed as a graph parameter based on the provided ordering and the underlying primal graph Dechter [2019].
(More on the induced width in Section 2.2.3: Induced Width (w*)). In the context of bucket messages, the induced width is
equal to the cardinality of the scope of the bucket message with the largest scope. Given that its complexity is exponential in
the induced width, bucket elimination becomes impractical if the induced width is large, and thus approximation schemes
have been developed to address this Dechter and Rish [2002], Liu and Ihler [2011].

2.2.3 Induced Width (w*)

The difficulty of answering a query using variable elimination can depend heavily on the elimination order being used, with
some elimination orderings leading to efficient factorization, whereas others may not and instead result large computations.
We can capture this complexity graphically.

As elimination computations are performed variable-by-variable pursuant to the ordering provided, the corresponding
solutions (which themselves may be a function over some remaining variables) can be viewed as inducing new edges onto
the underlying primal graph in the same way the model’s native functions did originally (see Section 1.3: Primal Graph for
details). These new edges correspond to newly inferred relationships between variables not directly connected in the original
graph. When adding all of the newly induced edges to the primal graph (namely the new edges resulting from generated
messages from the processing of all the variables), we end up with a new graph called the induced primal graph, or induced
graph for short. The complexity of exact variable elimination algorithms are with respect to the tree-width of the resulting
induced graph - namely with respect to a quantity known as the induced width (or w*), which is one less than the largest
clique-size of the induced graph.

Definition 2.2.3.1 (Induced Width (w*)). The induced width of a graphical modelM with respect to elimination order
oelim with induced primal graph G′ is

w∗ = max
c∈clq(G′)

|c| − 1, (22)

where clq(G′) is the set of all cliques in G′ and |c| denotes the clique-size of clique c.

References

A. Darwiche. Modeling and Reasoning with Bayesian Networks. Cambridge University Press, 2009.

Rina Dechter. Bucket elimination: A unifying framework for reasoning. Artificial Intelligence, 113:41–85, 1999.

Rina Dechter. Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algorithms. Synthesis
Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers, 2013. doi: 10.2200/
S00529ED1V01Y201308AIM023. URL http://dx.doi.org/10.2200/S00529ED1V01Y201308AIM023.

Rina Dechter. Reasoning with probabilistic and deterministic graphical models: Exact algorithms, second edition. Synthesis
Lectures on Artificial Intelligence and Machine Learning, 13:1–199, 02 2019.

Rina Dechter and Robert Mateescu. AND/OR search spaces for graphical models. Artificial Intelligence, 171(2-3):73–106,
2007.

Rina Dechter and I Rish. Mini-buckets: A general scheme for approximating inference. Journal of the ACM, pages 107–153,
2002.

Qiang Liu and Alexander Ihler. Bounding the partition function using Hölder’s inequality. In International Conference on
Machine Learning (ICML), pages 849–856. ACM, June 2011.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

http://dx.doi.org/10.2200/S00529ED1V01Y201308AIM023

	i. Glossary
	ii. Abbreviations
	Background: Graphical Models
	Discrete Graphical Models
	Graphical Model Notation
	Primal Graph
	Simple Example
	Pseudo Tree
	Some Well-Known and Important Graphical Model Tasks
	Task Formalizations
	Difficulty

	Background: Fundamental Schemes
	Search
	OR Search Spaces
	AND/OR Search Space
	Search Space Notation
	Important Quantities in AND/OR Search Spaces

	Inference
	Variable Elimination
	Bucket Elimination
	Induced Width (w*)

